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Abstract: Precipitable water vapor (PWV) is an important component in the climate system and plays
a pivotal role in the global water and energy cycles. Over the years, many approaches have been
devised to accurately estimate the PWV. Among them, global navigation satellite systems (GNSS)
have become one of the most promising and fastest-growing PWV acquisition methods because of
its high accuracy, high temporal and spatial resolution, and ability to acquire PWV in all weather
and in near real time. We compared GNSS-derived PWV with a 5 min resolution globally distributed
over 14,000 stations from the Nevada Geodetic Laboratory (NGL) from 1994 to 2020 with global
radiosonde (RS) data, temperature anomalies, and sea height variations. Then, we examined the
temporal and spatial variability of the global PWV and analyzed its climate implications. On a
global scale, the average bias and root mean square error (RMSE) between GNSS PWV and RS
PWV were ~0.72 ± 1.29 mm and ~2.56 ± 1.13 mm, respectively. PWV decreased with increasing
latitude, and the rate of this decrease slowed down at latitudes greater than 35◦, with standard
deviation (STD) values reaching a maximum at latitudes less than 35◦. The global average linear trend
was ~0.64 ± 0.81 mm/decade and strongly correlated with temperature and sea height variations.
For each 1 ◦C and 1 mm change, PWV increased by ~2.075 ± 0.765 mm and ~0.015 ± 0.005 mm,
respectively. For the time scale, the PWV content peaked ~40 days after the maximum solar radiation
of the year (the summer solstice), and the delay was ~40 days relative to the summer solstice.

Keywords: precipitable water vapor (PWV); global navigation satellite system (GNSS); temporal and
spatial variability; radiosonde (RS)

1. Introduction

Precipitable water vapor (PWV), typically expressed in terms of height in millimeters,
is the amount of water found in a vertical column of unit cross-sectional area, extending all
the way from the Earth’s surface to the upper edge of the atmosphere, that is potentially
available for precipitation [1–3]. Although PWV accounts for less than 5% of the volume
of the whole atmosphere, it is the most variable (by more than three orders of magnitude)
of the major constituents of the atmosphere. In addition, PWV contributes more than any
other component of the atmosphere to the greenhouse effect, playing a crucial role in the
global water and energy cycles [4–7]. Therefore, the acquisition of PWV content in the air
and the study of its variation over time and space are indispensable for understanding
climate change and weather processes.

Traditional PWV measurement methods include radiosonde (RS), ground-based mi-
crowave radiometers, weather radar, etc. [8–13]. However, because of their high cost, most
of these methods have not been widely rolled out and used on a global scale except for
RS. Radiosondes are mounted on sounding balloons to record data from different pressure
layers and transmit them to the ground by radio. As the most classic means of water vapor
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acquisition, RS has the longest record and has been considered to have the widest and most
comprehensive global coverage [14–16], so RS PWV data are among the most suitable data
for global analysis. In addition, because of the accuracy and reliability of RS data, they are
often used as a standard to verify the observations of other instruments [17]. However,
because of the high maintenance cost, the spatial and temporal resolution of sounding
instrument observations is still low. There are only more than a thousand sounding stations
worldwide, and usually, only two observations are made per day, mostly at 0:00 and 12:00
UTC [18,19]. Furthermore, there is a significant lack of RS data in less developed regions
and in regions where extreme weather conditions exist year-round. These factors limit
the application of RS for high-spatial- and -temporal-resolution water vapor monitoring
and analysis. Note that numerical weather models (NWMs) are also among main sources
of PWV data, and most existing PWV studies have also been based on the evaluation
and analysis of NWMs. However, NWMs do not represent direct measurement, as RS
and GNSS do, and may be less reliable for areas where no or limited data assimilation
observations are available, so they are not discussed in this research.

