
Citation: Yu, Z.; Wang, T.; Wang, P.;

Yu, J. The Spatiotemporal Response

of Vegetation Changes to

Precipitation and Soil Moisture in

Drylands in the North Temperate

Mid-Latitudes. Remote Sens. 2022, 14,

3511. https://doi.org/10.3390/

rs14153511

Academic Editors: Massimiliano

Pasqui, Ramona Magno and

Luca Brocca

Received: 15 June 2022

Accepted: 19 July 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

The Spatiotemporal Response of Vegetation Changes to
Precipitation and Soil Moisture in Drylands in the North
Temperate Mid-Latitudes
Zongxu Yu 1,2,†, Tianye Wang 3,†, Ping Wang 1,2,* and Jingjie Yu 1,2

1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
yuzongxu571x@igsnrr.ac.cn (Z.Y.); yujj@igsnrr.ac.cn (J.Y.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China; wangtianye@zzu.edu.cn
* Correspondence: wangping@igsnrr.ac.cn
† These authors contributed equally to this work.

Abstract: Vegetation growth in drylands is highly constrained by water availability. How dryland
vegetation responds to changes in precipitation and soil moisture in the context of a warming climate
is not well understood. In this study, warm drylands in the temperate zone between 30 and 50◦ N,
including North America (NA), the Mediterranean region (MD), Central Asia (CA), and East Asia
(EA), were selected as the study area. After verifying the trends and anomalies of three kinds of leaf
area index (LAI) datasets (GLASS LAI, GLEAM LAI, and GLOBAMAP LAI) in the study area, we
mainly used the climate (GPCC precipitation and ERA5 temperature), GLEAM soil moisture, and
GLASS LAI datasets from 1981 to 2018 to analyze the response of vegetation growth to changes in
precipitation and soil moisture. The results of the three mutually validated LAI datasets show an
overall greening of dryland vegetation with the same increasing trend of 0.002 per year in LAI over
the past 38 years. LAI and precipitation exhibited a strong correlation in the eastern part of the NA
drylands and the northeastern part of the EA drylands. LAI and soil moisture exhibited a strong
correlation in the eastern part of the NA drylands, the eastern part of the MD drylands, the southern
part of the CA drylands, and the northeastern part of the EA drylands. The results of this study
will contribute to the understanding of vegetation dynamics and their response to changing water
conditions in the Northern Hemisphere midlatitude drylands.

Keywords: drylands; vegetation; climate warming; LAI

1. Introduction

Drylands cover approximately 45% of the global land surface [1], and semiarid lands
in particular have expanded over the last several decades [2,3]. Drylands support ap-
proximately 40% of the human population and host 20% of the major global plant [4].
Dryland ecosystems are fragile [5], and approximately 10–20% of global drylands are
already degraded [6,7].

The global land surface temperature has increased by approximately 1.1 ◦C compared
with the average in 1850–1900, and the current global warming rate will likely continue or
accelerate due to increasing anthropogenic greenhouse gases [8]. Due to climate warming
and atmospheric circulation anomalies, the global hydrological cycle is intensifying, and
drylands are expected to become drier [9]. Recent studies indicated that evaporation
increased by 1.1 mm·year−1, while precipitation and runoff decreased by −2.32 mm·year−1

and −0.8 mm·year−1, respectively, in global drylands from 1980 to 2015 [10]. Global
coupled atmosphere–ocean general circulation models [2,11] have predicted that warm
trends over drylands were twice as much as those over humid regions, and the area of
global drylands is projected to expand by ∼10% by 2100.
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Climate warming is applying a major strain on fragile dryland ecosystems and is
likely to worsen in the future [12,13]. Nevertheless, greening of vegetation in some parts of
drylands has been detected since the 1980s. Generally, water-restricted vegetation is widely
distributed in drylands, especially in warm drylands south of 50◦N [14]. The growth of
vegetation in drylands is constrained primarily by water availability [15]. Precipitation
provides a direct source of water for plants in drylands and plays a significant role in aridity
index (AI) changes [11,16–18]. In addition, soil moisture, which is strongly dependent
on precipitation and groundwater [19], plays an important role in vegetative growth,
especially in arid and water-scarce areas [20]. Soil moisture has also been indicated to
control evapotranspiration in the processes of energy and water exchange in dryland
ecosystems [21–23].

Meanwhile, precipitation and soil moisture vary largely across spatial and temporal
scales in drylands [24], such that changes in precipitation and soil moisture are anticipated
to have direct effects on vegetation growth. Therefore, in this study, we investigated
vegetation and its water source controls (mainly precipitation and soil moisture) across
midlatitude (30–50◦N) drylands of the Northern Hemisphere and selected four typical
regions (i.e., western North America, Mediterranean region, Central Asia, and East Asia)
for further analysis. The objectives of this study are to (1) characterize the temporal change
trends and spatial patterns of dryland climate variables and vegetation growth in the
mid-latitudes of the Northern Hemisphere from 1981 to 2018; (2) distinguish differences in
vegetation growth, precipitation, and soil moisture among four selected typical regions;
and (3) carry out attribution analyses of the response mechanism of dryland vegetation to
precipitation and soil water under drought stress.

