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Abstract: To improve the efficiency and accuracy of plane segmentation for indoor point clouds,
this paper proposes a fast and precise plane segmentation framework which mainly consists of two
steps: plane rough segmentation and precise segmentation. In the rough segmentation stage, the
point clouds are firstly voxelized, then the original plane is extracted roughly according to the plane
normal vector and nearest voxels conditions. Based on the results of rough segmentation, a further
operation composed of downsampling and density-based spatial clustering of applications with
noise (DBSCAN) is adopted to produce efficient and precise segmentation. Finally, to correct the
over-segmentation, the distance and normal vector angle thresholds between planes are taken into
consideration. The experimental results show that the proposed method improves the efficiency and
accuracy of indoor point cloud plane segmentation, and the average intersection-over-union (IoU)
achieves 0.8653.

Keywords: indoor point clouds; voxelized; plane segmentation; DBSCAN

1. Introduction

Accurate and economical LiDAR can be used to intuitively create a complete 3D model
of the real world [1,2], which makes LiDAR widely applied to autonomous driving [3–5],
simultaneous localization and mapping (SLAM) [6–8], 3D reconstruction [9–13] and other
fields. For the task of 3D reconstruction, plane extraction is crucial, and a lot of research
has been proposed to address the plane extraction issue.

Due to the disorder and high density of point clouds, the direct plane segmenta-
tion algorithms are time-consuming and tend to generate under-segmentation or over-
segmentation results. To solve this problem, there are several ideas for extracting plane
point clouds: region growing [14–16], random sample consensus (RANSAC) [17,18], normal
estimation [19,20], dimensionality reduction algorithms [21,22], and density-based noise
application spatial clustering [23,24]. The region growing methods have high accuracy,
stability, and robustness [25]. The seed points are selected by the constraints of height,
curvature, and the number of neighbor points. The seed growing conditions are deter-
mined according to the angle threshold of the tangent plane of the seed points. Su et al. [26]
combined a region growing algorithm and distance algorithm to extract planes precisely.
Dong et al. [27] observed global information and enriched the results from region growing
with global energy optimization. RANSAC is generally used in combination with other
methods [28,29] to generate precise results. Yuan et al. [30] adopted RANSAC to first
roughly segment the point cloud, then used the region growing algorithm to optimize
the plane. To improve the accuracy of RANSAC segmentation, Xu et al. [31] proposed
a point cloud pre-classification method based on support vector machine classification.
The method based on the region growing algorithm or RANSAC can yield results with
high accuracy, but it will be inefficient with the increasing scale of the data as well. To
weaken the influence of the scale of data and improve the efficiency, normal estimations are
taken into consideration. Yang et al. [32] first used the weighted PCA method to estimate
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the point cloud normal vector, then used angle clustering to obtain a series of parallel
planes. Finally, the improved RANSAC was used to detect the horizontal distance and
normal distance between planes, respectively, extracting the adjacent overlapping planes in
space. Moreover, voxelization [33,34] is also an important means to improve computational
efficiency. Huang et al. [35] proposed an efficient encoding voxel-based segmentation
(EVBS) algorithm based on fast adjacent voxel search, which can segment point cloud
planes faster and more accurately than traditional algorithms. Xu et al. [36] also used the
voxelized structure of the point cloud combined with the face-based global clustering to
automatically extract planes in an unsupervised way. Lee [37], Saglam [38], and Vo [39]
also proceeded to the next steps after voxelizing the point cloud in the preprocessing
stage. Voxelization can give the point cloud a topological structure, thereby the improving
computational efficiency. However, high efficiency and high accuracy are often difficult to
be satisfy simultaneously. Therefore, some additional methods are needed to improve the
segmentation accuracy. The point cloud on the same plane has the characteristics of being
uniform, continuous, and high-density, and the DBSCAN clustering algorithm can classify
the points of continuous and uniform density to achieve the accurate segmentation of the
plane. Czerniawski et al. [40] proposed combining the semantic information stored in the
plane in which the DBSCAN was used in the 6D space, and trained a decision tree classifier
through dimensionality reduction and unsupervised learning, which can achieve more than
90% accuracy in large-scale building plane segmentation (walls, ground, and ceiling). Based
on candidate sample selection and plane validity detection in 3D space, Chen et al. [41]
proposed additional DBSCAN clustering conditions and adaptive thresholds to obtain
effective fitting planes. Although DBSCAN has a good segmentation performance, the
parameters of the algorithm cannot be explicitly determined, and additional determination
conditions need to be set. Meanwhile, when the scale of the point cloud is large, the
algorithm will be time-consuming. As mentioned above, how to quickly and accurately
segment plane point clouds is still a difficult problem in 3D point cloud processing.

