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Abstract: Remote sensing of ocean colour has been fundamental to the synoptic-scale monitoring
of marine water quality in the Great Barrier Reef (GBR). However, ocean colour sensors onboard
low orbit satellites, such as the Sentinel-3 constellation, have insufficient revisit capability to fully
resolve diurnal variability in highly dynamic coastal environments. To overcome this limitation,
this work presents a physics-based coastal ocean colour algorithm for the Advanced Himawari
Imager onboard the Himawari-8 geostationary satellite. Despite being designed for meteorological
applications, Himawari-8 offers the opportunity to estimate ocean colour features every 10 min, in
four broad visible and near-infrared spectral bands, and at 1 km? spatial resolution. Coupled ocean—
atmosphere radiative transfer simulations of the Himawari-8 bands were carried out for a realistic
range of in-water and atmospheric optical properties of the GBR and for a wide range of solar and
observation geometries. The simulated data were used to develop an inverse model based on artificial
neural network techniques to estimate total suspended solids (TSS) concentrations directly from the
Himawari-8 top-of-atmosphere spectral reflectance observations. The algorithm was validated with
concurrent in situ data across the coastal GBR and its detection limits were assessed. TSS retrievals
presented relative errors up to 75% and absolute errors of 2 mg L~! within the validation range of 0.14
to24 mg L1, with a detection limit of 0.25 mg L—1. We discuss potential applications of Himawari-8
diurnal TSS products for improved monitoring and management of water quality in the GBR.

Keywords: Himawari-8; ocean colour; artificial neural networks; Great Barrier Reef; coastal waters;
total suspended solids; machine learning; water quality

1. Introduction

Ocean colour sensors onboard low Earth orbit (LEO) satellites, such as MODIS/Aqua,
VIIRS/Suomi-NPP, and OLCI/Sentinel-3, have provided long-term records of valuable and
cost-effective observations to examine daily to inter-annual dynamics of water quality in
the Great Barrier Reef (GBR) [1-5]. The LEO satellites scan the same geographic area within
one or two days at best; however, the time-lag between two consecutive and identical
orbits (i.e., revisit periodicity) commonly varies between one and up to four weeks. In
addition, the ocean colour imagery may be largely affected by the presence of clouds and
sun glint, limiting the retrieval of high quality observations [6]. This can require a weekly-
to-monthly set of daily images from the same area to develop a composite cloudless view of
the ocean. Consequently, the temporal capability of LEO satellites is insufficient to develop
a comprehensive observational system and to effectively monitor short-term dynamic
coastal processes, such as phytoplankton diel cycles, daily progression of flood plumes, and
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tidal and wind-driven resuspension [7-9]. Researchers and environmental managers still
rely on LEO ocean colour products for acquiring cost-effective spatial information in the
coastal GBR [10,11], but recognise the limitations of these techniques to resolve short-term
variability.

Satellites on a geostationary Earth orbit (GEO), otherwise, allow near continuous
observation of large areas of the globe at higher frequency (minutes to hours) compared
to the near daily revisit frequency of LEO platforms, particularly over the tropics [9]. The
world’s first Geostationary Ocean Colour Imager (GOCI-I), launched in 2010, has revealed
the temporal dynamics of rapidly changing coastal processes in Northeast Asia, such as
of turbidity plumes and harmful algal blooms [12,13]. Its success provided a useful case
for the future development of global GEO ocean colour missions [14]; however, none of
the missions proposed for launching within the next decade were designed for observing
Australian waters. Nevertheless, GEO satellites are globally operated for meteorological ob-
servations and recent technological advances have leveraged their capabilities for collecting
data over the oceans, allowing more dynamic processes to be observed from space [15-17].
The next-generation GEO meteorological sensors are equipped with an increased number
of bands in the visible spectrum (2 or 3 instead of only 1 band) combined with improved
radiometric sensitivity (signal-to-noise ratio) and onboard calibration capabilities [9]. These
advances allowed, for the first time, a near-true coloured visualisation of Earth from a
geostationary point-of-view at unprecedented revisit frequencies [18].

The Advanced Himawari Imager (AHI) onboard Himawari-8/9 GEO satellite is cur-
rently providing diurnal meteorological observations over Australia, including the GBR.
Himawari-8 is positioned at 140.7°E above the equator and with a 10 min scan rate, it
captures at least 48 full-disk observations within a day (8 am to 4 pm local time). While the
AHI instrument was designed for meteorological applications, its visible and near-infrared
(VNIR) bands (Figure 1 and Table 1) enable the detection of marine features with strong
optical signals, such as those from highly turbid waters [19-21]. In addition, Himawari-8
ultra-high temporal resolution observations allow the monitoring of ocean properties from
sub-hourly to inter-annual time scales for the entire GBR lagoon and the adjacent oceanic
basin without inter-orbital data gaps.

i

400 700 800 900 1000
Wavelength [nm]

Transmission

Figure 1. Himawari-8 spectral response functions of the visible and infrared bands (solid white lines)
with the transmission of the atmospheric gases (grey filled line) and the transmission by ozone (red
solid line) between 400 and 1000 nm.

An extensive range of applications for monitoring and management of oceanic areas
have the potential to be derived from Himawari-8, including for ocean colour [22,23].
Recent studies have demonstrated the feasibility of Himawari-8 observations for detection
of total suspended solids (TSS) in coastal waters [17,24] and for chlorophyll-a concentration
(CHL) in the open ocean [22]. These results suggest an exciting opportunity for monitoring
high-frequent and dynamic processes in the coastal GBR. However, although several
ocean colour algorithms may be available for satellite retrieval of coastal water quality
parameters, they may be unsuitable for the optical complexity of the GBR or not applicable
to Himawari-8 observations.
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Table 1. Himawari-8 Advanced Himawari Imager visible and near-infrared bands central wave-
lengths and bandwidth, associated spatial resolution. Signal-to-noise ratios (SNR) from performance
test results [25].