2. Materials and Methods
2.1. Study Area

In this research, we selected warm drylands in the temperate zone between 30 and
50◦N as the study area where vegetation is severely limited by water resources [14,15]. The
degree of drought in the study area can be divided into four categories based on the drought
index (AI) [2,25]: hyperarid (AI < 0.05), arid (0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI < 0.5), and
dry subhumid (0.5 ≤ AI < 0.65). Each of the four categories occupies a total area of 12%, 38%,
40%, and 10%, respectively, from hyperarid to dry subhumid. The four categories occupy
12%, 38%, 40%, and 10% of the total dryland area of 8.4 million km2 dryland area, and the
dryland areas include western North America, the Mediterranean region and surrounding
areas, Central Asia, and much of East Asia (Figures 1 and 2). There are four climate types
in the study area: temperate continental climate, Mediterranean climate, plateau mountain
climate, and temperate monsoon climate, among which temperate continental climate is
mainly and most widely distributed.
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Figure 2. Elevation in the drylands between 30 and 50◦N.

To better represent the changes in regional vegetation, four typical dryland regions
were selected in the study area, including North America (NA, which includes United States
and Mexico), the Mediterranean region (MD, which includes eleven European countries
including Spain and Italy, six Asian countries including Turkey and Israel, and five African
countries including Egypt and Libya), Central Asia (CA, which includes Kazakhstan,
Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan), and East Asia (EA, which includes
Mongolia, northwest China, and the Inner Mongolia Autonomous Region) [26–29].

2.2. Data Sources
2.2.1. Climate Data

Global Precipitation Climatology Centre (GPCC) monthly precipitation data (Version
2020) during the period from 1981 to 2018 at a spatial resolution of 0.5◦ (http://gpcc.dwd.
de/ accessed on 7 March 2022) [30,31] were used in the study. Gridded datasets were based
on the ~85,000 stations worldwide that had records lasting 10 years or longer. GPCC data
have been widely applied in global water cycle and drought studies [32–34], and the GPCC
precipitation data (PRE) were resampled and averaged annually.

ERA5-land monthly 2 m temperature averaged data during the period from the 1981
to 2018 period at a spatial resolution of 0.1◦ (https://www.copernicus.eu/ accessed on
7 March 2022) [35,36] were used. ERA5-Land is a replay of the land component of the
ERA5 climate reanalysis, forced by meteorological fields from ERA5. ERA5 is the fifth
generation ECMWF atmospheric reanalysis of the global climate. ERA5-land data have been
widely applied in hydrological cycles and global climate change [37–39]. The ERA5-land
temperature data (TMP) were resampled to average annually and 0.5◦ resolution with the
nearest neighborhood method to match the spatial resolution of the precipitation dataset.

2.2.2. Soil Moisture Data

Global Land Evaporation Amsterdam Model (GLEAM) yearly soil moisture data (version
3.5a) during the period from 1981 to 2018 at a spatial resolution of 0.25◦ (https://www.gleam.
eu/ accessed on 7 March 2022) [40–42] were used, including surface soil moisture (SMsurf)
and deeper soil moisture (SMdeeper). GLEAM is a set of algorithms that separately estimate
the different components of terrestrial evaporation based on satellite observations. GLEAM
soil moisture data have been widely applied in terrestrial evapotranspiration and soil
desiccation studies [43–45]. The GLEAM soil moisture data (SMsurf and SMdeeper) were
resampled to a 0.5◦ resolution to match the spatial resolution of the climate datasets.

2.2.3. Potential Evapotranspiration and Evapotranspiration

Climatic Research Unit gridded Time Series (CRU TS) is a climate dataset (version
TS4.00) on a 0.5◦ × 0.5◦ grid over all land domains of the world except Antarctica, which
is derived by the interpolation of monthly climate anomalies from extensive networks of
weather station observations (https://www.uea.ac.uk/ accessed on 7 March 2022) [46,47].
In this dataset, potential evapotranspiration (PET) is calculated using the Penman–Monteith
formula [48]. The CRU TS data have been widely applied in water balance and the evolution
of drought studies [49–51]. The dataset of potential evapotranspiration was selected from

http://gpcc.dwd.de/
http://gpcc.dwd.de/
https://www.copernicus.eu/
https://www.gleam.eu/
https://www.gleam.eu/
https://www.uea.ac.uk/
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1981 to 2018 and resampled to average annually and 0.5◦ resolution to match the spatial
resolution of the climate datasets.

GLEAM yearly actual evaporation data (version 3.5a) during the period from 1981
to 2018 at a spatial resolution of 0.25◦ were used. The GLEAM actual evapotranspira-
tion data (ET) were resampled to a 0.5◦ resolution to match the spatial resolution of the
climate datasets.

