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Abstract: Rapid urbanization in China has led to an increasing problem of atmospheric nitrogen
dioxide (NO,) pollution, which negatively impacts urban ecology and public health. Nitrogen dioxide
is an important atmospheric pollutant, and quantitative spatio-temporal analysis and influencing
factor analysis of Chinese cities can help improve urban air pollution. In this study, the spatio-
temporal analysis methods were used to explore the variations of NO, pollution in Chinese cities
from 2005 to 2020. The findings are as follows. In more than half of Chinese cities, NO, levels
remarkably decreased between 2005 and 2020. The effective NO; reduction strategies contributed to
the significant NO, reduction during the 13th Five-Year Plan (2016-2020). Moreover, we found that
the pandemic of COVID-19 alleviated NO, pollution in China since it reduced the traffic, industrial,
and living activities. The NO, pollution in Chinese cities was found highly spatially clustered. The
geographically and temporally weighted regression model was used to analyze the spatio-temporal
heterogeneity of NO, pollution influencing factors in Chinese cities, including natural meteorological
and socio-economic factors. The results showed that the GDPPC, population densities, and ambient
air pressure were positively correlated with NO, pollution. In contrast, the ratio of the tertiary to
the secondary industry, temperature, wind speed, and relative humidity negatively impacted the
NO; pollution level. The findings of this research contribute to the improvement of urban air quality,
stimulating the achievements of the sustainable development goals of Chinese cities.

Keywords: NO, pollution; satellite observation data; spatio-temporal heterogeneity; Chinese cities;
natural meteorological factors; socio-economic factors; urban air quality

1. Introduction

In recent years, the use of tremendous amounts of fossil energy in Chinese cities
has resulted in nitrogen oxide pollutants into the atmosphere, severely worsening the air
quality. Nitrogen oxides (NOy) are made up of two compounds: nitrogen monoxide (NO)
and nitrogen dioxide (NO,) [1]. Notably, NO, has posed a huge threat to the air quality
of Chinese cities. As a result, it has become a significant pollutant in urban air quality
monitoring systems [2].

NO; has had the fastest concentration growth rate in China over the last two decades [3].
Numerous studies have demonstrated that long-term exposure to high NO, concentrations
increases mortality from respiratory and cardiovascular diseases [4]. Additionally, NO,
is a significant contributor to acid rain and photochemical smog [3]. Most significantly,
NO; takes part in the formation of ozone and aerosol, affecting the local climate change [5].
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The Chinese government’s National Air Pollution Prevention and Control Joint Center
has conducted a synergistic treatment of PM; 5 and ozone [6]. In addition, in 2015, the
United Nations established 17 Sustainable Development Goals (SDGs) as a plan of action to
achieve global peace and prosperity by 2030 [7]. The mitigation of NO, pollution is closely
related to the mapping of hazardous chemicals and pollutants in the air, water, and soil
in SDG Target 3 “good health and well-being”, mapping of air quality in SDG Target 11
“sustainable cities and communities”, and the environmental variables for climate change
models in SDG Target “climate action” [8,9]. Therefore, NO; has received increased atten-
tion from researchers and global governments. China, as the biggest developing country,
also has suffered from NO, pollution for a long time. Hence, it is necessary to analyze the
spatio-temporal distribution of NO, pollution in China and explore its influencing factors.

NO; pollution is primarily measured based on the ground platform. However, we
discovered that the ground observations over China were unevenly distributed within
the short period of historical time series (only available after 2013). On the other hand,
satellite remote sensing observation data have the advantages of broad spatial coverage, a
long observation period, and spatial continuity [10,11]. Therefore, the tropospheric NO,
vertical column densities (VCDs) data retrieved by the Ozone Monitoring Instrument (OMI)
are widely applied to detect the long-term variations in NO, pollution over China and
investigate the drivers from a spatio-temporal perspective [1,3,5].