Band # (Name) Band Centre (Width) Spatial Resolution SNR @100% Albedo
#1 (blue) 470.64 (45.37) nm 1 km 585 (641.5)
#2 (green) 510.00 (37.41) nm 1 km 645 (601.9)
#3 (red) 639.15 (90.02) nm 0.5 km 459 (519.3)
#4 (NIR) 856.69 (42.40) nm 1 km 420 (309.3)

Model-based ocean colour algorithms that utilise radiative transfer simulations have
shown superior performance for application in multi-temporal remote sensing studies of
coastal waters compared to empirical algorithms [26]. Specifically, neural networks are a
computationally efficient inversion method for remote sensing applications in optically
complex coastal waters due to their capability to approximate non-linear functional rela-
tionships [27-35]. This paper describes the development of a model-based neural network
ocean colour algorithm (Figure 2) for Himawari-8 and parameterised for the coastal waters
of the GBR. The one-step inversion algorithm was developed to estimate TSS directly
from Himawari-8 top-of-atmosphere (TOA) observations with a multilayer perceptron,
a class of artificial neural networks (ANN). First, the spectral angular distribution of the
TOA reflectances (Rroa(A) [sr~!]) was simulated at the VNIR Himawari-8 bands with an
existing coupled ocean—atmosphere radiative transfer (RT) model (forward model). The
RT simulations included realistic variations in water quality parameters, and atmospheric
and illumination conditions. Several ANN experiments (inverse models) were then de-
signed, trained, and tested to retrieve TSS at the Himawari-8 bands based on the simulated
TOA radiances. Finally, the Himawari-8 retrieved TSS outputs were statistically assessed
against concurrent in situ water quality data in the GBR and the limitations of the selected
algorithm were investigated.

Forward model Inverse model
A
) I

Coupled Ocean- ' i Total
Atmosphere Radiative TOpRii;:: :c:rtr::‘scr;r;ere —_— Q:L:L%?LT::':; Suspended
Transfer simulations | Solids (TSS)
In-water Bio-optical and (" Validation

atmospheric +— Himawari-8 bands Great Barrier Reef
parameterization TSS

Figure 2. Flow diagram of the model-based ocean colour algorithm developed for Himawari-8.

2. Methods

The parameterisation of the radiative transfer simulations and the design of the
ANN inverse model are specified in the following subsections. The forward and inverse
model parameterisations follow an approach previously developed for European coastal
waters [36-38] but were adapted in this study for the in-water optical conditions of the
GBR [39]. Additionally, the Himawari-8 acquisition, processing and masking procedures,
and the ocean colour processor are described for the model-based algorithm developed
here. The validation protocol and methods for the assessment of the algorithm limitations
are presented, as well as first results for TSS monitoring in the GBR.
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2.1. The Forward Model

In this work, a scalar version of the Matrix-Operator MOdel (MOMO) [40,41] was em-
ployed for the coupled ocean-atmosphere radiative transfer simulations of the Himawari-8
VNIR bands (Table 1). Neglecting atmospheric polarisation may lead to errors of 1-2% at
TOA, which is acceptable for coastal water applications [42]. The Himawari-8 R1pa(A)
were simulated for a realistic range of in-water and atmospheric optical properties of the
GBR.

The simulated ocean—atmosphere system is stratified in several horizontally homo-
geneous plane-parallel layers where the defined types and concentrations of aquatic and
atmospheric optical constituents are considered. The height of the simulated atmosphere
(TOA) is 50 km thick and divided into 11 layers where the vertical profiles of pressure,
temperature, and humidity follow a U.S. Standard Atmosphere [43]. The attenuation by
Rayleigh scattering is accounted for with two barometric surface pressures of 980 hPa
and 1040 hPa. The atmosphere is split into a boundary layer (0-2 km), a free troposphere
(2-12 km), and a stratosphere (12-50 km). In each layer, the simulations were performed
for eight distinct aerosol assemblages with varying concentrations of the aerosol optical
thickness (7;) at 550 nm between 0.015 and 1.0. Each aerosol assemblage is composed
of the three main aerosol models, a maritime model in the boundary layer, a continental
model in the free troposphere, and a sulphuric acid model in the stratosphere, at a rela-
tive humidity between 70% and 99%. The 1, range was determined from multi-annual
Level 2 sun-photometer observations of the AERONET [44,45] station at the Lucinda Jetty
Coastal Observatory (LJCO) located in the central GBR [18.52°S, 146.39°E]. Analysis of the
corresponding Angstrom coefficients [46] between 550 and 870 nm at the LJCO AERONET
station confirm a mixture of maritime and continental aerosol types corresponding to those
used in the RT simulations.

The transmission of atmospheric gases (except for O3) were derived from the High-
Resolution Transmission Molecular Absorption (HITRAN) database [47] and implemented
in the radiative transfer simulations via the modified k-distribution model of Bennartz and
Fischer [48]. The radiative transfer simulations were performed assuming a constant ozone
loading of 344 Dobson Units (DU) [43]. The Himawari-8 bands were simulated for 17 solar
and observation angles and 25 equally spaced relative azimuth angles. The simulations
were conducted for realistic water quality fluctuations, represented by randomly selected
unique concentrations of CHL, TSS, and yellow substances (YEL), hereafter referred to
as concentration triplets. The ranges of the simulated concentration triplets were defined
based on the dispersion of in situ correlated concentrations found in the GBR, following the
approach by Zhang et al. [49]. The simulated concentration triplets were equally distributed
in logarithmic space, so each order of magnitude was similarly represented while avoiding
duplicated simulations.

The total spectral absorption of the sea water a(A) was modelled by a four-component
bio-optical model accounting for the pure water absorption (ay), the absorption of phy-
toplankton and all dead organic material (i.e., detritus) (a,1) as a function of CHL [0.01,
15], the absorption of non-algal particles (apz) as a function of TSS [0.01, 100.0], and the ab-
sorption of yellow substances (a,) at 443 nm [0.002, 2.5]. The absorption coefficient of pure
water (a,) was modelled according to Pope and Fry [50] for the Himawari-8 visible bands
1-3 and by Hale and Querry [51] for band 4. The spectral absorption of phytoplankton
and detritus (apl) followed a parameterisation of Bricaud et al. [52], while the absorption
of non-algal particles (a,,) was parameterised according to Babin et al. [53], with a mean
slope (Sy2) of 0.012 that was derived from in situ bio-optical data sampled in the GBR
between 2002 and 2013. The spectral absorption coefficient of yellow substances (a,) was
modelled according to Babin et al. [53], with a mean slope S, of 0.015 that was also derived
from in situ observations from the GBR [39].