As early as 1992, Bevis et al. [4] proposed the concept of global positioning system
(GPS) meteorology and experimentally verified the possibility of inversion of water vapor
by GPS. Ground-based GPS can operate in all weather, is virtually impervious to weather
extremes, and can operate consistently over long periods of time at very low maintenance
costs, which gives the PWV data obtained by this method high degrees of continuity
and integrity. With the development and improvement of global and regional satellite
navigation systems such as GLONASS, the BeiDou Navigation Satellite System (BDS), and
Galileo, an increasing number of scholars in related fields have conducted experiments
to evaluate the reliability of this technology and to verify the accuracy of GNSS (global
navigation satellite system) PWV. Rocken et al. [20] assessed PWV measured with six GPS
receivers for 1 month at sites in Colorado, Kansas, and Oklahoma and concluded that
GPS and water vapor radiometer (WVR) estimates agreed to 1–2 mm root mean square
error (RMSE). Using one and a half years of data from the western Mediterranean region,
Hasse et al. [21] obtained a standard deviation (STD) difference of 1.2 cm between the
RS and GNSS zenith total delay (ZTD), which was equivalent to a PWV difference of
2 mm [22]. Zhang et al. [23] obtained an STD of 3.27 mm between GPS PWV and RS
PWV from 2011–2013 in Tahiti, French Polynesia, located in the tropical southern–central
Pacific Ocean. The growing number of GNSS PWV studies has opened up the possibility
of using GNSS to analyze high-spatial- and -temporal-resolution PWV. However, limited
by experimental materials, these studies have often been conducted only regionally at
only a few to a few dozen stations [24–31], and the results obtained in this way may not
be applicable on a global scale. These results have validated GNSS as a good technique
for acquiring PWV but have not reflected the strengths and potential of GNSS in global-
scale PWV monitoring and analysis. Fortunately, the publication of the Nevada Geodetic
Laboratory (NGL) troposphere products (which is probably the most comprehensive GNSS
database currently available) solved this dilemma.

In this study, we examined the RS dataset from Integrated Global Radiosonde Archive
Version 2 (IGRA2) and the GNSS products from the NGL. Then, the methods of PWV
retrieval from these two observation techniques were introduced. To evaluate the reliability
of the NGL products, the IGRA2 PWV for the 1994–2020 period was used as a reference,
and the mean deviation (bias) and RMSE of the NGL PWV were calculated. Finally, the
PWV data derived from more than 14,000 NGL GNSS stations over 20 years were analyzed
in terms of temporal and spatial variation characteristics, anomalies in PWV were analyzed
for correlations with global temperature and sea level data, and some valuable conclusions
were drawn that are discussed and summarized herein.
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2. PWV Data and Analysis Methods
2.1. PWV Retrieval

As PWV is not a raw observation but needs to be derived by certain methods and
models, which are not exactly the same for different databases, it is necessary to give a brief
introduction to the method of PWV retrieval.

2.1.1. Radiosonde PWV Retrieval

The RS provides pressure level data from the ground to the top of the atmosphere, in-
cluding temperature, pressure, relative humidity, geopotential height, dewpoint depression,
wind direction and wind speed. RS-derived PWV is described as follows [32,33]:

e = 6.112 exp(
17.6Td

Td + 243.15
) (1)

PWV =
1
g

∫ p2

p1

0.622e
p− e

dp (2)

where Td is the dewpoint temperature (◦C); e is the vapor pressure (hPa); p is the atmo-
spheric pressure (hPa); p1 and p2 are the atmospheric pressures at the lower and upper
layers (hPa), respectively; and g is the acceleration of gravity (m/s2).

2.1.2. GNSS PWV Retrieval

ZTD can be divided into two components, known as zenith hydrostatic delay (ZHD)
and zenith wet delay (ZWD). PWV can be derived from ZWD by the following formula [34]:

PWV = II× ZWD (3)

II =
106

ρRv[(k3/Tm) + k′2]
(4)

where ρ is the density of liquid water, Rv is the gas constant of water vapor, Tm denotes the
weighted mean temperature of the atmosphere, and k′2 and k3 are constants determined
experimentally. NGL products obtained Tm from VMF1 (Vienna Mapping Function 1)
gridded NWM data [35].

It should be noted that since the vast majority of GNSS stations are not equipped with
meteorological sensors, ZHD is usually obtained from a model in GNSS data processing.
However, this may result in model errors being absorbed into the ZWD and then into the
PWV. The NGL solution used the VMF1 grid products as the ZHD input. The VMF1 was
computed from the NWM by ray-tracing methods. When obtaining the site ZHD from
the VMF1 grid products, the grid point ZHD was first converted to the corresponding
height pressure, the pressure was lifted from grid height to site height, and finally, the lifted
pressure was converted to ZHD again [36].

Another way to obtain high-accuracy ZHD is with reanalysis data. Reanalysis data
give the best estimates where no data are recorded, in between stations and observation
times. It is an “optimal” reflection of the atmospheric conditions, but not a true reflection.
According to experiments by Fernandes et al. [37] and Urquhart et al. [38], the bias of
the ZHD obtained from the VMF1 ZHD and the in-situ measurement was approximately
3 mm, which translated into a PWV of less than 0.5 mm. Furthermore, according to the
experiments of Urquhart et al. [38] and Wang et al. [39], the bias of the ZHD difference
between VMF1 and reanalysis data into PWV was around 0.3–0.4 mm. The results of these
studies showed that there was no significant difference between using VMF1 and reanalysis
data to obtain ZHD in regard to the accuracy of the derived PWV.