During the last two decades, many researchers have used satellite observation tech-
nologies to study the various factors influencing NO, pollution over China [12]. Since
industrial, transportation, and residential emissions are all anthropogenic sources of NOx
emissions [13], fluctuations in NO, concentrations are highly correlated with human activ-
ities [14]. It has been found that civil vehicles, electricity consumption, total population,
built-up areas, and coal use are closely correlated with NO, pollution levels [12]. Wang
et al. [15] analyzed the spatial and temporal distribution of NO, columns over China using
the simple linear regression model based on OMI satellite observations. The association
between changes in NO; pollution and urbanization in China was also conducted [3,16].
Bucsela et al. [17] used satellite measurements to examine the impacts of income and
urban spatial form on urban NO; levels. Since air pollution is a regional problem, the
traditional linear regression method cannot solve the spatial autocorrelation problem of air
pollution. However, spatial econometric models can effectively address the complex spatial
interactions and spatial dependence factors in regression models. The link between NO,
pollution and its natural and socio-economic factors in Chinese cities was quantified by
incorporating spatial effects in an extended STIRPAT model (stochastic impacts by regres-
sion on population, affluence, and technology) [12]. Moreover, socio-economic or public
health events that significantly influence human activities can affect local NO; pollution
levels, such as regional economic recessions [18,19], the 2008 Beijing Olympic Games [20],
the 2016 G20 Hangzhou Summit [21], and the COVID pandemic incidents [2,22-25].

The studies mentioned above drew fruitful conclusions but neglected the variability
of influencing factors of NO, pollution under different spatial and temporal conditions.
Additionally, NOx emissions in eastern China grew fast between 2000 and 2011 and began to
fall steadily [26,27]. Governments recently established a regional coordinated development
strategy, in which economically underdeveloped regions in central and western China
were encouraged to absorb the energy-intensive industry shifted from the eastern coastal
regions [28]. Since the 12th Five-Year Plan (2011-2015), some cities in central China and
western China remarkably increased their NOy emissions [3]. It has been evidenced that
spatially varying socio-economic conditions and natural geographic factors contribute to
varying levels of NO; pollution at the city level [12]. In other words, these existing studies
disclosed the average impacts of the drivers of NO, pollution over China, and they paid
little attention to the spatio-temporal variations of the drivers from one city to another,
which could mask important information on NO, pollution prevention and control based
on the characteristics of Chinese cities.



Remote Sens. 2022, 14, 3487

30f15

Hence, our study aims to fill this gap using a novel geographically and temporally
weighted regression (GTWR) approach proposed by Huang et al. [29] to test the spatio-
temporal heterogeneity of the influencing factors of NO; pollution in each prefecture-level
city. Huang et al. [29] incorporated both spatial and temporal characteristics into a re-
gression model on the basis of the classical geographically weighted regression (GWR)
approach and proposed the effective construction method of the spatio-temporal distance.
In recent years, the GTWR model has been widely used in many studies to explore the het-
erogeneous relationships between independent and dependent variables in time and space,
such as the relationship between carbon emissions and urbanization [30], air pollutants and
natural geographical conditions [31,32], and ecosystem services and human factors [33].

This study first analyzed the spatial and temporal variations of NO; pollution over
China from 2005 to 2020 using satellite observations data. Then, the GTWR model was
applied to explore the influencing factors on the NO, pollution at the city level over China.
Finally, the relationship between NO, pollution and both metrological and socio-economic
variables was investigated and quantified. The findings of this study may provide both
potential solutions for China’s urban air pollution prevention and control and scientific
support for achieving sustainable development goals for China.

2. Materials and Methods
2.1. Data Description

The tropospheric NO, VCDs were retrieved by the Ozone Monitoring Instrument
onboard the EOS-Aura satellite [34]. The satellite, launched in September 2004, is in a sun-
synchronous orbit at 705 km altitude with a 99 min time period. It has the OMI pixel size of
13 x 24 km? at nadir in the global mode and 13 x 12 km? in the zoom mode, with a local
passage time of approximately 13:40 [10]. We used the Royal Netherlands Meteorological
Institute’s (KNMI) monthly QA4ECV NO; long-term dataset (version 1.1) in this study
(https:/ /www.temis.nl/airpollution/no2col/no2regioomimonth_ga.php, accessed on 16
March 2022). The QA4ECYV tropospheric NO, VCDs product has a spatial resolution of
0.125° x 0.125°. The updated NO; retrieval algorithms were referred to Boersma, Eskes,
Dirksen, van der A, Veefkind, Stammes, Huijnen, Kleipool, Sneep, Claas, Leitao, Richter,
Zhou, and Brunner [34] and Boersma et al. [35]. The monthly data have an uncertainty of
approximately 10% but range from 15% to 30% in contaminated places [35]. We further
removed the data with row anomalies and cloud radiance fractions of more than 50%. Then,
the monthly gridded composite of tropospheric NO, VCDs was averaged into the annual
NO, VCDs gridded dataset.