The total spectral scattering of the sea water (b(A)) was modelled by a two-component
bio-optical model [53] accounting for the scattering of pure water (by,) and scattering or
organic and inorganic particles (b,) as a function of TSS. The pure seawater scattering
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coefficient was expressed as a wavelength dependent power law based in Morel [54],
defined for a global salinity average of 35 PSU. The scattering contribution of organic and
inorganic particles was combined to derive the total particulate scattering coefficient (b))
following the parameterisation of Babin et al. [55]. The mass specific scattering coefficient
of TSS particles (b;;) of 0.31 m? g~! was calculated for the GBR waters, following Babin
et al. [55]. A backscattering probability model for Case 2 waters was applied [49,56] to
calculate and select the in-water scattering phase functions B(6, A) based on the ratio of
TSS and YEL. The simulations were performed for a large number of random concentration
triplets and atmospheric conditions, as previously outlined, to build a comprehensive
database of azimuthally resolved Himawari-8 R1p4(A). From this database, statistically
representative training and test subsets were randomly extracted to develop the inverse

model. The training and test subsets each comprised 100,000 input vectors (;) containing

the: simulated Rrp4 at 470, 510, 640, and 856 nm bands, sea level atmospheric pressure
between 980 and 1040 hPa, solar zenith angle (6;), observing zenith (6,), and relative
azimuth (A¢).

2.2. The Inverse Model

In this study, a multilayer perceptron (MLP), a class of feed-forward artificial neural
network (ANN) [57], has been implemented as inverse model based on the Neural Net-
work Simulator C-program developed by Malthouse [58], to approximate the functional
relationship between the Himawari-8 Rrp4(A) and the TSS concentration. The present
MLP comprises an input layer, a hidden layer, and an output layer of neurons. Each neuron
is connected with each neuron of the next layer by a weight. The supervised machine
learning or training procedure can be described as follows:

e  Theinput neurons (n;) receive the input vector (?) , containing simulated reflectances
and the ancillary data described above, and propagates it to the hidden layer neurons
(p)-

e In the hidden layer, the artificial neurons sum up the weighted input signals and pass
these through a non-linear transfer function and subsequently forward their outputs
to the output layer neurons (n,).

e  The cost function (i.e., mean squared errors, MSE—Equation (1)) between the sim-

ulated target outputs (?t> and the ANN computed outputs (; C) is calculated for

the entire training dataset (N = 100,000), and the internal weights (W7, W3) of the
network are adjusted.

e  The training of the ANN is repeated until the cost function between output and target
value is minimised.

MSE =Y (y.—¥,)/N )

The cost function is minimised by adapting the weight matrices (W1, W) iteratively
using a Limited Memory Broyden-Fletcher—Goldfarb—Shanno optimisation algorithm [59].
For a three-layer MLP architecture, the complete analytic function is given by Equation (2):

;C =S5y X [Wz X 51 (Wl X ?)} )

where S; and S are the non-linear (Equation (3)) and linear transfer functions employed in
the output and hidden layer, respectively.

-1

S(x) = (14¢7%) 3)

The number of neurons in the input and output layers were determined by the number
of input and output parameters of the problem, whereas several experimental attempts
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were required to determine the optimal number of neurons in the hidden layer. The
experiments were designed by varying the number of hidden layer neurons from 10 to 100,
in increments of 10. A random but for all experiments fixed seed was used to initialise the
weight configuration of the networks. The experiments included a principal component
analysis (PCA) as a pre-processing step to decorrelate the Rtp(A) inputs. In addition, the
experiments were designed with 0.8% spectrally uncorrelated signal-dependent random
noise added to the Rrp4 inputs in each band. The ANN experiments were trained and
tested with a subset of 100,000 input vectors randomly extracted from the radiative transfer
simulated dataset. Each input vector was associated with a logarithmic TSS concentration,
which was selected as the target output to be approximated by the supervised learning
procedure. All experiments were trained for 1000 iterations and the minimisation of the cost
function (Equation (1)) was computed over the entire training dataset at each iteration. An
independent test dataset of N = 100,000 vectors was used to monitor the network training
performance and to avoid over-fitting.

2.3. The Himawari-8 Ocean Colour Processing

Basic processing steps for Himawari-8 raw data into TSS products are shown in Figure 3.
Level 1 (L1) full disk Himawari-8 VNIR bands were acquired, extracted over the GBR area
(10 °S, 29 °S, 140 °E, 157 °E), geolocated, and navigation corrected. The geolocated raw data

were transformed into Level 1b (L1b) TOA radiances (Lyp (A) [W m2sr! pmfl} ) through
the application of post-launch updated calibration coefficients [60]. The 640 nm band
grid was resampled from 0.5 km to 1 km to match the resolution of the associated VNIR
bands. The L1b calibrated Lo (A) were normalised by the extra-terrestrial solar irradiance
(F (A) {W mfz} ) for each band. F(A) was calculated as a function of the day of the year

and using the mean extra-terrestrial solar irradiance F values based on Kurucz [61] and
adapted to the Himawari-8 bands [62]. The resultant TOA reflectances (RTO a(A) [sr’l] ) at
the VNIR Himawari-8 bands served as inputs to the inversion method. In addition, the
6s,0,, and A¢ values were calculated for each pixel of the satellite image as a function of
latitude, longitude, and local time, following existing procedures [63], and converted into
cartesian coordinates (x,y, z).

e —
Himawari-8 Full Extract VNIR bands N Geolocation and N Calculate Solar and Observation
Disk HSD (Level 1) to GBR Navigation Angles
Radiometric Resample 640 nm band {6y, 65, A}

Calibration (0.5 to 1 km)
[ LTOA(A) (LeVel 1b) J l
7 ANN Himawari-8 Ocean
Inversion Colour Products

Normalization by F,

o ! Sea Level
zqne . 4{ Rroa(A) Atmospheric Cloud, Glint and
Normalization Pressure Land Masking
Figure 3. Himawari-8 Ocean Colour Processing flowchart. HSD refers to Himawari-8 Standard Data,

GBR refers to Great Barrier Reef, VNIR refers to the Himawari-8 visible and near infrared bands (470,
510, 640, and 856 nm), and ANN refers to Artificial Neural Network.

ANN Flags

Cloud masking of Himawari-8 observations was developed by Qin et al. [64] for
the Australian continent and surrounding waters. The 2 km resolution cloud mask was
resampled to the 1 km Himawari-8 grid and includes masking of pixels contaminated with
dust and smoke plumes from biomass burning. Likewise, pixels identified as emerged
surfaces, such as continental areas, islands, and shoals, were masked based on shapefiles
available from the Great Barrier Reef Marine Park Authority [65] database. A sun-glint
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mask was created by calculating the coordinates of the principal point of sun glint (PPS) as
a function of the day of the year (solar inclination), local hour, latitude, and longitude [66],
at 1 km spatial resolution. The contour of the sun disk was buffered for a circular radius of
1300 km from the coordinates of the PPS. The radius size was chosen after a series of visual
tests were employed to ensure maximum coverage of the main sun disk area.