2.2. RS and GNSS PWV

In this section, the RS and GNSS data used and the data preprocessing methods used
in this study are introduced.
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2.2.1. IGRA2 RS PWV

The Integrated Global Radiosonde Archive (IGRA) is an RS dataset maintained,
archived, and distributed by the National Oceanic and Atmospheric Administration
(NOAA) National Centers for Environmental Information (NCEI), formerly National Cli-
matic Data Center (NCDC) [40]. IGRA2 is the second version of IGRA and consists of
quality-controlled RS observations at stations across all continents. Its data are drawn from
more than 30 different sources. The earliest year of data is 1905, and the data are updated
on a daily basis. In this study, the IGRA2 RS PWV data from 1994 to 2020 were selected,
covering the same period as the GNSS PWV data. To ensure the collocation of the sounding
stations used for reference, the following two constraints were applied: (i) the distance
between the two types of stations was less than 40 km, and the height difference was less
than 100 m (existing research on this restriction has proven it to be sufficiently stringent,
feasible, and effective [12]); (ii) the common available data covered at least one year. After
the selection, a total of 1534 IGRA2 stations were available.

2.2.2. NGL GNSS PWV

At the end of 2017, the Nevada Geodetic Lab announced the new public availability
of over 34 million station-days of their tropospheric products (total zenith delay, north
gradient, and east gradient every 5 min since 1996) from over 16,000 stations. The data
processing strategy was precise point positioning (PPP). In March 2020, the products were
updated with an earlier starting year of 1994, more than 19,000 stations, over 43 million
station-days, and the addition of ZWD, Tm, and PWV data [35,41]. Table 1 summarizes the
properties of NGL products, including the adopted models, strategies, and products used.
In addition, more detailed information can be obtained from NGL’s solution strategy file:
http://geodesy.unr.edu/gps/ngl.acn.txt (accessed on 8 August 2021). The NGL products
provided the corresponding STD of the elements listed in the table, with the exception of Tm,
as this was provided by the VMF1 gridded numerical weather model. In addition, although
the database is updated weekly, the data delay is approximately three weeks. Although it
has been open for only a short time, NGL’s GNSS products surpass common databases,
such as the International GNSS Service (IGS) and Crustal Movement Observation Network
of China (CMONOC), in terms of data volume and timespan. In particular, for the number
of stations, NGL surpasses the first two by two orders of magnitude. In addition, the
coverage and density of GNSS are wider and denser than those of RS in a large number of
less developed and bipolar regions, which makes the NGL tropospheric products possibly
the most comprehensive and extensive PWV database currently available.

Table 1. Adopted models and strategies of Nevada Geodetic Laboratory products.

Items Properties

Service time 5 November 2017—present
Timespan 1 January 1994—present
Sampling interval 5 min
Elevation cutoff angle 7 degrees
Trop mapping function VMF1 [42]

Elements total zenith delay, north gradient, east gradient,
water vapor, and weighted mean temperature

Orbit JPL’s Repro 3.0 orbits
Clock JPL’s Repro 3.0 clocks
Software JPL’s GipsyX 1.0 [43]
System GPS-only
Data amount >46 million days
Number of stations >19,000

Update frequency 1 week (with new incoming data, as well as
newly discovered stations)

Station growth rate About 1000 per year

http://geodesy.unr.edu/gps/ngl.acn.txt
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The number of valid NGL stations, the number of total stations, and the total number
of products in the database were counted for each day from 1994 to 2020 and are displayed
in Figure 1. Figure 1a shows the variation in these quantities with time, and Figure 1b shows
the effective time for each station (blue is the background color, each yellow horizontal
line represents a station, and stations are in alphabetical order from top to bottom). The
following information is relevant to Figure 1: (i) on 4 December 2004, the number of valid
stations dropped abruptly from approximately 2000 to 102 and recovered immediately
afterwards, probably because of a network outage; (ii) the sudden increase in the total
number of stations on 1 January 2009 was due to the addition of a large number of stations
from Japan to the database, with numbers ranging from J001 to J999. In addition, starting
in 2009, the number of stations entered a period of rapid growth, reaching approximately
1000 new stations added per year; (iii) stations J001–J999, located in Japan, and P001–P821,
on the west coast of the United States, had good observation quality, with fewer missing
data and interruptions than other stations.
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Figure 1. Variability in the numbers of Nevada Geodetic Laboratory (NGL) stations and products.
(a) The number of valid NGL stations (red solid line), the total number of stations (red dotted line),
and the total number of products in the database data (blue solid line); (b) the effective time for each
station (each yellow horizontal line represents a station, and station names are in alphabetical order
from top to bottom).