The independent variables in the GTWR model are introduced and processed as fol-
lows. The ground-based meteorological variables, including temperature (temp), wind
speed (WS), ambient air pressure near the ground (Pres), and relative humidity (Humi),
were obtained from the National Meteorological Information Center of China Meteorolog-
ical Administration (http://data.cma.cn/, accessed on 16 March 2022). Given the daily
station monitoring data, we applied an inverse distance-weighted (IDW) interpolated
method to interpolate into grid data with the spatial resolution of 0.125° x 0.125°, keeping
the consistency with the spatial resolution of the QA4ECYV tropospheric NO, VCDs product.
The daily dataset was then processed into an annual mean dataset. Meanwhile, the yearly
socio-economic variables and indicators of Chinese cities from 2005 to 2019, including
foreign direct investment (FDI), population density (PD), gross domestic product per capita
(GDPPC), and the ratio of the tertiary to the secondary industry (TSRatio), were obtained
from the China Statistical Yearbooks and the China City Statistical Yearbooks. In addition,
the tropospheric NO, and meteorological parameters at the prefectural level were re-
trieved according to China’s administrative boundary vector data (http://www.resdc.cn/,
accessed on 16 March 2022) by using ArcGIS 10.8 software.

It should be noted that although the data for NO, VCDs of prefecture-level cities
are extracted, due to the data unavailability of the explanatory variables for some cities,
the sample size in the regression analysis is restricted to 271 prefecture-level cities. The
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descriptive statistics of the variables involved in the regression models (standard deviation
(S.D.), mean, median, minimum (Min), and maximum (Max)) are summarized in Table 1.

Table 1. Descriptive statistics for variables included in this study.

Variable S.D. Mean Median Min Max
LnNO, 0.796 6.197 6.149 4.097 8.111
LnFDI 4.008 15.580 16.303 0.000 24.569

LnPD 0.881 5.795 5.929 1.547 9.984
LnGDPPC 0.855 10.295 10.269 6.638 13.185
LnTSRatio 0.495 0.886 0.787 0.094 9.482

LnTemp 0.138 2.823 2.808 2.301 3.256
LnWS 0.231 0.725 0.741 0.085 1.563
LnPres 2.974 5.320 6.887 —0.925 6.924

LnHumi 0.146 —0.384 —0.333 —0.983 —0.136

2.2. Methodology
We note that NO, VCDs in adjacent cities tend to be similar. In other words, NO,
pollution may exhibit spatial autocorrelation. Hence, global Moran’s [ is introduced to test
if there is spatial dependence for NO, VCDs of Chinese cities. It is as follows:
L T T Wi (Y= Y) (Y- Y)
- o 2
S0 i (Yi—Y)

)

where So =Y ; 2}’:1 Wi;. Y;, Y, and Y are the NO, VCDs of city i, j, and are the average
values of NO, VCDs of all samples. W;; denotes a spatial weights matrix, which describes
the spatial arrangement of these cities. # is the number of all samples.

When the global Moran’s I is significant and positive, it indicates that NO, pollution
of one city is similar to that of its neighbors, namely a spatial clustering. When global
Moran’s [ is significant and negative, it shows that NO; pollution is spatially dispersed.
When global Moran'’s I equals zero, NO, pollution may be randomly distributed in space.

Anselin [36] proposed a local Moran's I, called the local indicator of spatial association
(LISA), to test whether similar or dissimilar observations are clustered together in a local
area. The local Moran’s I value of each city can be calculated as follows:

I = @ ;wij(xi —X) 2
] 1

where w;; is also the spatial weights matrix; x; is the attribute of city I; and X is the mean

value of the attributes. 5> = % Yi(x — 7)2 is the variance of the attributes.
In this study, to measure the importance of the explanatory factors affecting NO,
VCDs, the independent variables can be standardized as follows:
X — Xk mi
X, = oM % 100% (©)]
k Xk_max - Xk_min

where X is the standardized independent variable k. Xj is the original independent
variable k. X} i, and Xj 5, are the minimum and maximum values of the independent
variable k, respectively.