The Himawari-8 observations were normalised pixel-by-pixel and for each band with
near-concurrent satellite data of total column ozone extracted from the Total Ozone from
Analysis of Stratospheric and Tropospheric Satellite components (TOAST) product [67]
prior to inversions. The TOAST product, with spatial resolution of 1.25 by 1 degrees and
daily temporal resolution, was resampled to 1 km for compliance with the Himawari-8
grid. The Himawari-8 observations were normalised at each band by the ratio between
the transmission of TOAST-derived ozone to the transmission of the simulated ozone
column density of 344 DU. In addition, the mean sea level atmospheric pressure data from
NCEP/NCAR “Reanalysis 2’ (P2 ) [68-70] were utilised as inputs for the inversion of
Himawari-8 observations. The ‘Reanalysis 2" data are averaged every 6 h (0, 6, 12, 18 UTC)
and sampled on a regular global grid of 2.5 degrees spatial resolution [71]. The closest
concurrent PR2 data were acquired and resampled to the 1 km Himawari-8 grid. The
retrieved TSS, associated masks, and metadata were saved in a NetCDF file, including
pixel-wise associated flags for out-of-range inputs and outputs. The ranges of valid inputs
and outputs were defined based on the RT simulated dataset. For instance, if a certain pixel
input and/or output parameter exceeded the simulated ranges, the pixel was assigned
a corresponding flag. The input and output flags were summed for each pixel of the
Himawari-8 grid. The out-of-range flags were applied to the water quality products prior
to the subsequent validation and application analyses.

2.4. Great Barrier Reef in Situ Data

In situ TSS measured between 2015 and 2018 by the Australian Institute of Marine
Sciences (AIMS) and the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) were obtained from the IMOS Bio-optical Database [72] through the Australian
Ocean Data Network (AODN) portal. Both CSIRO and AIMS use the gravimetric method to
determine TSS concentration in seawater. The method consists of measuring the dry weight
of suspended solids from a known volume of seawater sample after it has been vacuum
filtered on a pre-weighted membrane filter. Further details on the methodology employed
by AIMS and CSIRO are described in Great Barrier Reef Marine Park Authority [73] and
Soja-Wozniak et al. [74], respectively. Despite AIMS and CSIRO laboratories using slightly
different methods to determine TSS (i.e., number of replicates, filter pads, rinsing, etc.),
these datasets have been combined in this validation exercise. A total of 347 in situ data
points with TSS ranging from 0.01 to 85 mg L~! and a mean of 3.5 mg L~ were considered.
In situ data points within 1 km from coastline or reefs were excluded from the analysis to
reduce uncertainties due to adjacency effects [75]. We included all in situ seawater samples
taken at the surface (<0.5 m depth) of stations located at variable water depths (1.5 m to
40 m), with the shallowest data point presenting TSS > 10 mg L.

2.5. Validation Protocol

The validation protocol utilised in this study follows the experience of previous val-
idation exercises for ocean colour remote sensing in Australia, including in the coastal
GBR [27,76,77]. These studies described processing steps for extraction of satellite observa-
tions concurrent to in situ measurements in the coastal GBR, as well as useful statistical
performance metrics.

Multiple Himawari-8 observations can be combined within a timeframe (i.e., hourly)
to eliminate potential outliers and reduce sensor and environmental noise, likely improv-
ing estimates and validation performances [7,9,16]. Therefore, all available Himawari-8
observations scanned within =30 min from the recorded in situ time were acquired for this
validation exercise. Selected and processed 10 min Himawari-8 observations at the VNIR
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bands with associated sun and observation geometry were subset to 3-by-3-pixel boxes,
centred at the coordinates of each concurrent in situ data point. Likewise, 3-by-3-pixel
subsets of concurrent masks (i.e., clouds, land, reefs, and sun glint) and ancillary data (i.e.,
ozone and pressure) were extracted. Near-true colour composites of selected Himawari-8
observations were visually inspected to eliminate matchups in waters with sharp horizontal
gradients in optical properties (i.e., turbidity fronts) or nearby clouds.

Hourly composites of valid subsets were computed by temporal average, disregarding
masked pixels. The hourly aggregated subsets were processed with the ANN inversion
algorithms and masked for out-of-range values. Finally, the median and standard deviation
of hourly TSS subsets were computed, excluding masked pixels. Only those subsets with
two or less pixels masked per pixel-box were considered valid for matchup. The ANN
outputs were computed in logarithmic scale (log10) and the concurrent in situ TSS was log-
transformed for statistical analysis. An overview of the validation procedure is illustrated
in Figure 4. The performances were evaluated with regards to their root mean square error
(RMSE—or absolute error), bias, mean absolute percentage error (MAPE—or relative error),
and the coefficient of determination (R?). Bias, R, and RMSE were calculated in log10
space and MAPE was calculated in linear space, following Equations (4)-(7), where m is the
measurement and p the satellite-derived product with N the number of valid matchups.

RMSE = /1/N Y (m — p)? (4)

MAPE = 100/N Y |(m —p)|/p &)

N(Xmp) — (Cm)(Xp)
J[VEm = Em?] [VEp2 - (0]

Bias =1/N Z(m -p) @)

The ANN match-up experiments were ranked based on the statistical metrics described
above. Preference was given to those experiments with the lowest RMSE because this
statistical parameter is the cost function that is minimised during the ANN training. The
best-performing experiment with the lowest number of neurons in the hidden layer was
selected, to reduce the computational efforts for the inversion of Himawari-8 observations
over the entire GBR.

GBR in situ data
coordinates masking

R? = (6)

3
Himawari-8 TSS
and ANN Flags

v

GBR in situ
TSS

rank
experiments

________________

Select ANN
algorithm

Hourly masked pixels
aggregates

Himawari-8

Rroa(d)
& ancillary data

Artificial Neural
Networks
Inversion

3-by-3-pixel subset ]
L

3-by-3 pixel box

Figure 4. A simplified overview of the algorithm validation procedure.