Information on the distribution of the stations is shown in Figure 2. The colors of the
dots indicate the ellipsoid heights of the corresponding stations. Per the map, the majority
of stations were below 1 km in ellipsoid height, and the stations with higher ellipsoid
heights were mainly concentrated on the west coast of the American continent, which is
where the Cordillera de los Andes is located. In addition, there were a number of stations
in the Antarctic and Greenland, which are valuable for studying PWV changes in both
polar regions. It should be noted that because of the large number of stations, there are
inevitably some overlaps in the display. For better visualization, important information is
displayed first as needed.

2.3. Product Validation and Analysis Methods

In this section, a comparison between NGL GNSS PWV and IGRA2 RS PWV is pre-
sented, and the extraction of seasonal and interannual variation signals of PWV
is introduced.
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2.3.1. Comparison with RS PWV

A total of 1534 pairs of NGL and IGRA2 stations were screened, each pair within
40 km on the ellipsoid surface and within 100 m in height, with a common data validity of
more than one year (pairs of stations that did not have a full year of common observations
because of missing data were excluded). The bias values, relative bias, RMSE values,
and normalized RMSE values of these stations are presented in Figure 3. The biases of
most of the stations were positive, and stations with negative bias values (GNSS PWV
less than RS PWV) are mainly concentrated on the west coast of America and inland on
the Eurasian continent. The RMSE value showed a negative correlation that decreased
with increasing latitude, and for relative bias and normalized RMSE, many large values
appeared in the polar regions, which indicated that the difference between the two PWV
acquisition methods was larger in the high-latitude regions with low PWV content than in
other regions.
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Remote Sens. 2022, 14, 3493 7 of 19

The statistical results of the data are shown in Figure 4. By fitting a normal distribution
to the frequency histogram shown in Figure 4, we revealed that for NGL GNSS PWV, the
global average bias was ~0.72 ± 1.29 mm, the mean RMSE is ~2.56 ± 1.13 mm, the global
average relative bias was ~0.03%, and the normalized mean RMSE was ~0.14%. Based on
these results, we screened NGL stations and eliminated stations with RMSEs lower than
0.14%. It should be noted that the comparison here was only to analyze how the NGL
products differed from the mainstream PWV products (there have been a large number
of studies based on the RS products) and not to consider whether the RS products had
higher accuracy. In fact, although NCEI scientists applied a comprehensive set of quality
control procedures, IGRA data still suffered from jumps due to changes in instrumentation,
etc., and the unhomogenized RS data even affected most of the reanalysis data [12]. In
the GNSS solution, however, the tropospheric delay and the station coordinates were
estimated together, and the errors caused by these issues were mainly absorbed by the
station coordinates and hardly affected the tropospheric delay. In addition, since GNSS
satellites are more than 20,000 km from the ground, they cover the full length of the water
vapor path and do not need to be imputed to the top atmosphere in the same way as
RS data.
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2.3.2. Acquisition of PWV Spatial–Temporal Distribution Features

Significant annual periodic terms can be found in the PWV time series. To obtain all
the periodic terms in the PWV series, 26 globally distributed stations (the blue pentagrams
in Figure 2) were selected, which were well distributed and from which the available data
were more than 20 years old. The power spectral densities (PSDs) of the PWV time series
from these stations were obtained and are plotted in Figure 5. In Figure 5, the gray line is



Remote Sens. 2022, 14, 3493 8 of 19

the PSD of these 26 stations, and the red line is the average PSD of the 26 stations. This
figure shows that in addition to the annual cycle term, there was a significant semiannual
cycle term in the PWV series. Theoretically, high-temporal-resolution GNSS data would
allow smaller-period features to be extracted. However, some scholars have claimed that
smaller-period temporal characteristics, such as diurnal or semidiurnal cycle characteristics,
can be extracted from the reanalysis data [44]. Such features were not obtained from GNSS
PWV, probably because these period amplitudes were very small (less than PWV accuracy)
and were masked by observation noise.
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Trend fitting and seasonal cycle fitting were performed using Equations (5) and (6), respectively:

PWV(t) = a + b · t (5)

where a is the intercept, b is the growth rate of the PWV, and t is the decimal year;

PWV(doy) = A1 cos(2π
doy + P1

365.25
) + A2 cos(4π

doy + P2

365.25
) + C (6)

where A1 and P1 are the annual amplitude and phase of the PWV, respectively; A2 and P2
are the semiannual amplitude and phase, respectively; C is a constant term that represents
the annual average value of PWV; and doy is the day of the year.