2.2.4. Leaf Area Index (LAI) Data

The Global Land Surface Satellite (GLASS) product is primarily based on NASA’s
Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR)
and Moderate Resolution Imaging Spectroradiometer (MODIS) data, in conjunction with
other satellite data and ancillary information using general regression neural networks
(http://www.glass.umd.edu/ accessed on 7 March 2022) [52–54]. Currently, these products
(version 50) are officially released leaf area index (LAI) images of 8 days from 1981 to
2018 based on NASA’s AVHRR. The GLASS LAI dataset is appropriate for the study of
long-term global vegetation dynamics and has been widely used for various research
purposes [55–59].

To verify the quality and availability of GLASS LAI data, GIMMS LAI and GLOBAMAP
LAI datasets were adopted. The Global Inventory Modelling and Mapping Study (GIMMS)
LAI3 g (version 4.0) dataset provides the longest global LAI time series from July 1981 to
December 2016, with a resolution of 1/12◦ and a temporal resolution of 15 days. It was
generated from AVHRR GIMMS NDVI3 g using an Artificial Neural Network-derived
model [60]. The globmap leaf area index product (version 3) provides highly consistent long
time-series leaf area index (LAI) data worldwide [61]. The GLOBMAP LAI is a combination
of the AVHRR and MODIS LAI, with global coverage at a 15-day temporal resolution and
an 8 km spatial resolution for the period from 1981 to 2018 [57]. The datasets of LAI were
nearest resampled to 0.5◦ resolution and averaged annually [58].

2.2.5. Land Cover Data

The MODIS Land Cover Type Product (MCD12Q1) (http://modis-land.gsfc.nasa.gov/
accessed on 7 March 2022) [62,63] supplies global maps of land cover at annual time
steps and 0.05◦ spatial resolution for 2001–present. The product contains the International
Geosphere-Biosphere Programme (IGBP) legacy classification scheme in each 0.05◦ pixel,
which was classified using the C4.5 decision tree algorithm that ingested a full year of 8-day
MODIS nadir BRDF-adjusted reflectance [64–66]. A total of 450 MODIS Land Cover Type
Product images of 8 days from 2004 to 2013 were selected to composite the annual average
image and classify the type of vegetation in drylands between 30 and 50◦ N. Congener
vegetations were combined and divided into habitats of trees, shrubs, and grasses. The
images were resampled to 0.5◦ resolution with the nearest neighborhood method to match
the spatial resolution of the climate datasets.

Before the actual research analysis was undertaken, considerable work was carried out
to classify vegetation. According to MCD12Q1 land cover data and the IGBP classification
scheme, the vegetation in the study area was divided into forest, shrublands, and grass-
lands. Forests and shrublands were “woody vegetation”, while grasslands and savannas
were “herbaceous vegetation” (Table A1 and Figures A1 and A2). Among them, woody
vegetation and herbaceous vegetation accounted for 18% and 72%, respectively.

2.3. Method
2.3.1. Principal Component Analysis (PCA)

Many spatial datasets are highly dimensional and, as such, can be difficult to visualize
and interpret. Therefore, it is often of interest to reduce the dimensionality of the data [67].
To screen and reconfirm the indices affecting vegetation LAI, principal component analysis
(PCA) is established to explain the correlation degree between the mean value of water
factor indices and LAI in the study area from 1981 to 2018 [68]. It is used to reduce the

http://www.glass.umd.edu/
http://modis-land.gsfc.nasa.gov/
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dimensionality of the multivariate dataset by extracting the information in the form of a
small number of principal components, and the main principal factors can be extracted
containing all the required information [69]. In the PCA, each principal component (PC)
represents the direction of one eigenvector. The score on each PC represents the projection
of each variable onto it, which is the weight of the variable. Loading represents the degree
of correlation between each variable and PC. The cumulative variance contribution rate is
often used as an index to judge the number of PCs. In general, the cumulative contribution
rate is greater than 0.8. Before PCA, all variables are normalized.

2.3.2. Linear Regression Analysis

To analyze the trends in meteorological data, soil moisture data, and vegetation
LAI from 1981 to 2018, a linear regression analysis method was established [70]. One-
dimensional linear regression analysis of the trends is a method that can reflect the long-
term dynamics of long time-series data. It is used to calculate spatiotemporal variations in
variates [71–73]. The significance of these changes was determined using a T test at three
significance levels of 0.05, 0.01, and 0.001.

2.3.3. Pearson Correlation Coefficient

The Pearson correlation coefficient (Pearson’s r) is a measure of linear correlation
between two sets of data [74]. It is essentially a normalized measurement of the covariance,
such that the result always has a value between −1 and 1. We performed Pearson’s
correlations to analyze the linear relationships between vegetation growth influencing
factors and LAI from 1981 to 2018 [75]. The significance of these changes was determined
at a significance level of 0.05.

2.3.4. Partial Correlation Analysis

The partial correlation coefficient is used to study the correlation between an indepen-
dent variable and the dependent variable by excluding the impact of the other independent
variables [76]. For this research, we used the partial correlation coefficient to explore the
relationship between climate variables and LAI, soil moisture, and LAI in areas where the
LAI growth trend is higher than the average trend and LAI decline [77]. The significances
of the calculated partial correlations at three significance levels were 0.05, 0.01 and 0.001.