2.6. Assessment of Limitations

The signal-to-noise ratios (SNR) were computed for the visible and near-infrared
Himawari-8 Ltp4(A) observations scanned between 08:00 to 16:00 local time (Australian
Eastern Standard Time—AEST) at selected dates and cloud-free areas of the Coral Sea



Remote Sens. 2022, 14, 3503

9o0f23

(16.25°S, 151°E and at 20.60°S, 153.53°E). Only post-July 2017 observations were considered
for this analysis, given that their calibration coefficients were corrected for coherent and
horizontal striping noise [63,78]. True colour snapshots available through the Himawari-8
Monitor P-Tree System [79] were browsed for target area selection and to ensure these were
spatially uniform and unlikely to be influenced by clouds, sun glint, bio-optical features,
and smoke plumes from terrestrial burning [80,81]. The selected Himawari-8 observations
were converted from raw counts to physical units by applying calibration coefficients [60],
with subsets of 51-by-51-pixels extracted and centred at the coordinates of the regions of
interest. In addition, the subsets, associated masks, and geometric parameters were hourly
aggregated. The 10 min and hourly aggregated subsets were masked for clouds, land, reefs,
and sun glint, and their near-true colour composites were inspected for undetected features
such as coral cays, reefs, cloud shadows, and sensor artefacts.

The SNR was calculated for each Himawari-8 band following Equation (8) [80]. Aver-
aging Lroa(A) for all valid pixels within the target area gives Ly, picqi (1), and taking the
standard deviation (c) within the same area gives the noise equivalent radiance (L, ;5. (A)).
The SNR is calculated as the ratio between Ly picq and Lyjs, at each band:

SNR(A) = Liypicai(A)/ Lnoise(A) = Lroa(A)/o(Lroa(A)) ®)

The diurnal variability and magnitude differences between SNR computed with
10 min and hourly aggregated Himawari-8 observations (SNRg;ng(A) and SNR4gg(A),
respectively) were inspected at each band. In addition, their spectral characteristics were
evaluated for ranges of 65 because noise levels are known to vary with solar elevation [80].
Finally, the associated percentage noise levels (%Noise) were computed for 6; = 45° + 1°
and utilised to evaluate the algorithm’s sensitivity to Himawari-8 typical noise levels.

The TSS algorithm developed in this study was trained with spectrally flat (uncor-
related) photon noise (0.8%) that was added to the training dataset, assuming limited
knowledge of sensor performance characteristics over oceanic targets. To evaluate the
inversion stability and to provide a baseline sensitivity analysis of the TSS algorithm, spec-
trally flat photon noise of 0.1, 1.0, and 10 and 50% were added to the testing dataset and
inverted. In addition, the %Noise associated with the Himawari-8 bands were added to the
testing dataset to quantify the effects of spectrally dependent noise levels on the accuracy
of TSS retrievals. The retrieval stability was interpreted in terms of constant increments
of RMSE across a wide range of TSS (0.01 to 100 mg L~') equally spaced in logarithmic
concentrations. In addition, longitudinal transects of TSS products taken in homogeneous
and cloud-free waters of the coastal GBR and in the Coral Sea were evaluated at a pixel
scale for a qualitative assessment of noise levels of Himawari-8.

3. Results
3.1. Algorithm Validation

Multiple networks were trained with varied architecture configurations and the best-
performance network with lowest possible RMSE and lowest number of neurons in the
hidden layer was selected for inversions. The selected experiment, with 50 neurons in the
hidden layer, retrieved TSS ranging from 0.14 to 24 mg L1, with a positive R? and bias of
0.014 mg L~!, MAPE of 75.5%, and 10RMSE of 2,08 mg L.=!, as shown in Figure 5.
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Figure 5. In situ and Himawari-8-derived TSS with the best-performing ANN experiment, with
in situ TSS values colour-coded in logarithmic scale. Error bars represent the intra-pixel standard
deviation of TSS within a 3-by-3-pixel box. Different symbols indicate in situ data collected by AIMS

and by CSIRO at LJCO.

3.2. Himawari-8 Total Suspended Solids for the Great Barrier Reef

Figure 6 shows a near-true colour composite of Himawari-8 (left panel) taken on 27
October 2017 over the GBR area, and the corresponding TSS product at 10 min temporal
resolution (right panel). The waters within the GBR lagoon have TSS generally at or above
1 mg L~!, whereas the waters offshore the GBR present values below 1 mg L~!. The TSS
product revealed severe granulation and striping noise in the open ocean areas of the Coral
Sea.

TSS [mg L]

Figure 6. Near-true colour Himawari-8 imagery of the GBR acquired on 27 October 2017 at 15:00
AEST (left panel) and the associated TSS product [mg L1 (right panel). Pixels masked in black due
to clouds and out-of-range values.

Himawari-8 TSS fluctuations were investigated for the coastal waters surrounding the
Burdekin River mouth and over the southern GBR reef matrix (Figure 7 and animations
in link). The Burdekin flood event of 12 February 2019 generated a sediment plume that
reached the outer reefs (50 km from the mouth) between 3 to 4 pm, with TSS > 20 mg L.
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The Burdekin River sediment plume developed during the incoming tide with a range of
0.3 m between low and high tide. The coastal waters near the reefs experienced an order
magnitude increase in TSS (3.6, 26.4 mg L~!) within a semi-diurnal tidal cycle (cross mark
in Figure 7 (left panel) and Figure 8a). The reefs covered by floodwaters were exposed to
TSS ~40 times higher than the guideline threshold of 0.7 mg L~! [82]. The areas where TSS
exceeded 100 mg L~1, near the mouth, were masked (black areas) as out-of-range values
(ANN flags). An animation of the TSS fluctuations following the main discharge event is
available in Figure S1.

12/02/2019 15:50 AEST 15/11/2016 14:40 AEST
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Figure 7. Flood plume discharging from the Burdekin River, February 2019 (left panel). TSS tidal jets
within the GBR reef matrix in November 2016 (right panel). Note the different ranges in each plot.
Pixels masked in black are due to out-of-range TSS values.