3. Results
3.1. Spatial Analysis

PWV data were extracted from the ZWD while retaining most of the spatial charac-
teristics of the ZWD. We counted all PWV data according to the latitudes and ellipsoidal
heights of the stations from which they were collected. Since the temporal resolution of
GNSS PWV was 5 min, this led to an overwhelming amount of data that was hard to
process, so we calculated first the daily mean value and STD of the PWV and then the
average value of each station’s means and STDs for the 1994–2020 period. Subsequently,
the PWV means and STDs were calculated by group according to latitude and ellipsoid
height, and the results of the means and STDs for each group are shown in Figure 6.
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Figure 6. Distribution of mean PWV and PWV standard deviation (STD) with latitude and ellipsoid
height. (a) PWV mean with latitude, (b) PWV STD with latitude, (c) PWV mean with ellipsoid height,
(d) PWV STD with ellipsoid height. Light gray dots indicate each station, red dots indicate group
means, and dark gray bars represent group STD. Note: the groups for latitude and ellipsoid height
are in intervals of 1◦ and 100 m, respectively.

Figure 6a shows that: (i) PWV mean values were symmetrically distributed in the
Northern and Southern Hemispheres and negatively correlated with latitude, and their
relationship with latitude could be fitted by a segmented linear function in which the
absolute slope value for 0–35 degrees latitude was greater than that for 35–90 degrees;
(ii) STD in the latitude groups decreased with increasing latitude, which indicated that
the fluctuation of PWV mean values in different regions at the same latitude increased
with decreasing latitude. Figure 6b shows that: (i) the mean value of the PWV daily STD
decreased with increasing latitude in the regions with latitudes greater than 35◦, but there
was no significant correlation in the regions with latitudes less than 35◦ which indicated
that the PWV fluctuations reached the limit in low- and mid-latitude regions; (ii) in the
group where the maximum value was, i.e., at approximately 35◦, the degree of variation
in fluctuations was the greatest, which also indicated that the variation in PWV was the
greatest among the geographical areas around this group.

From Figure 6c,d: (i) the mean PWV and STD were exponentially negatively correlated
with the ellipsoid height of the stations, the PWV values varied greatly between stations
in the low ellipsoid height region, and the difference decreased as the height increased;
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(ii) the rate of decrease in PWV with increasing ellipsoid height decreased with increasing
ellipsoid height, because water vapor is mainly concentrated on the Earth’s surface.

3.2. Seasonal Cycle

The seasonal cycle was the most intuitive and significant temporal feature exhibited by
the PWV time series. We fit the PWV using the annual periodicity + semiannual periodicity
function of (11), and the fitting residuals and fitting parameters are shown in Figure 7
(Figures A1–A4 in Appendix A show the PWV fit of four stations at different latitudes). It
should be noted that, considering that accurate periodicity can be extracted only from data
with a sufficient timespan, we excluded stations with less than two years of data, and the
fitting results for the remaining >14,000 stations are shown in Figure 7.
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Figures 7a and 7b show the annual amplitude A1 and phase P1, respectively, and
Figures 7c and 7d display the semiannual amplitude A2 and phase P2, respectively. The
annual amplitude was between 0 and 22 mm and showed an overall pattern of increasing
from high latitudes to low latitudes. However, the maximum value appeared not in
the equatorial region but near the Tropic of Cancer, especially in the coastal areas of the
region. This was because these regions have sufficient water vapor and a large temperature
difference during the year, while the equatorial region has a small temperature difference
throughout the year, and the fluctuation of water vapor content is relatively small.

The annual phase can reflect the time of the year when the PWV content is highest
and the time when it is lowest. As shown in Figure 7b, the phase sign was opposite in the
Northern and Southern Hemispheres. The phase value was concentrated in the periods
between late May and early June in the Northern Hemisphere and in the periods between
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late November and early December in the Southern Hemisphere, and the semiannual cycle
phase was similar to the annual phase. To obtain the distribution characteristics of the
phases, statistical plots of the frequency distribution of the phase values of all the stations
are shown in Figure 8. Figure 8 shows that both the annual and semiannual phases showed
the phenomenon of clustering towards different values in the Northern and Southern
Hemispheres. The mean value of the annual phase in the Northern Hemisphere stations
was ~152.1, and the mean value of the semiannual phase was ~61.6, while the mean value
of the annual phase in the Southern Hemisphere was ~−34, and the mean value of the
semiannual phase was ~−40. The conversion led to the conclusion that PWV levels in the
Northern Hemisphere peaked around August 1 (the 213th day of the year) and reached a
trough around January 31 each year, while PWV levels in the Southern Hemisphere peaked
around February 3 (the 34th day of the year) and reached a trough around August 5 each
year. This indicated that the water vapor content in the atmosphere peaked approximately
40 days after the solar radiation reached its maximum (on the summer solstice) during the
year. These results may be more informative for global water and energy cycle studies than
some studies of global temperature through surface sensor data [45–47].
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Figure 8. Statistical histogram and normal fitting of the annual phase (blue) and semiannual phase
(red) in the Northern and Southern Hemispheres. The phase in the Southern Hemisphere was less
than zero, the phase in the Northern Hemisphere was greater than zero, and the subscripts N and S
represent the Northern and Southern Hemispheres, respectively.