2.3.5. Space Weighted Average

The spatial mean of the dataset was calculated, but the spatial variability of the pixel
area cannot be solved due to the ordinary arithmetic mean. To solve the problem that the
mean value of raster data varies with latitude area, Equation (1) was adopted. It was used
to calculate the weighted average of the raster dataset over the entire study area [78].

X =

n
∑

i=1
Xi × cos(lati)

n
∑

i=1
cos(lati)

(1)

where X is the total mean of the regional variable, Xi is the value of the variable at each
raster data point, and lati is the latitude of the raster data point.

3. Results
3.1. Meteorological Characteristics
3.1.1. Spatial Patterns of Temperature (TMP), Potential Evapotranspiration (PET), and
Precipitation (PRE)

As shown in Figure 3, TMP, PET, and PRE are highly spatially heterogeneous in the
drylands between 30 and 50◦ N. The multiyear mean TMP in most areas of the study area
was over 0 ◦C and varied from −13.89 ◦C to 26.72 ◦C, except that the multiyear mean
TMPs in the mountainous areas of eastern Central Asia, the Qinghai–Tibet Plateau, and
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the northern Mongolia Plateau were less than 0 ◦C. The high TMPs with multiyear mean
temperatures exceeding 20 ◦C were mainly concentrated in the drylands in the south-
western United States, southern Central Asia, northern Africa, and southern Mediterra-
nean, where the highest multiyear mean TMP reached 26.7 ◦C. The low TMP was mainly
concentrated in the northern part of the study area, and the spatial distribution of temper-
ature was affected by latitude and elevation. The temperature tended to decrease as the
altitude and latitude changed from low to high.
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Figure 3. Spatial distribution of the average annual temperature (TMP) (a), potential evapotranspira-
tion (PET) (b), and precipitation (PRE) (c) over the study area from 1981 to 2018.

The multiyear mean PET in the study area ranged from 596 mm to 2438 mm and
decreased from south to north as a whole. High PET values exceeding 1200 mm per year
were widely distributed in most areas of the study area, including the drylands of the
southwestern United States, southern Mediterranean region, southern Central Asia, and
arid and semiarid areas in China. As shown in Figure 3b, the multiyear mean PET was
generally higher in hyperarid regions but lower in arid and semiarid regions. PET was
affected by radiation and hydrothermal conditions, and the distribution of PET in drylands
did not completely follow the distribution of the AI index. At the same time, the multiyear
mean PET showed an increase in stratification from north to south in North America and
Central Asia.

However, the multiyear mean PRE ranged from 22 mm to 1124 mm in the study area.
In addition to the southwestern drylands of the United States, southern Mediterranean,
and most of the drylands of Asia, many of the areas showed low annual PREs, with some
regions far below 350 mm per year. The distribution of the multiyear mean PRE was similar
to that of the AI in the study area. The low multiyear mean PRE below 500 mm occupied
most of the study area and showed large to small change trends from humid to arid regions.

Although high PET was associated with radiation, wind speed, and vapor pressure
differences, PET and PRE with long-term uneven spatial distributions were affected by
differences in geography.
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3.1.2. Temporal Variations in Temperature (TMP), Potential Evapotranspiration (PET), and
Precipitation (PRE)

Figure 4 shows the temporal trends of the average annual TMP, PET, and PRE of the
entire study area from 1981 to 2018. The average annual TMP (slope = 0.04, p < 0.001)
and PET (slope = 1.53, p < 0.001) showed significant interannual increasing trends, but
the average annual PRE showed an insignificant trend (slope = 1.53, p > 0.05). However,
there were substantial differences in the changes in TMP, PET, and PRE in different regions
reflecting different vegetation types (Figure 5). While the TMP in most regions showed
an increasing trend, the TMP variation ranges of vegetation points varied between 0 ◦C
and 0.12 ◦C per year, with most in the range of 0.3 ◦C to 0.06 ◦C per year. The PET
variation ranges of vegetation points varied between −1.73 mm and 0.12 mm per year. The
grid points with greater PET increases were mainly distributed in the central drylands
of North America, the drylands in western Central Asia, and the drylands in northeast
East Asia. Even though PRE had no significant trend overall (Figure 4c) and had no
significant trends in European and Asian areas, PRE had significant decreasing trends in
North American drylands.
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3.2. Vegetation Conditions and Changes
3.2.1. Vegetation Leaf Area Index (LAI) Conditions

To represent the spatial variation in vegetation across the study area, GLASS LAI
annual average data from 1981 to 2018 were applied (Figure A3). With the GIMMS LAI
dataset and the GLOBAMAP LAI dataset [56], the temporal variation trends and anomalies
of LAI in the whole study area were verified (Figures 6 and A4).
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Figure 6. Temporal variation trends of the leaf area index (LAI) over the entire study area from 1981
to 2018 (** p < 0.01; *** p < 0.001).