While major flood events display clear TSS features in the coastal GBR, sub-mesoscale
tidal jets are observed surrounding the matrix of shallow and submerged reefs in the
southern GBR (Figure 7 (right panel)), demonstrating how these different conditions both
influence short-term TSS variability. The animation provided in Figure S2 illustrates the
dynamics of tidally induced TSS fluctuations, where the high (4 m) and low (0.2 m) tides
took place at 10 a.m. and 6 p.m., respectively (Figure 8b). The TSS concentrations near
Heralds Reef (cross marked) fluctuated about one order in magnitude within a day (0.3,
2.0 mg L), with values exceeding the water quality guideline thresholds recommended
for the open coastal GBR (0.7 mg L™ 1).
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Figure 8. Time series of 10 min Himawari-8-derived TSS at the mouth of the Burdekin River during
the floods of February 2019 (a) and in the southern GBR reef matrix in November 2016 (b), as shown
in Figure 7. Error bars represent intra-pixel standard deviations. Guideline thresholds for inshore
(2.0 mg L~1) and mid-shelf (0.7 mg L~!) waters are marked in red. Note the different time ranges in
each figure.
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3.3. Detection Limits

The SNR computed from two sets of Himawari-8 observations are shown in the
graphics of Figure 9. A few single observations were missed due to intensive cloud
coverage, particularly on 06 September 2017, and resulted in data gaps in the time series.
SNRginG and SNRaGg presented clear diurnal fluctuations, with the highest SNR occurring
at the lowest 05 (<30°), between 11 a.m. and 12 p.m. The magnitude and diurnal variability
were higher for SNRag and at the blue and green bands (470 and 510 nm), when compared
to values computed for SNRginG. The SNR calculated for the 640 nm and 856 nm bands
were at least three times lower than the SNR computed for the blue and green bands, with
subtle diurnal variations. The diurnal fluctuations of SNR between days and locations
were varied, especially for the blue band and from SNRaGg. On 06 September 2017 (mean
6,~22°), the SNRp G in the blue and green bands were similar in magnitude (Figure 9b).
On 25 September 2017 (at a different location with mean 6,~28°), the blue band presented
SNRginG nearly twice as high as the green band (Figure 9d).
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Figure 9. Time series of signal-to-noise ratios (SNR, right axis) computed for single (SNRgnG)
(a,c) and for aggregated (SNRpGG) observations (b,d) with associated 65 (left axis). The SNR is
colour-coded by band.

The spectral variability of SNRgng and SNRagg is shown in Figure 10 for three
groups of 05, where the standard deviations within each group were plotted as capped error
bars. The single observations typically yielded lower SNR than the aggregated observations
in all bands, and SNR was the highest for §; < 30°, in agreement with the data presented in
Figure 9. The standard deviations of SNR computed for single and aggregated observations
were more pronounced for 0s > 40° and at the blue and green bands. The SNR calculated
for s > 40° at the blue band presented standard deviations of 27 and of 51 for SNRginG
and SNRGg, respectively, while the SNR computed for the green band presented standard
deviations of 13 and 26, respectively. These deviations are likely associated with the variable
atmospheric conditions of each location, which are intensified at the blue and green bands
and at high atmospheric pathlengths.
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Figure 10. Spectral distribution of signal-to-noise ratios calculated for single (SNRgng) (a) and
aggregated observations (SNRagg) (b), and grouped for three ranges of ;. Error bars were computed
as standard deviations of SNR within each group of 6;.

The SNRAGG, the Lyypica, and Lyise and associated percentage noise (%Noise) for ag-
gregated observations with 8 = 45° & 1° were compiled in Table 2. Likewise, the SNRgnG
computed for all single observations with 65 = 45° &+ 1° were included for comparison.
The SNRaGG values compiled in Table 2 were about twice as high as the corresponding
SNRgiNG, except in the red band. Nevertheless, the large noise levels in the red (~3%) and in
the NIR bands (~5%) indicate that the SNRagg may be mostly affected by the atmospheric
signal despite the efforts in avoiding environmental conditions in image selection. This is
particularly evident in the NIR band, where the water leaving radiances are considered
negligible in clear open ocean waters.

Table 2. Visible and near-infrared Himawari-8 Lyy;cq and Lygise <W m~2sr~! um*1> and associated
percentage noise (%Noise) for SNRyGg at s = 45° £ 1°. Calculated SNRgy\G at 65 = 45° &+ 1° values
were added for comparison.

Band Ltypical Lnoise %Noise SNRAGG SNRSING
470 59.5 0.26 0.44 223 100
510 38.3 0.29 0.76 130 74
640 13.8 0.41 3.02 33 28
865 3.4 0.18 5.26 19 8

The outcomes of retrieving TSS (0.01 to 100 mg L) with spectrally flat and spectrally
dependent photon noise is illustrated in the graphics of Figure 11. In both scenarios, the
algorithm presents reasonable retrieval performances for TSS at or above 0.1 mg L, except
when 50% of spectrally flat photon noise is added to the Himawari-8 bands (Figure 11a).
Meanwhile, large errors (>300%) were obtained for TSS retrievals below 0.1 mg L~1,
irrespective of noise type and level. On a more realistic scenario, when spectrally dependent
photon noise (i.e., %Noise from Table 2) is added to the Himawari-8 bands, the errors are
mostly below 100% for TSS > ~0.25 mg L~! (Figure 11 (right panel)). Therefore, for obtaining
reliable retrievals from Himawari-8 with the current TSS algorithm, a detection limit of
0.25 mg L~! was chosen. For comparison, the detection limits of TSS retrievals computed
from atmospherically corrected Himawari-8, as in Dorji and Fearns [17], is represented as a
vertical dashed line at 0.15 mg L.
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Figure 11. Retrieval RMSE errors (in mg L) for spectrally flat (left panel) and spectrally dependent
(right panel) photon noise levels. Radiative transfer (RT) TSS and associated RMSE values are
presented in logarithmic scale. The vertical dashed line at 0.15 mg L~! is the detection limit adapted
from Dorji and Fearns [17], 2018. The vertical dashed line at 0.25 mg L1 is the detection limit of the
present method.

A visual inspection of noise levels revealed severe granulation and horizontal stripes
in Himawari-8 TSS products (Figure 12), particularly when TSS was obtained from a single
observation (TSSsinG) and in open ocean waters (TSS < ~0.1 mg L~!). The intensity of
granulation was severely reduced in aggregated TSS product (TSSpcg) and negligible in
turbid coastal areas (TSS > ~1 mg L™!). In addition to reducing granulation and noise,
the TSSagg showed increased masking around cloud-persistent areas. The longitudinal
transects of TSSginGg and TSSpgg taken between 151°E and 152°F in the coastal GBR and
in the Coral Sea (magenta arrows, Figure 12) are illustrated in time series in Figure 13.

100

._.
TSS [mg L™1]

0.01
a)

Figure 12. Location of transects (magenta arrows) extracted for TSSsiyg (a) and TSSacg (b). Note the
cumulative cloud masking in TSS5gg. Himawari-8 observations taken on 9 September 2017 between
10:00 and 10:50 local time (AEST).