The semiannual amplitude ranged from 0 to 8 mm, which was much smaller than the
annual amplitude, and the decreasing pattern with increasing latitude was not as significant
as that of the annual amplitude. The semiannual amplitude was significantly larger on the
southeast coast of China–Japan and in the California axis region of the west coast of the
United States than in the other regions.

The constant term C (Figure 7e) represents the annual average value of PWV, from
which it was found that the annual average value of PWV ranged from 0 to 50 mm and
that the values decreased with increasing latitude, from more than 40 mm in the tropical
regions to less than 10 mm in the polar regions. Figure 7f shows the RMSE value of the
fitted residuals, from which it was found that the polar regions had small RMSE values,
larger values of RMSE appeared on the west coasts of the Pacific and Atlantic Oceans, and
the global average RMSE was ~5.72 ± 1.89 mm. This indicated that these regions had
greater daily variation around the seasonal means. These were also the areas where severe
weather, such as typhoons and rainstorms, often occurs.

3.3. Trend Analysis

The trend signal reflects changes in the time series over long periods of time, and we
used (5) to obtain a linear trend of PWV time series for over 5000 NGL stations between
2009 and 2020. All of the selected stations had more than ten years of available data
(stations with slight data missing were complemented by the fitting value of (11), while
stations with serious missing data were eliminated). After calculating the interannual
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variation in the annual mean value of each station, we found that the PWV trend had
no regional distribution characteristics. Considering the large variation in PWV values
between seasons, we grouped the statistics according to four seasons: spring (March–
April–May for the Northern Hemisphere (NH) and September–October–November for
the Southern Hemisphere (SH)), summer (June–July–August for the NH and December–
January–February for the SH), autumn (September–October–November for the NH and
March–April–May for the SH), and winter (December–January–February for the NH and
June–July–August for the SH). The results are presented in Figure 9. In addition, stations
with positive values in all four seasons and stations with negative values in all four seasons
are shown in Figures 9e and 9f, respectively.
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Figure 9. Spatial pattern of seasonal PWV trends during 1994–2020. (a) March–April–May (MAM),
(b) June–July–August (JJA), (c) September–October–November (SON), (d) December–January–
February (DJF), (e) stations with positive values in all four seasons, (f) stations with negative values
in all four seasons.

From Figure 9a,d, we found that more stations had positive than negative values
in all four seasons. However, in regard to the stations with positive (e) and negative
(f) values in each of the four seasons, we found that the number of stations with positive
PWV growth rates was much larger than the number with negative growth rates. In
addition, the following patterns were found: (i) the PWV growth rates in Antarctica, the
tropical region of South America, and Alaska were almost all positive, indicating that the
PWV values in these regions were increasing year by year; (ii) a large number of stations in
the Canada and South Africa regions had negative PWV growth rates for all four seasons,
while very few stations had positive values, indicating that the PWV values in these regions
were decreasing year by year.

Figure 10 shows the frequency distribution of the PWV growth rate of all stations
in the four seasons. From the figure, it was found that all four seasons conformed to the
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normal distribution, and by fitting the normal distribution, we obtained mathematical
expectations of the PWV growth rate of ~0.68± 0.92 mm/decade, ~0.43± 1.14 mm/decade,
~0.80 ± 1.36 mm/decade, and ~0.64 ± 1.02 mm/decade in spring, summer, autumn, and
winter, respectively. This result was numerically consistent with studies using data obtained
from other data sources, including reanalysis data [48], RS data [49], MODIS (moderate
resolution imaging spectroradiometer) data [50], etc. This indicated that: (i) the global PWV
content showed a yearly increasing trend in all four seasons, which was most significant in
autumn and least significant in summer, and (ii) the dispersion (standard deviation) of the
PWV growth rate among stations increased gradually in spring, summer, and autumn but
was lowest in winter.
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(c) SON, and (d) DJF.

In addition, it was found from the results that the PWV growth rate had large un-
certainty and that its spatial distribution was not continuous in some regions. This phe-
nomenon was also found in some studies of long-term trends in PWV obtained using
other methods [50,51]. Combining these studies, the following possible reasons for this
phenomenon are listed: (i) PWV is highly correlated with land cover type [52], and the
density of discrete GNSS stations is still low; (ii) differences in analysis periods and spatial
coverage could be responsible for these discrepancies [49].

Table 2 shows the percentages of stations with positive and negative PWV growth
rates in each of the four seasons to the total number of stations. From the table, it was
found that in each season, the proportion of positive values was approximately triple to
quadruple that of negative values, and the proportion of stations with positive values in
all seasons was more than 20 times the proportion of stations with negative values in all
seasons. This indicated that PWV was increasing year by year on a global scale.
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Table 2. Percentages of positive and negative values for the four seasons and all seasons.