All three LAI datasets in the study area showed significant increasing trends at a
similar rate of 0.002 per year. Although LAI trends differ in spatial distribution, the LAI
trend indicates the possibility of overall greening of vegetation in the study area (Figure A3).
Compared with the LAI datasets of GLASS and GLOBAMAP, the LAI of GIMMS had larger
anomalies in the study area, and the fitted trend line was significantly lower. Even though
the fitting trend lines of GLASS and GLOBAMAP passed the significance test (p < 0.001),
according to relevant literature [56,79], the global change in GLASS LAI is significant and
more sensitive to drought than GLOBAMAP LAI. Therefore, the GLASS LAI dataset was
chosen for further analysis.

3.2.2. Regional LAI Change

As shown in Figure 7, the vegetation LAI of EA, CA, and MD showed significant
increasing trends over a 38-year period from 1981 to 2018 (MD: slope = 0.006, p < 0.001;
CA: slope = 0.001, p < 0.001; EA: slope = 0.001, p < 0.01). However, there was no obvious
trend of vegetation LAI increase in drylands of NA in terms of the region as a whole. The
regional average LAI of drylands in the MD was at a high level, and the growth rate was
the largest among the four regions. Compared to those of NA and MD, the regional average
LAI changes of EA and CA were in a state of low fluctuation.

Given that the spatial distribution of vegetation variation trends was not uniform,
the spatial variation trends of the annual average vegetation LAI in the four regions were
analyzed (Figure 8).
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In the drylands of NA, vegetation LAI increased significantly (> 0.006 per year) in the
eastern parts of the drylands (0.2 ≤ AI < 0.5), where the terrain was flat and the altitude
was low, while it decreased significantly in the central mountains and southwestern plains
of the drylands (< −0.006 per year). In the Mediterranean surrounding area, most of the
vegetation LAI showed significant increasing trends at higher elevations, where increasing
trends exceeded 0.002 per year. For the vegetation LAI in the drylands of CA, grid points
where vegetation LAI showed significant increases were scattered throughout the region,
but most were concentrated in the southeastern part of drylands. In addition, the significant
increasing trends of EA vegetation LAI were concentrated in the southeastern part of
drylands in East Asia, while the significant decreasing trends were concentrated in the
northwestern part of East Asia. It is worth noting that in the borderlands of southeast CA
and northwest EA, AI shows a transition from semiarid to dry subhumid, and the elevations
here were higher than the average elevations of the two regions. In the drylands of four
typical regions, in general, the vegetation in the high-altitude area showed significant
increasing trends, while the vegetation in the more arid area showed trends of browning
and significant decrease. The overall situation of vegetation change trends in the four
regions is shown in Table 1.

Table 1. Statistical results of the LAI change trend in the four regions.

Region

Trend Ratio (%)

Significant
Insignificant

Increasing Decreasing

NA 27.57 10.19 62.24
MD 56.23 2.37 41.40
CA 27.96 4.64 67.40
EA 23.94 11.70 64.36

ALL 31.54 7.96 60.51

3.3. Relationship between the LAI and Effect Variables
3.3.1. Main Influencing Variables of LAI Based on PCA

The PCA method was applied to analyze and screen the main variables influencing
vegetation LAI changes in the study area. Among them, the LAI, SMsurf, SMdeeper, PET,
PRE, TMP, and ET were averaged over 38 years from 1981 to 2018.

As shown in Figure 9, we conducted a principal component analysis on the datasets in
drylands between 30 and 50◦N. The results showed that the first two principal components
(PC1 and PC2) explained 79% of the variance: 53% by PC1 and 26% by PC2. PC3 explained
10% of the total variance. The correlation coefficients between the first principal component
(PC1) and LAI, SMsurf, SMdeeper, PRE, and ET were large. The first principal compo-
nent was a linear combination of LAI, SMsurf, SMdeeper, PRE, and ET, and the original
variables all had positive effects on vegetation growth. From the loading figure of PC1,
vegetation LAI may be related to precipitation and soil moisture (SMsurf and SMdeeper)
from the perspective of vegetation growth water. The correlation coefficients between the
second principal component (PC2) and PET and TMP were large, so the second principal
component is a linear combination of PET and temperature, both of which have a positive
effect on vegetation growth. From the loading figure of PC2, PET and TMP were positively
correlated, indicating that the vegetation greening caused by the rise in PET may be related
to the rise in TMP in the drylands of the study area. However, it is worth noting that
the correlation coefficients between the first principal component (PC1) and SMsurf and
SMdeeper were positive and that between PC1 and LAI was negative. Therefore, it is worth
exploring the effect of precipitation soil moisture on dryland vegetation changes.
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3.3.2. Relationship between the LAI and Precipitation and Soil Moisture