The transect sampled between 19°S and 20°S in the Coral Sea (Figure 13a) presented
TSSsinG and TSSag values mostly below the detection limits of the method (0.25 mg L,
which may present retrieval errors over 100%. TSSsinG presented spikes or different or-
ders of magnitude values occurring successively on a pixel scale (or within 1 km). As
a result, differences of up to 0.3 mg L~ were observed between neighbouring pixels,
as indicated by plot annotations in Figure 13a. Meanwhile the associated TSSpgg pre-
sented smoother pixel-to-pixel variations (~0.06 mg L~!). Subtle differences were observed
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between TSSginG and TSSacg in the transects taken in the coastal GBR (Figure 13b), partic-
ularly for TSS > 1 mg L.~'. However, with increasing distance from the coast, TSS dropped
below 1 mg L~! and differences between TSSging and TSSagg were enhanced. Although
most TSSginG pixels of Figure 13b were above detection limits (0.25 mg LY, they presented
poor spatial coherency in the coast-to-ocean transition area (151.4° to 152.0°E). Because
TSSsing and TSSagg provide comparable results for TSS > ~1 mg L~!, both may be appro-
priate for monitoring the coastal GBR. However, TSSpgg presents overall better spatial
coherency and may be preferred over TSSginG, depending on the area of application.
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Figure 13. Transects of Himawari-8-derived TSS (mg L) taken in the Coral Sea (a) and within the
coastal GBR waters (b) from TSSginG (blue dots) and TSSagg (red dots). The data gaps represent
pixels masked for clouds, land, sun glint, or ANN flags, where appropriate. The annotated TSS (in
black arrows) indicate pixel-to-pixel values and the green horizontal line marks the detection limit of
the method.

4. Discussion

Synoptic monitoring of water quality in the extensive and optically complex GBR
is a priority, presenting a challenge for environmental managers and researchers [2,83].
Although ocean colour remote sensing has stringent radiometric and spectral requirements,
Himawari-8 offers an unprecedented number of observations for the advanced water
quality monitoring of the GBR. This paper presents the first advanced remote sensing
algorithm locally tuned and validated for the synoptic monitoring of water quality at
diurnal scales in the GBR.

4.1. Algorithm Development and Validation

The coupled ocean—atmosphere radiative transfer simulations provided a large and
robust database of Rrp4 distribution in the Himawari-8 VNIR bands, parameterised for
the optical variability of the GBR. The machine learning ANN algorithm developed in
this work allowed the direct inversion of Ryp4 to derive a wide range of TSS values
(0.01 to 100 mg L~1), without an explicit atmospheric correction procedure. This presents
an advantage compared to traditional methods based on the inversion of water-leaving
reflectances, in which the accuracy of the final inversion is subject to the accuracy of
the atmospheric correction [27,36,37,84]. Despite Himawari-8 spectral limitations, the
ANN retrievals compared well with target outputs from simulated testing datasets and
provided confidence in the quality of the trained algorithms. Moreover, the algorithm’s
robustness to input noise was especially advantageous considering Himawari-8 does not
meet the minimum radiometric requirements of ocean colour sensors and environmental
noise, particularly from the atmosphere, can largely impact the retrievals. These results
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encouraged further application of Himawari-8 observations for validation against in situ
water quality data in the GBR.

The retrieved Himawari-8 TSS matchup errors compared well with the mission targets
defined for other ocean colour sensors, such as Sentinel-3 in Case 2 waters [85], particularly
for TSS above 0.1 mg L~!. The performance of the present algorithm compares well with
those using atmospherically corrected Himawari-8 observations [17,24], indicating the suit-
ability of deriving coastal TSS with model-based one-step inversions. Explicit atmospheric
correction procedures may improve retrievals for the lower TSS range (<~1 mg L), which
are likely affected by the dominating atmospheric path radiance and the low radiometric
performance of Himawari-8.

Performance improvements would require a larger and more comprehensive database
of in situ bio-optical measurements covering the relevant spatial and temporal scales of
variability. Moreover, rigorous measurement protocols need to be followed for reduc-
ing uncertainties associated with algorithm parameterisation and validation in coastal
waters. For instance, triplicate samples are recommended for the determination of TSS
with the gravimetric method. In addition, validation samples should be taken in optically
homogeneous waters [86], which is especially difficult in highly dynamic coastal settings.
Nevertheless, in situ measurements have been made available by multiple research agencies
with diverse scientific priorities employing distinctive sampling and analysis methods. In
addition, physical and environmental processes, such as bottom reflectance, fluorescence,
bidirectional reflectance, polarisation, and harmful algal blooms, were not accounted for
but may also contribute to the matchup retrieval errors.

4.2. Himawari-8 Total Suspended Solids for the Great Barrier Reef

Himawari-8 allowed the near-real time monitoring of an episodical flood event in the
GBR, revealing an order magnitude TSS increase within a day. This event was observed
during a wet season where the Burdekin discharged between 0.5 and 1.5 million ML /day
for 10 consecutive days (Burdekin River at Clare station [87]). TSS fluctuations from the
Burdekin flood plume were well above the water quality guideline threshold value of
2 mg L~! for open coastal and mid-shelf waters, as well as 0.7 mg L~ for offshore waters
of the GBR [82]. The flood plume extended 50 km into the outer reefs, and its diurnal
development was followed step-by-step with 10 min Himawari-8-derived TSS. Therefore,
Himawari-8 provided an unprecedented number of observations for a complete qualitative
and quantitative monitoring of flood events in the GBR. The masked pixels in floodwaters
indicate values beyond 100 mg L~!, implying that the simulation range should be expanded
for values above this limit for retrievals during floods in the GBR.

The TSS features in the southern reef matrix are likely resultant from short-lived
sub-mesoscale resuspension eddies (1-10 km diameter), often referred to as tidal jets. In
the southern GBR, large tidal ranges (5-10 m) induce strong currents [88,89], pushing
water through narrow and relatively shallow channels [90]. These complex hydrodynamics
promote the resuspension and injection of TSS from the shelf break into the reef matrix, and
TSS concentrations in these regions are likely independent of terrestrial sources [91]. The
tidal jets have been associated with localised upwelling and nutrient exchange between
the Coral Sea and the GBR lagoon [92,93], being an important mechanism of transport
and mixing of sediments, nutrients, and phytoplankton production [94]. However, the
location and occurrence of tidal jets are scarcely described due to lack of appropriate spatial
and temporal resolution observations [95,96]. Himawari-8 allowed the identification and
tracking of such features within the GBR, at the required temporal resolution for resolving
short-lived coastal processes.