To solve this problem, we considered using voxelization to improve the computational
efficiency and adopting clustering methods to make up for the lack of segmentation ac-
curacy. First, the point cloud voxelization makes the disordered point cloud be arranged
regularly; each point corresponds to a unique voxel, and the corresponding voxel can be
quickly accessed by number. In addition, the points in each voxel can be regarded as a
whole, and the normal vector, curvature, and the number of points fitted with these points
can be used as the characteristics of each voxel. With voxelization, each plane consists of
multiple voxels, and the points in each voxel can be fitted a local normal vector. Therefore,
the plane can quickly be determined by the normal vector, avoiding the time-consuming
calculation of the normal vector of each point. Through some verified experiments, we
adopted the DBSCAN algorithm to achieve further segmentation. Although this method
can achieve fine segmentation to improve accuracy, we found that when the number of
points in a cloud is in the hundreds of thousands or even millions, the method can take
hours or even days to complete the segmentation. Furthermore, the two parameters of
the radius and the number of points within the radius are difficult to determine in this
algorithm, it needs to be continuously adjusted to the optimal parameters to have a better
effect. Therefore, we proposed a framework combining the advantages of voxelization and
DBSCAN to quickly and precisely realize the segmentation of planes. The overall flow of
the framework in this paper is shown in Figure 1.

The organization of this paper can be summarized as follows: In Section 2, we elab-
orate on the principle of the proposed algorithm in three steps. Section 2.1 introduces
the plane rough segmentation based on nearest-neighbor voxels; Section 2.2 presents the
plane precise segmentation based on DBSCAN; the post-processing and optimization of
the algorithm are introduced in Section 2.3. Section 3.1 describes the equipment we use, the
measurement principle of this equipment, and how we obtain raw data; Section 3.2 illus-
trates the algorithm with three different scenarios; Section 3.3 calculates the experimental
parameters, and evaluates the method proposed in this paper by comparing it with other
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methods. In Section 4, the experimental results are objectively analyzed and discussed,
illustrating the strengths and weaknesses of our method. Finally, we summarize the full
work of this paper and future work directions in Section 5.

Figure 1. The overall flow chart of the proposed algorithm.

2. Methods

The 3D point cloud segmentation algorithm will be introduced in this section in three
stages: (1) the plane rough segmentation based on the nearest-neighbor voxel; (2) precise
segmentation for rough planes obtained in (1) based on DBSCAN; and (3) optimization to
mitigate the over-segmentation phenomenon.

2.1. Plane Rough Segmentation Based on Voxels

The rough plane extraction algorithm is divided into two steps: The raw point clouds
are voxelized, and the local normal vector characteristics of the nearest-neighbor voxels are
used to achieve the preliminary plane extraction. As shown in Figure 2, it is a flowchart of
the algorithm for the rough segmentation of the raw point clouds.

Figure 2. The flow chart of the rough segmentation of the initial point cloud.

For the raw point clouds, xmin, xmax, ymin, · · · , zmax (the maximum and minimum
values of the point cloud in the three directions, x, y, z) are easily obtained. Then, the
number of voxel grids in each direction could be determined by relying on a given voxel
size. (It is assumed here that the voxel sizes in the three directions are all r. In practical
applications, different sizes can be selected according to needs.) The voxel segmentation
results of different sizes are shown in Figure 3. Therefore, the voxel number (xi, yi, zi) in
three directions corresponding to each point is:

Nx = (xmax − xmin)/r

Ny = (ymax − ymin)/r

Nz = (zmax − zmin)/r

(1)


xi =

(x−xmin)
r = a,

yi =
(y−ymin)

r = b,

zi =
(z−zmin)

r = c,

(i = 1, 2, · · · , n) (2)
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Figure 3. Point cloud voxelization: (a) raw data; (b) voxelization with r = 4; (c) voxelization with
r = 2; (d) voxelization with r = 1. The parameter r is the size of voxels.