Spring Summer Autumn Winter All Seasons

positive 82.72% 70.72% 78.22% 82.77% 45.73%
negative 17.28% 29.28% 21.78% 17.23% 2.15%

The relationships between the PWV growth rate and both latitude and ellipsoid height
were likewise analyzed, with the latitude and ellipsoid height grouped in the same way as
above, and the results are presented in Figure 11. It should be noted that the increase in
PWV did not mean that the evaporation in this area had also increased, but it meant that
increased water vapor was concentrated in these areas. The results in Figure 11 showed
that the PWV growth rate was not simply positively or negatively correlated with latitude
and ellipsoid height. It was found that the increased water vapor was more concentrated
near the equator, the Tropic of Cancer, and 60◦ latitude, while from the ellipsoid height, the
increased water vapor was more concentrated in the area within 1 km from the ground
(these areas all had growth rates higher than 0.5 mm/decade). This suggested that these
regions are more likely to suffer drastic weather changes due to uneven increases in
water vapor.
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Figure 11. Distribution of PWV growth rates with latitude and ellipsoid height. (a) PWV growth rate
with latitude; (b) PWV growth rate with ellipsoid height. The error bars are STDs of PWVs of stations
in the same latitude/height grouping area. Note: the groups for latitude and ellipsoid height are in
intervals of 5◦ and 100 m, respectively.

Under a warming climate, increasing temperatures exacerbate the evaporation of
water, a process that in turn is enhanced by increasing levels of water vapor, the world’s
most dominant greenhouse gas. To establish the link between the growth rates of PWV
and temperature, etc. and to analyze the correlation between them, we obtained global
temperature anomalies and sea height variations from Berkeley Earth [53] and NASA’s
Goddard Institute for Space Studies (GISS) [54] for the last two decades and compared PWV
anomalies with them. After data processing, the results of the comparison are shown in
Figure 12, where the red points represent the global annual values of anomalies (variations),
the red error bars are the yearly fluctuations in temperature anomalies and sea height
variations, and the blue error bars are the yearly fluctuation of PWV anomalies. The
calculation of the PWV anomalies followed that of temperature anomalies and sea height
variations, with all being calculated as the differences relative to the first value. Note
that the data used here were annual averages of the global data, which were calculated
from monthly averages, and the yearly fluctuation is the STD of these data. The results
shown in Figure 12 showed strong positive correlations between PWV anomalies and both
temperature anomalies and sea level variations, with correlation coefficients of 0.81. This
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result was similar to that obtained by Kwon et al. [50] with a correlation coefficient of 0.8
using MODIS PWV compared with temperature anomalies. In addition, the results of the
linear fit indicated that a 1 ◦C temperature increase corresponded to a PWV increase of
~2.075 ± 0.765 mm, and a 1 mm sea level height increase corresponded to a PWV increase
of ~0.015 ± 0.005 mm.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

in Figure 12, where the red points represent the global annual values of anomalies (varia-
tions), the red error bars are the yearly fluctuations in temperature anomalies and sea 
height variations, and the blue error bars are the yearly fluctuation of PWV anomalies. 
The calculation of the PWV anomalies followed that of temperature anomalies and sea 
height variations, with all being calculated as the differences relative to the first value. 
Note that the data used here were annual averages of the global data, which were calcu-
lated from monthly averages, and the yearly fluctuation is the STD of these data. The re-
sults shown in Figure 12 showed strong positive correlations between PWV anomalies 
and both temperature anomalies and sea level variations, with correlation coefficients of 
0.81. This result was similar to that obtained by Kwon et al. [50] with a correlation coeffi-
cient of 0.8 using MODIS PWV compared with temperature anomalies. In addition, the 
results of the linear fit indicated that a 1 °C temperature increase corresponded to a PWV 
increase of ~2.075 ± 0.765 mm, and a 1 mm sea level height increase corresponded to a 
PWV increase of ~0.015 ± 0.005 mm. 

 
Figure 12. Comparison of PWV anomalies with temperature anomalies (a) and sea height variations 
(b). The red dots are the annual averages, the red error bars are the yearly fluctuations in tempera-
ture anomalies and sea height variations, and the blue error bars are the yearly fluctuations in PWV 
anomalies. k represents the slope of the linear fit, and R represents the correlation coefficient. 