We use the GTWR model to quantify the spatio-temporal heterogeneous impacts of
different independent variables on NO, VCDs changes in Chinese cities. Compared with
the cross-sectional data used in the traditional GWR model, the GTWR model incorporates
temporal variations into the GWR model. In this study, the ordinary least squares (OLS),
GWR, temporally weighted regression (TWR), and GTWR models are all conducted for
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completeness and comparison on the ArcGIS 10.8 software. The GTWR model can be
expressed as follows:

Y; = Bo(ui, vi, t) + Y Bu(ui, vj, 1) Xi + € @)
n

where (u;,v;,t;) denotes city i at location (u;,v;) and year t;; Bo(u;, v, t;) is an intercept,
Bn(u;, vi, t;) is the unknown coefficient of influencing factors to be estimated, including
meteorological conditions and socio-economic factors; ¢; denotes a random error.

Therefore, the coefficients B, (1, v;, t;) are estimated by the least-squares method. The
estimator reads below:

N -1
Bn(ui,vi, t;) = [XTW(”irvi/ ti)X} XTW (uj, v, t;)Y ®)

where W(u;,v;, t;) = diag(ap, ap, . .., a;), and k is the number of the explanatory variables.
The GTWR model is essentially determined by the ability of the kernel function in the
weight matrix to solve for both the temporal non-smoothness and spatial non-smoothness.
The weight matrix is computed by the Euclidean distance and Gaussian distance-decay-
based functions, as described in Wu et al. [37]. The weight scheme is generated by a
bandwidth parameter / [38], and the schematic diagram of the spatio-temporal distance
df}T between cities i and j is shown in Figure 1 and represented as follows:

(di‘C}T)z = (i —u))* + (0= 9)" + u(ti — 1)) ©6)

where y is the scale factor of the temporal and spatial distance; then the GTWR model is
built and compared with the other models (OLS, GWR, TWR, and GTWR) by a series of
goodness-of-fit statistics, i.e., corrected Akaike Information Criterion (AICc) [29].

A
T

U@

V(A)

Figure 1. Schematic diagram of the spatio-temporal distance of the GTWR model.

3. Results and Discussions
3.1. Analysis of Spatio-Temporal Variation of NO, Pollution

Figure 2 presents the annual mean of NO, VCDs at the prefectural city level from
2005 to 2020. The most severe NO; pollution is mainly located in northern China dur-
ing this sample period. Notably, we observe that some northern cities were highly pol-
luted, for example, Jiaozuo (Henan Province), Handan (Hebei Province), Shijiazhuang
(Hebei Province), and Xingtai (Hebei Province), in which NO, VCDs are larger than
2000 x 103 molecule/cm?. Apart from the North China Plain, moderately polluting cities
(larger than 800 x 10'3 molecule/cm?) were observed in the important urban clusters, such
as the Yangtze River Delta, Pearl River Delta, and Sichuan-Chongqing urban agglomeration.
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Annual mean of NO2 VCDs
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Figure 2. The annual mean of NO, VCDs and yearly changes of NO, VCDs from 2005 to 2020.
(Unit: x10 molecule/cm?).

The annual variations of NO, VCDs at the prefectural city levels can also be observed
in Figure 2. It is widely known that the Chinese government usually sets pollutant reduction
targets and measures in a series of Five-Year Plans. More specifically, NO, VCDs are closely
synchronized with three Five-Year Plan periods in our study sample period, namely the
11th Five-Year Plan (2006-2010), 12th Five-Year Plan (2011-2015), and 13th Five-Year Plan
(2016—2020). It can be observed that most cities increased the NO, pollution during the
11th Five-Year Plan, then began to decrease the NO, level during the 12th Five-Year Plan.

Figure 3 shows the percentage change of NO, VCDs during the three periods, namely
between 2005 and 2019 (a), between 2005 and 2020 (b), and during the COVID-19 pandemic
(c) in Chinese cities. We observed that NO, pollution in 130 cities in 2019, the end of the
13th Five-Year Plan (2016-2020), were lower than that in those cities in 2005. Most cities in
the Yangtze River Delta and Pearl River Delta regions have seen a reduction in NO, VCDs
by 10% or greater. Some cities in the southwest, however, have experienced a 10-30 percent
increase in NO, levels. A total of 187 cities (about 56.0%) had lower NO; levels in 2020 than
those in 2005. The rapid reduction of NO; levels implies that Chinese cities have effectively
and efficiently implemented the NO; reduction strategies during the 13th Five-Year Plan.