Then, we store all points in a voxel structure as follows:

Pr =
{

G
∣∣G = g(a, b, c), a = 1, 2, · · · , Nx; b = 1, 2, · · · , Ny; c = 1, 2, · · · , Nz;

}
(3)

where g(a, b, c) represents the voxels numbered (a, b, c). The raw point cloud is converted
into the voxel structure of Nx × Ny × Nz; hence, each point has a corresponding voxel
number, and the corresponding point can be accessed according to the number. Next, all
the voxels are traversed in turn. For the seed voxel g(a, b, c), the points in the voxels are:

g(a, b, c) = [g1, g2, · · · , gk] (4)

where g1, g2, · · · , gk are the points in g(a, b, c). Afterward, we find a plane mapped via
principal component analysis (PCA) with the points in the voxel and obtain the eigenvector
v0 corresponding to the smallest eigenvalue as the normal vector of the plane. The same
operation is performed on the adjacent 26 voxels surrounding the voxel, where edge
constraints are required; that is, the maximum number of nearest-neighbor voxels is 26 and
the minimum is 7, and the two distributions are shown in Figure 4.

It should be pointed out that the orientation of voxelization is not always parallel or
perpendicular to the plane in the point cloud because of the orientation difference between
the different point clouds. However, when there is a plane intersecting with the seed
voxel, the number of nearest-neighbor voxels intersecting with the plane is at least k(k ≥ 8).
Therefore, it can be determined whether the currently traversed seed voxel is the target
voxel according to k. At the same time, a threshold σ1 is set to remove the voxels with a few
points in the calculation to weaken the influence of noise.
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Figure 4. Two distributions of adjacent voxels of seed voxels. Each small square represents a voxel.

When k = 8 and the target plane is parallel to the voxel obtained above, the voxels to
be calculated are:

= =

g(a− 1, b, c− 1) g(a− 1, b, c) g(a− 1, b, c + 1)
g(a, b, c− 1) g(a, b, c) g(a, b, c + 1)

g(a + 1, b, c− 1) g(a + 1, b, c) g(a + 1, b, c + 1)

 (5)

and the local normal vectors of each voxel are:

ℵ =

v1 v2 v3
v4 v0 v5
v6 v7 v9

 (6)

Therefore, the angles between the central normal vector v0 and the adjacent 8 normal
vectors are:

Φ =

θ1 θ2 θ3
θ4 0 θ5
θ6 θ7 θ8

 (7)

Setting an angle threshold θ0, when all the angles in Φ satisfy the condition of
Formula (8), the central voxel and the adjacent 8 voxels are considered to be part of the
plane. Otherwise, it will traverse the remaining voxels until the next voxel that satisfies the
condition is found. The current algorithm stops as soon as all voxels have been traversed
or all planes have been found.

θi < θ0, (i = 1, 2, · · · , 8) (8)

When a plane is determined, all the points in the seed voxels and the adjacent
8 voxels are:

Ξ′i = (g1, g2, · · · , gm) (9)

Next, the least-squares method is used to perform plane fitting on all points contained
in Ξ′i, and the obtained fitting plane Ξ′′i is:

Aix + Biy + Ciz + Di = 0 (10)

Afterward, the distances between all points and the plane are calculated, and if
the distance is less than the threshold λ, all corresponding points are regarded as the
preliminary point of the plane:∣∣Aixj + Biyj + Cizj + Di

∣∣√
A2

i + B2
i + C2

i

< λ, j = 1, 2, · · · , m (11)
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Here, the plane Ξi of the raw data is obtained. Then, we delete the currently found
plane points in the original data, take the remaining data as the new initial data and
repeat the above operations until all the planes are found. We stipulate that if there are
no voxels meeting the condition again or the number of remaining points is less than the
threshold after traversing all voxels, the loop operation is interrupted. The single-pass
plane determination process of the normal vector is shown in Figure 5.

Figure 5. Single-pass plane determination process for normal vectors. When all voxels meet the
conditions, the plane will be determined depending on the points in all the current voxels via the
least-squares method, and the normal vector is obtained via PCA. Finally, the points in the final plane
are determined according to the distance from the points to the plane.

In this step, slices of each plane are obtained, but these slices have the characteristic of
infinite size; that is, they contain both plane points and sparse points elsewhere, and this
problem will be solved in the next subsection. The pseudo-code of rough segmentation
based on voxels is shown in Algorithm 1.