The Pearson correlation coefficient was calculated to evaluate the responses of the
vegetation LAI to precipitation and soil moisture from 1981 to 2018. As shown in Figure 10,
the relationship between LAI and precipitation showed strong correlations in the eastern
part of NA drylands and the northeastern part of EA drylands. However, in CA and MD
drylands, the spatial distribution of correlation coefficients between LAI and precipitation
showed fragmentation and discontinuity, and some of these properties at a few sites passed
the significance test. The correlation coefficients between LAI and surface soil moisture and
deeper soil mois-ture also had a similar spatial distribution pattern as those between LAI
and precipitation, which are shown in Figures A5 and A6. However, as shown in Table 2,
the Pearson coefficients for the relationships between the LAI and PRE and SMsurf and
SMdeeper in the four regions were different in terms of proportions. In the long time series
of 38 years, compared with MD and CA vegetation, NA and EA vegetation had stronger
responses to PRE, SMsurf, and SMdeeper.
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Figure 10. Relationship between the LAI and PRE from 1981 to 2018 (p < 0.05) (a) North America,
(b) Mediterranean region, (c) Central Asia, and (d) East Asia.
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Table 2. Pearson coefficients for the relationships between the LAI and PRE, SMsurf, and SMdeeper
in the four regions.

Relationship Regions

Correlation Ratio (%)

Significant
Insignificant

Positive Negative

LAI and PRE

NA 33.50 1.44 65.06
MD 12.95 0.25 86.80
CA 21.38 0.26 78.35
EA 34.49 0.44 65.07

ALL 27.51 0.74 71.75

LAI and SMsurf

NA 38.13 1.99 59.88
MD 19.55 2.37 78.08
CA 22.79 0.35 76.86
EA 33.33 1.15 65.51

ALL 30.38 1.48 68.15

LAI and
SMdeeper

NA 38.24 2.05 59.71
MD 18.43 2.62 78.95
CA 24.98 0.44 74.58
EA 31.83 0.89 67.29

ALL 30.40 1.50 68.11

However, due to the influence of precipitation lag, the annual average vegetation
LAI has no significant responses to precipitation in some regions within a year [80–83].
Based on this lack of response, the 12-month LAI and monthly mean values of precipitation
were analyzed in the four study regions (NA, MD, CA, and EA). Monthly LAI data were
obtained by the maximum value synthesis method compositing the 8-day time step of
the GLASS LAI dataset. The maximum value synthesis method has reduced directional
reflectance and off-nadir viewing effects, minimizes sun-angle and shadow effects, and
minimizes aerosol and water-vapor effects [84]. The correlation coefficients between them
with monthly variation were used to characterize the lag responses of LAI to precipitation.

As shown in Figure 11, there were vegetation LAI lag responses of 2–4 months and
4–6 months to precipitation in the drylands of CA and MD. These results also explained
why there were many fragmented white grid points distributed on the map of LAI in
response to precipitation and soil moisture based on annual mean value data in the
two regions. Compared with CA, the lag response of vegetation in MD to precipitation
was more serious. However, there were no obvious vegetation LAI lag responses in the
drylands of NA and EA.

3.3.3. Long-Term Vegetation LAI Changes under the Influence of Precipitation and
Soil Moisture

To identify the main factors affecting regional vegetation LAI, the variation trends
of precipitation, surface soil moisture, and deeper soil moisture in the four regions from
1981 to 2018 are shown in Figure 12. In the trends of regional precipitation, no significant
trends were evident in the four regions. The regional surface soil moisture and deeper soil
moisture in the drylands of CA (slope = −0.002, p < 0.05) and NA (slope = −0.006, p < 0.01;
slope = −0.004, p < 0.05) showed significant downwards trends.



Remote Sens. 2022, 14, 3511 14 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 11. Temporal variation lag effect of precipitation on vegetation LAI in four study regions: (a) 

North America, (b) Mediterranean region, (c) Central Asia, and (d) East Asia. 

3.3.3. Long-Term Vegetation LAI Changes under the Influence of Precipitation and Soil 

Moisture 

To identify the main factors affecting regional vegetation LAI, the variation trends of 

precipitation, surface soil moisture, and deeper soil moisture in the four regions from 1981 

to 2018 are shown in Figure 12. In the trends of regional precipitation, no significant trends 

were evident in the four regions. The regional surface soil moisture and deeper soil mois-

ture in the drylands of CA (slope = −0.002, p < 0.05) and NA (slope = −0.006, p < 0.01; slope 

= −0.004, p < 0.05) showed significant downwards trends. 

 

Figure 12. Temporal variation trends of precipitation, surface soil moisture and deeper soil moisture 

over four regions from 1981 to 2018 (*, p < 0.05; **, p < 0.01). 

Meanwhile, a partial correlation analysis was performed to evaluate the relationship 

between the 38-year average LAI and precipitation, surface soil moisture, and deeper soil 

moisture in the places where LAI increasing trends were greater than the regional average 

(a) (b)

(c) (d)

Figure 11. Temporal variation lag effect of precipitation on vegetation LAI in four study regions:
(a) North America, (b) Mediterranean region, (c) Central Asia, and (d) East Asia.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 11. Temporal variation lag effect of precipitation on vegetation LAI in four study regions: (a) 

North America, (b) Mediterranean region, (c) Central Asia, and (d) East Asia. 