Besides, to further evaluate the impact of the COVID-19 pandemic on NO, VCDs
levels in prefecture-level cities, we compared the average values of February and March
2020 with the average values of earlier two years, namely, 2018 and 2019, removing the
influence of the Chinese New Year on NO; levels. As shown in Figure 3c, we noticed that
the COVID-19 pandemic resulted in a decrease in NO; in 288 (86.2%) Chinese cities. In
particular, NO, VCDs significantly fell by more than 30 percent in some cities of the North
China Plain and Yangtze River Delta regions. This shows that the epidemic has also exerted
a significant impact on the traffic, industrial, and living activities in the local cities, leading
to the rapid reduction of the NO, levels. Furthermore, the cities in the Pearl River Delta
region are the exceptions, with NO, levels declining from 2005 to 2020 as a result of the
Guangdong and Hong Kong governments’ joint emissions control efforts, which began in
2003 [16].
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Figure 3. Percentage changes of NO,, between 2005 and 2019 (a), between 2005 and 2020 (b), and
during the COVID-19 pandemic (c).

A spatial autocorrelation among the NO; pollution of these Chinese cities can be
verified. We then calculated the Moran’s I value of annual mean NO, levels at the city level
for robustness check using ArcGIS 10.8 software. As shown in Figure 4, the results indicated
that the global Moran’s I values during the sample period were statistically significant and
larger than zero (p-value < 0.05 at the 95% confidence level), indicating that NO, pollution
exhibits a significant positive spatial autocorrelation every year.

0.20

0.85 /
L
\O
0.80

~/

o

Global Moran's | values

0.65
2005 2007 2009 2011 2013 2015 2017 2019
Year

Figure 4. Global Moran’s I values of NO, from 2005 to 2020.
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Next, the local Moran’s I in 2005, 2010, 2015, and 2020 were calculated. The LISA
cluster maps in 2005, 2010, 2015, and 2020 (the end of each Five-Year Plan period) are
depicted in Figure 5. It was discovered that the high—high cluster regions in these years
were located in the North China Plain and the Yangtze River Delta. The high-high cluster
of NO, pollution appeared in Pearl River Delta only in 2005. The low—low cluster regions of
NO; pollution were mainly located in western China and northeastern China. Additionally,
it is noted that the low—low cluster regions narrowed from 2005 to 2020.

N N
A 2005 A 2010
Not Significant Not Significant
High-High Cluster High-High Cluster
High-Low Outlier High-Low Outlier
Low-High Outlier Low-High Outlier
Low-Low Cluster Low-Low Cluster
0 250 5001000 0250 5001000
A 2015 A 2020
Not Significant Not Significant
High-High Cluster High-High Cluster
High-Low Outlier High-Low Outlier
Low-High Outlier Low-High Outlier
Low-Low Cluster Low-Low Cluster
0 00 \-)::E;“ 0 250 500 t‘\if)v

Figure 5. LISA cluster maps of annual mean NO, in 2005, 2010, 2015, and 2020.

3.2. Regression Results

We selected eight important socio-economic and natural independent variables for this
study: namely, GDP per capita, population density, ratio of the tertiary to the secondary
industry, foreign direct investment, temperature, wind, pressure, and humidity. The
hypothesized spatio-temporal relationships between NO; pollution and the independent
variables are demonstrated with an N*T estimated coefficient matrix. Otherwise, such
variations may be averaged incorrectly in a global model (e.g., OLS). Hence, the GTWR is
able to capture the spatio-temporal heterogeneous impacts of these explanatory variables
locally on NO, pollution in each city.

Table 2 presents the estimation results of four models, namely, OLS, TWR, GWR, and
GTWR. We find that the GTWR model has the highest R? value (0.904) compared with
that of GWR (0.879), TWR (0.804), and OLS (0.776), indicating that the GTWR model has
the highest explanatory power. Additionally, the GTWR model has the lowest AICc value
(170.898) and the residual sum of squares (218.057) among these four models, also showing
that the GTWR model is the best fitted compared to the other models in terms of these
goodness-of-fit statistics. In general, the GTWR models might be suitable for analyzing n
the spatial and temporal variations of the influencing factors of NO, pollution in this study.
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Table 2. Comparison of the goodness of fit statistics for the four models.

OLS TWR GWR GTWR
Bandwidth 0.173 0.154 0.115
RSS 518.165 440.587 249.372 218.057
AlCc 3229.014 2692.45 570.299 170.898
R? 0.776 0.804 0.879 0.904
Adjusted R? 0.774 0.803 0.877 0.903
Spatio-temporal Distance Ratio 0.373

Given the geographical disparities and temporal trends in NO, pollution, natural
geographic conditions, and socio-economic factors prevalent in all Chinese prefecture-level
cities, there are apparent spatial and temporal variances in the effects of each explanatory
variable on NO, VCDs. As a result, the GTWR model was developed to examine the impacts
of relevant factors on NO; pollution in each city at different times. Table 3 summarizes the
descriptive statistics for the estimated coefficients of the GTWR model (i.e., mean, median,
minimum (Min), and maximum (Max)).