Algorithm 1 Plane rough segmentation based on voxels

Input: P0(n× 3 points)
Output: Ξ1, Ξ2, · · · , Ξi
1: for P0 do
2: voxelization← P0
3: for g(a, b, c) ∈ Pr do
4: vi ← g(a, b, c) do PCA
5: θi ← ∠[v0, vi](i = 1, 2, . . . , 8)
6: if θi < θ0 do
7: Ξ′′i ← Ξ′i do PCA

8: Ξi ← g =
{

g
∣∣∣g = gj, dis

(
gj ∈ Pr, Ξi

)
< λ

}
9: break
10: end if
11: end for
12: Ξ1, Ξ2, . . . , Ξi
13: end for

2.2. Precise Segmentation of Plane Based on DBSCAN

The DBCSAN is a traditional clustering algorithm that can classify high-density point
clouds into one category according to the density of the points. The basic idea of the
algorithm is shown in Figure 6. To begin with, the initial core density point A is randomly
determined, and the radius R and the number N of points within the radius of A are
artificially defined. If the number of points within the radius of A is greater than N, the
point will be taken as the initial core density point and all the points contained in the radius
are also considered as new core density points. Then, the operation to find new core density
points is repeated again and again until the points in the radius of all the core density
points do not meet the density condition. Finally, we take all the core density points and
all the points within the radius of the core density point as one category and the others as
outliers. After the first category is determined, an initial core density point is randomly
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selected and the above steps are repeated again until all points have been visited, and the
algorithm stops.

Figure 6. Algorithmic process of DBSCAN. Here N = 5. In the left, A, is the initial core density
point and B, C, D, E, contained in the radius of A are the points meeting the density condition, the
other colored points are contained in B, C, D, E but don’t meet the condition. Therefore in the right,
A, B, C, D, E and the points they contained are classified as one category colored red, while the outliers
are colored black.

DBSCAN is an unsupervised clustering algorithm that can autonomously find several
possible high-density point clusters in the data. In the experiment, we find that the
category obtained via DBSCAN from the plane in rough segmentation is the exact plane
that we expect. However, the shortcomings of DBSCAN are obvious as well. With the
growth in the scale or dimension of the data, the time consumption increases while the
efficiency decreases. Therefore, we propose a precise segmentation algorithm based on
DBSCAN, which means that the time consumption of precise segmentation does not
change significantly with the increasing scale of the data. The algorithm process is shown
in Figure 7.

Figure 7. Algorithm process of precise segmentation based on DBSCAN.

The mathematical representation of the mapping plane Ξi obtained in Section 2.1 is
as follows:

Aix + Biy + Ciz + Di = 0, (i = 1, 2, · · · , m) (12)

where the normal vector of Ξi is ν = [Ai, Bi, Ci] and the two normal vectors that are
perpendicular to ν and perpendicular with each other are acquired via PCA:

[ν1, ν2] =

 a1 a2
b1 b2
c1 c2

 (13)

Then, the three-dimensional plane Ξi can be projected to a two-dimensional plane:

Ξ2
i = Ξi[ν1, ν2] (14)

Now let us mesh the plane Ξ2
i . First of all, we obtain the boundaries of the plane in

both directions, which are xmin, xmax, ymin, ymax.
In general, square approximate grids are ideal, which means that the ratio of the

number of grids should be approximately equal to the ratio of the length of the plane in the
two directions. Accordingly, the number of grids can be determined:
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nx

ny
=

(xmax − xmin)

(ymax − ymin)
(15)

where nx
ny

represents the ratio of the number of grids in the two directions and k = 100 is
the gain. Thus, the number of grids in reality is Nx = k× nx, Ny = k× ny. Afterward, the
grid number corresponding to each point in two directions (l, m) is:{

l = (xi−xmin)
rx

, rx = (xmax−xmin)
Nx

m = (yi−ymin)
ry

, ry = (ymax−ymin)
Ny

(i = 1, 2, · · · , n) (16)

In addition, we also stipulate that, when the number of points in a grid is greater than
the threshold σ2, the grid will be marked; otherwise, the grid will be abandoned. After all
the grids are marked or abandoned, the number of points greatly decreases, which is no
more than Nx × Ny, and each grid corresponds to a one-to-one label, so the data can be
shown as follows, and Figure 8 shows the process.

Ξ2
i =


∅ (1, 2) (1, 3) (1, 4) (1, 5) ∅

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) ∅
(3, 1) (3, 2) ∅ (3, 4) (3, 5) ∅
∅ (4, 2) (4, 3) (4, 4) ∅ ∅

 (17)

Figure 8. Process of the grid being marked.