3.3.3. Long-Term Vegetation LAI Changes under the Influence of Precipitation and Soil 

Moisture 

To identify the main factors affecting regional vegetation LAI, the variation trends of 

precipitation, surface soil moisture, and deeper soil moisture in the four regions from 1981 

to 2018 are shown in Figure 12. In the trends of regional precipitation, no significant trends 

were evident in the four regions. The regional surface soil moisture and deeper soil mois-

ture in the drylands of CA (slope = −0.002, p < 0.05) and NA (slope = −0.006, p < 0.01; slope 

= −0.004, p < 0.05) showed significant downwards trends. 

 

Figure 12. Temporal variation trends of precipitation, surface soil moisture and deeper soil moisture 

over four regions from 1981 to 2018 (*, p < 0.05; **, p < 0.01). 

Meanwhile, a partial correlation analysis was performed to evaluate the relationship 

between the 38-year average LAI and precipitation, surface soil moisture, and deeper soil 

moisture in the places where LAI increasing trends were greater than the regional average 

(a) (b)

(c) (d)

Figure 12. Temporal variation trends of precipitation, surface soil moisture and deeper soil moisture
over four regions from 1981 to 2018 (* p < 0.05; ** p < 0.01).

Meanwhile, a partial correlation analysis was performed to evaluate the relationship
between the 38-year average LAI and precipitation, surface soil moisture, and deeper
soil moisture in the places where LAI increasing trends were greater than the regional
average and LAI decreased significantly (Figure 7). As shown in Table 3, drylands where
LAI decreased significantly (slope < 0 per year) exhibited positive correlations (p < 0.001)
between LAI and SMsurf and negative correlations (p < 0.001) between LAI and SMdeeper
in NA, MD, and EA. The correlations between LAI and PRE exhibited positive correlations
(p < 0.001) in NA, CA, and EA. However, drylands where LAI increasing trends were greater
than the regional average (slope > 0.001 and 0.006 per year) exhibited positive correlations
(p < 0.001) between LAI and SMsurf in all four regions and negative correlations (p < 0.001)
between LAI and SMdeeper in NA, MD, and EA. The correlations between LAI and PRE
were positive (p < 0.001) in all four regions.
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Table 3. Partial correlation coefficient between LAI and precipitation, surface soil moisture, and
deeper soil moisture (*, p < 0.05; ***, p < 0.001).

Regions LAI Trends SMsurf SMdeeper PRE

NA
<0 yr−1 0.49 *** −0.44 *** 0.57 ***

>0.001 yr−1 0.35 *** −0.35 *** 0.71 ***

MD
<0 yr−1 0.61 *** −0.61 *** 0.43

>0.006 yr−1 0.48 *** −0.47 *** 0.38 ***

CA
<0 yr−1 −0.18 0.23 0.77 ***

>0.001 yr−1 0.13 * −0.10 0.55 ***

EA
<0 yr−1 0.50 *** −0.51 *** 0.65 ***

>0.001 yr−1 0.35 *** −0.29 *** 0.26 ***

4. Discussion
4.1. Validation and Spatial Differentiation of Dryland Vegetation Greening

Global vegetation greening has become a widely recognized scientific phenomenon,
and previous studies have indicated that increases in vegetation growth are due to the
ease of climatic constraints and fertilization effects of elevated CO2 concentrations [85–87].
Related studies on global vegetation greening trend tests based on sensed data estimated
that vegetation in the middle latitudes of the Northern Hemisphere showed a significant
increasing trend overall, but there were certain differences in space, and the areas with
more vegetation increases were mainly concentrated in the southeastern US, northern India,
Mediterranean Northern regions and southeastern China [88–92]. At the same time, in high-
altitude areas such as the Qinghai–Tibet Plateau, energy restriction is obvious for vegetation,
and water conditions are not the only condition limiting vegetation growth [77,93,94].

However, this study found that due to water stress exacerbated by serious drought,
vegetation decreased significantly in the drylands of Eurasia, Inner Asia, and the south-
western United States, which was shown by previous findings [95–97]. The greening of
dryland vegetation may need further validation.

In this paper, a linear regression method was used to verify the greening of dryland
vegetation in the north temperate mid-latitudes from 1981 to 2018 and to describe the inter-
regional and intraregional variation characteristics of LAI changes. The slope of the linear
regression equation represented the vegetation change at the grid point. This study found
that there was a significant increase at a rate of 0.002 per year in the northern temperate
midlatitude drylands and significant trends of vegetation greening in the drylands of the
Mediterranean, Central Asia, and East Asia. These results are consistent with previous
findings of vegetation greening in dryland areas of the Mediterranean, the Middle East,
Northern China, and Mongolia [98–101]. Compared to previous studies, this study shows
the following novel results: (1) Under the same water constraint conditions, the greening
tendency and degree of vegetation at high altitudes were greater than those at low altitudes
in drylands in the north temperate mid-latitudes, and (2) the greening rate of dryland
vegetation does not completely follow the gradient distribution of the aridity index.