4. Discussion 
In this contribution, the spatial and temporal distribution characteristics of GNSS-

derived PWV for the last two decades from more than 14,000 stations distributed globally 
were extracted and analyzed. In the spatial analysis, we found that the annual STDs of 
PWV tended to be flat in the middle- and low-latitude regions, especially at low latitudes, 
which may be due to the saturation of water vapor content in this region. In the seasonal 
analysis, the amplitude and phase of each station was extracted, which could be used as 
model values for PWV recovery, as were the spatial distribution characteristics of each 
station. In the trend analysis, the interannual variability of each station was extracted, and 
correlations with the interannual variability of temperature and sea level were obtained, 
which can be used as additional supporting evidence for global warming. 

Compared with existing studies on PWV (which have mostly been based on reanal-
ysis data or RS data), this study did not have an advantage in terms of the timespan of the 
data because of the short development time of GNSS. Furthermore, it is difficult to obtain 
long-term GNSS PWV signatures for marine areas, since ground-based GNSS stations are 
usually fixed to bedrock. 

Finally, although there are already many stations in the NGL database, they are still 
not evenly distributed spatially and are mainly concentrated in developed regions. There-
fore, greater efforts need to be made to build stations, especially in northern–central 
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4. Discussion

In this contribution, the spatial and temporal distribution characteristics of GNSS-
derived PWV for the last two decades from more than 14,000 stations distributed globally
were extracted and analyzed. In the spatial analysis, we found that the annual STDs of
PWV tended to be flat in the middle- and low-latitude regions, especially at low latitudes,
which may be due to the saturation of water vapor content in this region. In the seasonal
analysis, the amplitude and phase of each station was extracted, which could be used as
model values for PWV recovery, as were the spatial distribution characteristics of each
station. In the trend analysis, the interannual variability of each station was extracted, and
correlations with the interannual variability of temperature and sea level were obtained,
which can be used as additional supporting evidence for global warming.

Compared with existing studies on PWV (which have mostly been based on reanalysis
data or RS data), this study did not have an advantage in terms of the timespan of the
data because of the short development time of GNSS. Furthermore, it is difficult to obtain
long-term GNSS PWV signatures for marine areas, since ground-based GNSS stations are
usually fixed to bedrock.

Finally, although there are already many stations in the NGL database, they are still not
evenly distributed spatially and are mainly concentrated in developed regions. Therefore,
greater efforts need to be made to build stations, especially in northern–central Africa, the
Asian continent, and the polar regions. With the development of low-cost, small GNSS
receivers, the acquisition of GNSS-based PWV will become more and more convenient.
The data records of GNSS PWV will become longer, and the coverage will become wider.
GNSS will become one of the most mainstream ways to acquire PWV.

5. Conclusions

Reliable temporal and spatial variability information on water vapor is crucial to
understanding climate processes and the global water and energy cycles. This study used
PWV data derived from IGRA2 RS to evaluate NGL GNSS PWV products in 1994–2020.
A total of 1534 RS sites were selected as the reference. The comparison showed a very
high level of agreement between these two types of PWV data. Then, the temporal and
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spatial distribution characteristics of PWV from 1994–2020 for over 14,000 NGL stations
worldwide were analyzed and discussed. In addition, long-term PWV anomalies were
analyzed in comparison with temperature anomalies and sea surface height variability
data. The following conclusions were obtained:

1. Compared with the RS data, the global average bias of NGL GNSS PWV was
~0.72 ± 1.29 mm, and the global average RMSE was ~2.56 ± 1.13 mm. This re-
sult showed that GNSS PWV had a very high agreement with RS PWV, and together
with the advantages of GNSS, such as high temporal resolution and all-weather op-
eration, GNSS is becoming one of the most important methods of PWV acquisition,
which should be valuable for water vapor synthesis and reanalysis.

2. On a global scale, the PWV value tended to increase year by year, and the global aver-
age growth rate was ~0.64 ± 0.81 mm·decade−1. PWV growth showed strong correla-
tions with temperature anomalies and sea height variation. For each 1 ◦C and 1 mm
change, PWV responded with ~2.075 ± 0.765 mm and ~0.015 ± 0.005 mm, respectively.

3. The PWV mean value tended to decrease in segments with increasing latitude and
decreased more rapidly below 35◦ latitude than above 35◦ latitude. The PWV STD
value reached a maximum at low latitudes and did not show the same complete
negative correlation as PWV.

4. The mean value of GNSS PWV was between 0 and 50 mm and was negatively corre-
lated with latitude. The annual cycle amplitude of PWV was also negatively correlated
with latitude but reached its maximum near the Tropic of Cancer, especially in the
coastal areas of the region, which can be explained by the eddy transport being more
efficient there and frontal systems mixing polar air with tropical air.

5. PWV levels in the Northern and Southern Hemispheres reached their peak around
August 1 and January 3 each year, respectively, and reached troughs around Jan-
uary 31 and August 5 each year, respectively. There was a delay of approximately
40 days relative to the time of year when the solar radiation reached its maximum
(the summer solstice).
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