Next, we cluster the new data Ξ2
i via DBSCAN, and then a plane from rough segmen-

tation is classified into several categories according to the density condition. We take the
biggest one as our target category because an exact plane must be the largest category that
satisfies the density condition in the corresponding rough segmentation plane. Therefore,
all the precise planes are extracted after the precise segmentation above being repeated
for the rough planes. The pseudo-code of the precise segmentation algorithm is shown
in Algorithm 2, and the comparison of rough segmentation and precise segmentation is
shown in Table 1.

Algorithm 2 Plane precise segmentation based on DBSCAN

input: Ξ1, Ξ2, . . . , Ξm
output: Ξ′1, Ξ′2, . . . , Ξ′m
1: for Ξi, i = 1, 2, . . . , m do
2: Ξ2

i ← Ξi do PCA
3: (l, m)← Ξ2 do mesh
4: for(l, m) do
5: if nlm > σ do
6: (l, m)h ← (l, m) do mark
7: end if
8: end for
9: {(i, j)n}max ← {(i, j)h} do DBSCAN

10: Ξ′i ←
{
{px}y

}
←
{
(i, j)y

}
11: end for
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Table 1. The comparison of rough segmentation and precise segmentation.

Plane Number Rough Segmentation Precise Segmentation

1

2

3

4

5

6

7

8

9

10

2.3. Optimization

In Section 2.2, we segmented each plane accurately, but over-segmentation occurs at
the same time during the experiment, as shown in Figure 9. As a result of equipment errors
and algorithm errors, the plane made up of the point clouds is not a plane with only length
and width, but also thickness; thus, a plane will be divided into multiple notional planes.
Therefore, in the following section, the results of precise segmentation need to be optimized.

Figure 9. Over-segmentation in plane segmentation.

The exact plane obtained from Section 2.2 is:

P =
{

Ξ′1, Ξ′2, . . . , Ξ′m
}

(18)

For each plane Ξ′i, it is convenient to obtain the normal vector via PCA:

ν′i =
(

A′i, B′i , C′i
)T (19)

and the plane’s mathematical expression is:

A′ix + B′iy + C′i z + D′i = 0, (i = 1, 2, · · · , m) (20)
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Then, the angle between ν′i and the normal vector of other planes is:

θij = arccos

 ∣∣Ai Aj + BiBj + CiCj
∣∣√

Ai
2 + Bi

2 + Ci
2
√

Aj
2 + Bj

2 + Cj
2

 (21)

Setting a threshold ϑ, when θij < ϑ, we take the average to normalize the two normal
vectors and calculate the distance between the two planes:

A′i = A′j =
A′i+A′j

2

B′i = B′j =
B′i+B′j

2

C′i = C′j =
C′i+C′j

2

(22)

dij =

∣∣∣D′i − D′j
∣∣∣√

A′i
2 + B′i

2 + C′i
2

(23)

Similarly, we take d0 to be the distance threshold, and if dij < d0, the two planes will
be considered to belong to the same plane and normalized. The optimization cycle repeats
until all planes are compared with other planes. Therefore, so far, the overall proposed
algorithm stops.

3. Experimental Process and Results

In this section, we firstly introduce the acquisition equipment of the 3D LiDAR point
cloud briefly. Next, we collect the point clouds of three indoor scenes from the real environ-
ment and obtain the raw data after filtering. To illustrate the feasibility and advantages of
the method proposed in this paper, we selected several point cloud segmentation algorithms
for comparison and displayed the results at the end.

3.1. 3D LiDAR Point Cloud Acquisition Equipment

There are two kinds of hardware devices employed in our experiment, as shown in
Figure 10. Figure 10a shows a three-dimensional point cloud reconstruction backpack,
which is composed of a 16-line mechanical LiDAR, inertial measurement unit (IMU),
wireless module and A lower computer. When collecting data, professional technicians are
required to carry the equipment on and move slowly and at a constant speed within the
measurement range in a stable attitude as much as possible. The other one is a 3D point
cloud reconstruction trolley, shown in Figure 10b, which consists of a 16-line mechanical
LiDAR, IMU, wireless module, lower computer and a crawler. When collecting data, the
experimenter can control the movement of the car by operating the handle or planning the
path so that the car can navigate autonomously and collect data.