4.3. Limitations

Himawari-8 provides inferior SNR compared to past and currently operational ocean
colour sensors [80], and its sensitivity is far below minimum requirements for ocean
colour applications, particularly over open ocean waters [9,97]. However, Himawari-
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8’s moderate radiometric resolution of 11 bits is unlikely to saturate over bright targets,
such as clouds [80], and over extremely turbid coastal waters (TSS ~100 mg L), while
yielding enough sensitivity to provide a reasonable level of discretisation over clear waters
(>0.25 mg L 1). Noise levels calculated from aggregated observations were generally lower
than those from single observations in all bands, confirming the suitability of degrading
the temporal resolution to improve image quality [7,16]. Despite diurnal SNR fluctuations
being largely modulated by solar elevation angles, the spectral dependence implies that a
considerable source of input noise (3-5% in the red and NIR bands) in open ocean waters
may originate from the atmosphere [80]. Nevertheless, the detection limit of the present
method (0.25 mg L~ !) is comparable to those employing explicit atmospheric correction to
the inversion of meteorological data [17,98].

The detection limit of 0.25 mg L~ is close to the detection limit of in situ TSS measured
with the gravimetric method of ~0.4 mg L~!, for AIMS and CSIRO. Relative uncertainties
of the gravimetric method are associated with the measurement protocol employed by
different laboratories, which include differences in filter types, operator bias, salt rinsing,
etc. [99,100]. For instance, salt crystals trapped in glass fibre filters largely affect TSS
measurements and salt should be removed by rinsing the filtration apparatus [101,102].
Yet, errors as large as 30% have been obtained employing different salt-rinsing techniques,
hindering the accurate determination of TSS lower than 1 mg [101]. Therefore, the detection
limits and relative uncertainties of in situ measurements and Himawari-8-derived TSS
are comparable for the present study. This result suggests that Himawari-8 offers an
opportunity to accurately monitor diurnal variability of water quality in the coastal GBR,
for TSS between 0.25 and 100 mg L~ 1.

Himawari-8-derived TSS products presented a systematic horizontal striping, with
size generally corresponding to individual horizontal scans (500 km), as previously iden-
tified by Murakami [22]. The striping resulted from differences in detector-to-detector
calibration slopes from solar diffuser observations of the visible bands [103,104]. Although
the calibration coefficients were applied for the post-July 2017 observations, the horizontal
striping patterns were still present in offshore waters and with TSS < 1 mg L~!. Addition-
ally, severe granulation was observed in TSS products derived every 10 min, potentially
associated with the low radiometric performance of the Himawari-8 sensor over water
targets [17,22]. However, the visual noise was largely reduced by temporal aggregation
of several individual observations into hourly-derived TSS products [16]. Fortunately,
granulated noise was negligible in coastal and moderately turbid waters (TSS > 1 mg L™1),
either from 10 min or from hourly TSS products. This result may be associated with the
increased backscattering of suspended particles, which increases the water-leaving radiance
and overwhelms the photon noise [105]. Consequently, Himawari-8-derived TSS is more
likely to be accurately retrieved over moderately turbid coastal waters than over the open
ocean, corroborating the detection limits analysis.

Pixel-to-pixel variations in open ocean areas (TSS < 0.25 mg L~!) were likely related to
the granulated patterns observed with visual inspection, due to the low sensitivity of the
Himawari-8 sensor at 10 min resolution. The radiometric noise for TSS below 0.25 mg L~!
were largely reduced in aggregated TSS, corroborating the sensitivity and visual inspection
analyses. Conversely, improved spatial coherency was observed in the coastal GBR transect
for TSS > 1 mg L~1. As a result, Himawari-8 10 min-derived TSS can be utilised with as
much confidence as TSS derived from hourly aggregated observations in coastal areas.
Obtaining TSS at every 10 min in the coastal GBR improves the discrimination of rapid-
changing water quality fluctuations within an hour. However, this near-real time temporal
frequency requires large processing and storing capabilities that may be unfeasible for
the entire GBR. Producing hourly TSS, otherwise, not only improves processing rates
and storage capabilities but also helps eliminate outliers and increase the accuracy of TSS
products.



Remote Sens. 2022, 14, 3503

18 of 23

5. Conclusions and Future Perspectives

In-situ monitoring and LEO satellite data have provided much of our knowledge
on flood plumes entering the GBR [4,106-108]. However, infrequent and spatially scant
observations hindered the full understanding of plume development and evolution over
short time scales. This study demonstrated the suitability of Himawari-8 for reliable TSS
retrievals in the coastal GBR and for flood plumes mapping, tracking, and monitoring.
For the first time, coastal TSS features were reliably quantified for the entire GBR, at rates
only possible with biogeochemical and hydrodynamic models [109]. Himawari-8 TSS
products brings forth the ability to characterise and resolve periodical and short-lived
phenomena at unprecedented spatiotemporal resolutions. These products will be useful
for researchers, modellers, and stakeholders assessing the impact of water quality in GBR
ecosystems currently only using LEO orbit ocean colour products [109]. Diurnal changes
and drivers of water quality fluctuations should be further investigated in the GBR using
Himawari-8 TSS products and data of coastal processes such as tides, winds, and freshwater
discharge. Additionally, the algorithm presented in this study can be directly employed to
the identical Himawari-9 AHI sensor, which is planned to succeed Himawari-8 by 2029. The
next-generation Himawari mission (Himawari-10) is in the planning phase and additional
channels in the visible range, as well as improved sensitivity and spatial resolution, are
a possibility. These characteristics would largely advance the capabilities of ocean colour
algorithms for geostationary sensors, allowing more accurate retrievals in coastal waters
at diurnal scales. Likewise, the Advanced Meteorological Imager (AMI) on board the
GEOKOMPSAT-2A, as well as the GOCI-II (GEOKOMPSAT-2B), are currently observing
Australia and East Asia, and a similar machine learning algorithm could be developed
for harnessing these large and abundant datasets in near-real time. In this context, the
present study provides an advanced algorithm and a prospect of potential applications to
be developed when ocean colour sensors onboard geostationary platforms become a reality
for Australia.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/1s14143503 /51, Figure S1: Diurnal variability of Total Suspended Solids over the Burdekin
River mouth in February 2019 from 10 min Himawari-8 observations, Figure S2: Diurnal variability
of Total Suspended Solids over the Southern Great Barrier Reef near Heralds Reef in November 2016
from 10 min Himawari-8 observations.
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