4.2. Vegetation Changes Response to Precipitation and Soil Moisture with Evapotranspiration
Involved

Evapotranspiration (ET) represents the change state of dryland vegetation to a certain
extent. ET is one of the biggest data gaps in water management [102]; it plays an important
role in dryland water and energy cycles with large spatial heterogeneity and accounts for
88% of precipitation [29,103,104]. In areas where grassland is widely distributed, especially
in our study area (herbaceous vegetation mainly), intense drought limits the supply level
of water resources, and vegetation is more sensitive to precipitation than other influencing
factors, such as temperature. According to the PCA results in our study (Figure 9), LAI,
PRE, and ET are closely correlated on PC1. The transpiration/evapotranspiration (T/ET)
values of natural ecosystems could be up to 0.85 in drylands. In long time-series statistics,
evaporation and transpiration in dryland ecosystems were equivalents [105]. The mean
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transpiration rate is directly linked to the productivity of ecosystems from the vegetation
point of view [106].

Evapotranspiration is an important part of heat flux and water exchange between the
soil and atmosphere, and it is also one of the processes in which vegetation participates
in the carbon budget of the global ecosystem. Shallow soil moisture (0–20 cm) can be
rapidly lost by evaporation during dry periods [107]; however, it is an important water
source for shallow-rooted herbaceous plants [108,109]. Deep soil moisture (20–60 cm) is
primarily used for transpiration [110–112] for deeper-rooted woody plants. In our study,
vegetation LAI’s strong responses to surface soil moisture content were closely related to
years of rain, but the negative correlation between long-term vegetation LAI changes and
deeper soil moisture showed that in drylands, in addition to the evaporation of surface soil
moisture dissipation, deeper soil water in shallow roots is not used by vegetation. Deeper
soil water drainage to deeper soil results in soil water drought [113,114]. Because of the
hydraulic uplift of vegetation roots, the moisture of deeper soil moisture is reduced by
some deep roots absorbing water from deeper soil layers and then releasing soil water into
shallower soil by shallower vegetation roots in arid habitats [115–118]. The greening of
dryland vegetation has resulted in excessive consumption of soil water resources and the
formation of dry soil layers [119].

It is worth noting that increased TMP and PET, coupled with no significant change
in precipitation, may increase the severity of dryland drought in the mid-latitudes of
the North temperate zone as a manifestation of dryland expansion. Even if there were
declines in individual years, the continuous rises of the multiyear mean temperature in
the study area were the concentrated embodiment of global warming in local regional
temperature changes.

4.3. Implications and Limitations

In this study, the trend of vegetation greening and its response to precipitation and
soil water in the north temperate mid-latitudes were analyzed. The work is conducted
without considering surface runoff and groundwater recharge [120–123].

Meanwhile, vegetation greening is a combination of a warming climate and hu-
man activities. Anthropogenic activities, such as fire [75,124,125], grazing and afforesta-
tion [92,126,127], also influence vegetation changes in the regions. Under the influence of
climate change and human activities, we will continue to explore the effects of vegetation
dryland vegetation greening on the hydrological cycle with groundwater and surface water
participation in the future.

5. Conclusions

This study reveals the trends of dryland vegetation growth and its response to precipi-
tation and soil moisture in the north temperate mid-latitudes from 1981 to 2018 under global
warming. The average TMP, PET, and LAI increased at 0.04 ◦C, 1.53 mm and 0.002 per year
from 1981 to 2018 in the study area, respectively. Dryland vegetation in the study area
has a certain spatial heterogeneity in spatial distribution and variation trend and has a
high response to precipitation and soil moisture. LAI grew faster in the eastern dryland of
NA, dryland along the Mediterranean Sea, southeastern dryland of CA, and southeastern
dryland of EA. There is a strong relationship between vegetation growth and regional
water supply patterns. The regions with strong correlations between LAI and PRE, SMsurf
and SMdeeper were located in the eastern and southwestern drylands of NA, the western
dryland of MD, the southern drylands of CA, and the eastern drylands of EA. Our results
are helpful for understanding vegetation dynamics in the drylands of northern temperate
mid-latitudes and may play an important guiding role in vegetation protection against the
background of global warming.
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Appendix A

Table A1. Vegetation classification in the study area.

Vegetation Biomes
Features (Vegetation Cover) Vegetation Distribution Reclassified Vegetation Types

Woody Herbaceous

Evergreen Needleleaf Forests >60% -

forestland

Woody vegetation

Evergreen Broadleaf Forests >60% -
Deciduous Needleleaf Forests >60% -
Deciduous Broadleaf Forests >60% -

Mixed Forests >60% -
Closed Shrublands >60% -

shrublandOpen Shrublands 10–60% -
Woody Savannas 30–60% -

Savannas 10–30% Dominated grassland Herbaceous vegetation
Grasslands - Dominated
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