The principle of the equipment collecting data in the experiment is as follows: firstly,
the experimenter starts the device, a wireless module connecting with a computer and
scanning the surrounding environment at a speed of 0.5 s per frame. At the same time,
the simultaneous localization and mapping (SLAM) program starts, and where the device
started is the initial origin in the global coordinate system. Then, the point clouds scanned
by LiDAR are transferred to the host for 3D reconstruction. In the 3D reconstruction, the
coordinates are updated by matching the real-time IMU data with the point cloud of each
frame via the LeGO-LOAM algorithm [42]. Finally, the updated coordinates are transmitted
to the computer for real-time display through the wireless module.

The principle of the LeGO-LOAM algorithm is shown in Figure 11. The LeGO-LOAM
algorithm first divides each frame of the initial point cloud into the ground point cloud and
edge point cloud and extracts features from the two parts. Then, according to the ground
features of the two frames before and after, the offset tz, the roll angle γ and the pitch angle
φ in the direction can be obtained, as well as the offset ty, yaw angle ϕ in direction y and
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offset tx in direction x. Therefore, the rotation and translation matrices of the two frames
before and after can also be obtained, and the current global map can be updated.

Figure 10. (a) Three-dimensional reconstruction backpack. (b) Three-dimensional reconstruction trolley.

Figure 11. The principle of the LeGO-LOAM algorithm.

3.2. Our Experiment Results in Three Scenes

To illustrate the applicability of our algorithm in various scenes, we collect the point
clouds of the three scenes with different sizes and numbers of points with the equipment
mentioned above. Due to the different scales of point clouds, the different distribution
of the planes, the difference in the purpose of segmentation and the noise included, the
relevant parameters in the experiment are different, as specifically shown in Table 2. The
purpose of the proposed algorithm is to segment relatively larger planes in a scene, so we
discard small planes such as tables, chairs, cabinets and computers (that is, considering the
points of these planes as noise). The parameters in the table are:

Table 2. Parameter values of different parameters in three scenes in the algorithm.

Number of Scenes θ0 λ r Nx Ny R N ϑ d0

Scene 1 20 0.2 0.4 100 50 2 8 20 0.3
Scene 2 20 0.1 0.5 400 50 2 10 20 0.3
Scene 3 20 0.2 0.8 150 150 1.5 6 25 0.25
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θ0 is the angle threshold of the normal vector between the seed voxel and the adjacent
voxels in the rough segmentation; λ is the distance threshold in rough segmentation to
determine whether a point belongs to the extracted plane; r represents the size of the
voxels in Step.1; Nx and Ny are, respectively, the number of grids in x and y in precise
segmentation; R is the search radius of DBSCAN; N is the minimum number of points
contained within R; and ϑ d0 are, respectively, the angle threshold and distance threshold
in optimization.

• Scene 1

As shown in Figure 12, the point cloud of scene 1 comes from a single indoor room,
and the data-collection path is shown in Figure 13. There are five planes with relatively
uniform sizes that are perpendicular or parallel to each other, as distributed in scene 1. The
first scene contains more than 820,369 points, as shown in Figure 14a. Figure 14b shows
the precise segmentation result of scene 1, and it is obviously over-segmented. Figure 15
shows the final segmentation result after optimization.

Figure 12. The real scene of scene 1.

Figure 13. The data-collection path of scene 1 (with arrows).
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Figure 14. (a) The raw point cloud of scene 1; and (b) the result of precise segmentation.

Figure 15. The final segmentation result after the optimization and several planes of scene 1. The
separate planes labeled (1–5), respectively, correspond to the plane with the same color in scene 1;
(3), (4) and (5) are visible, while (1) and (2) are invisible here.

• Scene 2

Scene 2 is a floor inside a building, as shown in Figure 16, and the data-collection
path is shown in Figure 17. For some reason, the experimenters could not access the rooms
along both sides of the corridors, but the effect of our algorithm in a single room is shown
in scene 1. As shown in Figure 18a, the raw point cloud of scene 2 contains approximately
1.8 million points, including 22 visible planes. Here, we chose the large plane, which can be
visually observed as the visual plane, to facilitate the subsequent parameter evaluation of
our algorithm. Figure 18b shows the result of the algorithm precisely segmenting scene 2.
The final segmentation result and part of the segmentation planes after optimization are
shown in Figure 19.
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Figure 16. The real scene of scene 2.

Figure 17. The data collected path of scene 2 (along with the arrow). The blue dashed boxes represent
inaccessible rooms and areas, which are not included in the raw point cloud. The grey dotted line
represents a circular cutout in the ceiling, visible in Figure 16.

Figure 18. (a) The raw point cloud of scene 2; and (b) the result of precise segmentation.
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Figure 19. The final segmentation result after optimization and several segmentation planes of scene
2. The separate planes labeled (1–12), respectively, correspond to the plane with the same color in
scene 2. Whilst (1,2,5–9,12) are visible, (3,4,10,11) are invisible here.

• Scene 3

Scene 3 is a showroom with a long corridor, as shown in Figure 20. The data collected
path of scene 3 are shown in Figure 21. As in scene 2, scene 3 does not contain single
rooms, and mainly shows the plane segmentation effect of our algorithm in a larger indoor
scene. Scene 3 contains approximately 2.8 million points, including 27 planes after filtering.
Figure 22a shows the initial point cloud of scene 3, and (b) is the precise segmentation
result of scene 3. Figure 23 shows the final segmentation result after optimization, as well
as part of the segmented planes.

Figure 20. The real scene of scene 3.
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Figure 21. The data-collection path of scene 3 (along with the arrow). The circular exhibition booth in
the picture is approximately 1 m above the ground and approximately 3 m in diameter.

Figure 22. (a) The raw point cloud of scene 3; and (b) the result of precise segmentation.
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Figure 23. The final segmentation result after optimization and several segmentation planes of scene 3.
The separate planes labeled (1–12), respectively, correspond to the plane with the same color in scene
2. While (4–6,8–12) are visible, (1,2,3,7) are invisible here, and plane (7) is the exhibition booth inside
scene 3 in Figure 21.

3.3. Comparison with Other Methods

Section 3.2 presents the segmentation effects of our method in three scenes. To quan-
titatively illustrate the efficiency and accuracy superiority of the proposed method, four
segmentation algorithms were selected for comparison, which are the region growing
(RG), random sample consensus (RANSAC), difference of normals (DoN) and normal k
nearest-neighbor (NKNN).

All the comparison algorithms run on the same device to minimize the impact of the
processing device on the final segmentation result. At the same time, we also adjust the
parameters in several contrasting methods to obtain relatively better segmentation results.
After that, we obtained the segmentation results of four contrasting segmentation methods
in three scenes. We introduce two parameters to evaluate the quality of the results namely
time (T) and intersection-over-union (IoU), along with some intermediate parameters: true
positive (TP), false positive (FP), false negative (FN) and error rate (ER). TP represents the
correctly segmented planes, FP represents the samples that are non-planar but recognized
as planes, and FN represents the samples that are planes but not recognized as planes. IoU
is equal to the TP divided by the sum of TP, FP, and FN.

The results of the four methods for segmenting scene 1, scene 2, and scene 3 are shown
in Figures 24–26, respectively. The T, TP, FP, FN, IoU, and ER in the three scenarios are
shown in Tables 3–5, respectively. Figure 27 shows the variety of the processing time of
the four segmentation methods along with a variety of the number of points in the scenes.



Remote Sens. 2022, 14, 3519 18 of 23

Figure 28 shows the IoU of the segmentation results more intuitively by exchanging tables
into a bar chart.

Figure 24. The figure shows the results of scene 1: (a) the raw point cloud; (b) RG; (c) RANSAC;
(d) NKNN; (e) DoN; and (f) ours.

Figure 25. The figure shows the results of scene 2: (a) the raw point cloud; (b) RG; (c) RANSAC;
(d) NKNN; (e) DoN; and (f) ours.
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Figure 26. The figure shows the results of scene 3: (a) the raw point cloud; (b) RG; (c) RANSAC;
(d) NKNN; (e) DoN; and (f) ours.

Table 3. T and IoU of five methods to segment Scene 1.

METHOD T TP FP FN IoU ER

RG 63.5465 s 4 0 1 0.8000 0.2000
RANSAC 101.8499 s 1 0 4 0.2000 0.8000

NKNN 84.2474 s 1 0 4 0.2000 0.8000
DoN 66.2764 s 1 0 4 0.2000 0.8000
Ours 16.2082 s 5 0 0 1.0000 0.0000

Table 4. T and IoU of five methods to segment Scene 2.

METHOD T TP FP FN IoU ER

RG 391.3039 s 14 0 8 0.6364 0.3636
RANSAC 224.3024 s 1 0 21 0.0455 0.9545

NKNN 169.0449 s 10 0 12 0.4545 0.5455
DoN 155.3330 s 7 0 15 0.3182 0.6818
Ours 116.4729 s 18 0 4 0.8182 0.1818

Table 5. T and IoU of five methods to segment Scene 3.

METHOD T TP FP FN IoU ER

RG 476.8546 s 15 0 11 0.5769 0.4231
RANSAC 459.1439 s 3 0 24 0.1111 0.8882

NKNN 288.8921 s 6 0 21 0.2222 0.7778
DoN 241.1156 s 7 0 20 0.2593 0.7407
Ours 152.0937 s 21 1 5 0.7778 0.2222



Remote Sens. 2022, 14, 3519 20 of 23

Figure 27. T varies with the number of points. The horizontal axis represents the number of points,
and the vertical axis represents the processing time (T) to segment the planes in scenes. Different
colored and linear polylines represent different algorithms.

Figure 28. The IoU of the results in different scenes. The horizontal axis represents the three scenes
segmented, the vertical axis represents the IoU of the corresponding scenes and algorithms and
different colors represent different algorithms.

4. Discussion

To more scientifically evaluate the advantages and disadvantages of our algorithm, in
this section, we will focus on the following two aspects: the experimental results of plane
segmentation and the quantitative analysis of parameters.

As for the experimental results, first of all, the precise segmentation results of our algo-
rithm are shown in Figures 14b, 18b and 22b. It is obvious that planes are almost completely
segmented. However, due to the thickness of the point clouds, there is over-segmentation
in precise segmentation. The results after optimization are shown in Figures 15, 19 and 23.
A single plane in the scenes can be completely extracted, and we can easily distinguish
each plane in the final segmentation result, which illustrates that our algorithm performs
well in segmenting indoor point cloud planes. In addition, it can be seen in Figures 24–26
that although the comparison algorithms can also extract partial planes, they are often
not complete or accurate. Undersegmentation (RG), unidirectional segmentation plane
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(RANSAC), dividing a plane into multiple planes (NKNN), plane loss (DoN) and contain-
ing more noise points are obvious. In contrast, Figures 24f, 25f and 26f intuitively illustrate
that our algorithm outperforms the four comparison algorithms in both the completeness
and quantity of the extracted planes.

As for the experimental parameters, the efficiency and accuracy of our algorithm are
both better than the comparison algorithms. In Table 3, the processing time to segment
scene 1 is 63.5465s (RG), 101.8499s (RANSAC), 84.2474s (NKNN), 66.2764s (DoN), and
16.2082s (ours). Obviously, it is quicker to segment scene 1 for our method than the other
four algorithms, and the same conclusion can be drawn from the results in scene 2 and
scene 3 (Tables 4 and 5). We take T as a function of the number of point clouds in scenes,
as shown in Figure 27. As the number of points increases, the processing time increases
to varying degrees as well, and RG increases the most, while our algorithm increases the
most gently. Furthermore, the plane segmentation accuracy of our algorithm is higher than
the other four methods. By observing Figure 28, visualized by the relevant parameters in
Tables 3–5, it is apparent that the IoU of four comparison algorithms varies greatly with
the environment, while our algorithm can reach 0.8182 and 0.7778, respectively, in scene 2
(with 22 planes) and scene 3 (with 27 planes) where the environment is complex. Even if
the IoU decreases slightly as scenes become more complex, it is still much higher than the
other three methods in general.

In addition, our algorithm has some shortcomings: it is difficult to formulate param-
eters that satisfy both large and small plane segmentation. When scenes are extremely
complex, or the size of the planes that need to be extracted varies too much, our algorithm
may not achieve the results we expect.

5. Conclusions

This paper proposed a fast and precise plane segmentation framework for indoor
point clouds. The core steps of the algorithm are divided into two steps: plane rough
segmentation and precise segmentation. Firstly, the raw data are voxelized; then, the rough
segmentation is realized according to the angle of the local normal vector between the seed
voxel and the nearest-neighbor voxels. Secondly, the precise segmentation algorithm based
on DBSCAN is adopted to achieve the precise extraction of the plane. Finally, the final
extraction planes are obtained by optimizing the results to overcome over-segmentation. By
analyzing the experimental results and relevant parameters, our algorithm signDificantly
outperforms the compared algorithms in terms of both efficiency and accuracy. However,
our algorithm cannot extract planes in extremely different sizes at the same time, and the
algorithm needs to be further optimized in follow-up work.
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