Table 3. Descriptive statistics for GTWR regression coefficients of influencing factors.

Variable Mean Median Min Max
LnFDI 0.021 0.022 —0.022 0.072
LnPD 0.611 0.620 0.211 0.920

LnGDPPC 0.221 0.215 —0.143 0.532
LnTSRatio —0.222 —0.220 —0.410 0.150

LnTemp —1.094 —0.987 —3.484 2.557
LnPres 2.711 2.059 —1.945 9.210
LnWS —-0.191 —-0.173 —2918 1.328

LnHumi —2.100 —2.387 —4.564 2.606

Intercept —14.246 —10.576 —37.875 7.972

Overall, GDP per capita, population density, foreign direct investment, and air pres-
sure are positively correlated with NO; pollution. In contrast, the ratio of the tertiary to
the secondary industry, temperature, wind speed, and relative humidity are negatively
correlated with NO; pollution. This means that the increases in GDP per capita, population
density, and foreign direct investment exacerbate NO; pollution in most cities. A similar
finding also applies to the air pressure variable. By contrast, increasing the ratio of the
tertiary to the secondary industry or warmer, windier, or more humid climates could reduce
NO;)_ VCDs.

Figures 6 and 7 depict the temporal and spatial variations in the coefficients of the
explanatory factors in the estimated results of the GTWR model from 2005 to 2019. As illus-
trated in Figure 6, most GDP per capita coefficients are positive, with only a few negative
coefficients. GDP per capita is generally used to indicate the economic development level.
It is linked because it generates a large amount of NO, emissions due to the raw economic
development pattern typically adopted in the early period. Meanwhile, the GDP per capita
coefficients in these cities from southern and northwestern China are the highest, indicating
that increasing GDP per capita in these cities can increase NO, pollution dramatically. On
the contrary, the northeastern and North China Plain cities have the lowest GDP per capita
coefficients. We can conclude that the GDP per capita coefficients trend gets smaller as time
increases from a temporal perspective. This reflects that the local economy has begun to
intensify, allowing for a drop in NO, pollution per unit of GDP per capita.

All coefficients of the population density variable are observed to be positive. This
is because the urban population growth will increase energy consumption, resulting in
increased NO; emissions. As can be seen, population density expansion plays a crucial
role in improving local NO; pollution in northern cities of China, notably in the northeast.
The cities with the lowest coefficients, however, are located in southern and eastern China.
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From a temporal perspective, the effect of population density on NO, pollution became
stronger in the early study period and then turned smaller in most cities across the country,
demonstrating that people have become more environmentally friendly and green in energy

consumption in recent years.

Parameters of foreign
direct investment (FDI) o ’

B -0.022-0.000 [] 0.020~0.025

[ 0.000~0.005 [ 0.025~0.030 e/
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Cities in northeastern China and northwestern China had the most significant TSRatio
coefficients. The TSRatio variable of Hebei, Henan, Shandong, Jiangsu, Yunnan, Guangxi,
and Hainan cities is negatively correlated and NO; pollution. NOx emitted by the tertiary
industry is mainly from service and transportation, and the industrial NOy emission comes
from the secondary industry. The negative coefficients suggest that increasing the shares of
the tertiary industry may contribute to reducing NO, pollution. From a temporal view, we
notice that the coefficients in eastern China and northeastern China decreased from 2005
to 2020. However, in western China and central China, their coefficients were increasing.
We can infer that the contribution of services and transportation to NO; pollution is
more significant than the increase in pollution levels caused by the secondary industry
between 2005 and 2020. On the other hand, this also reflects that most cities in China have
significantly improved their capacity to reduce industrial NOy emissions in recent years.

Most positive coefficients of foreign direct investment are concentrated in eastern
and central China. Since foreign direct investment can bring advanced technologies from
industrialized countries, it can help improve urban air quality to a certain extent. However,
the GTWR model results indicate that changes in foreign direct investment have a negligible
influence on NO, pollution. Additionally, it can be observed from the time dimension
perspective that the effect of foreign direct investment decreases with time for most cities.

As shown in Figure 7, meteorological variables, including temperature, ambient
air pressure, wind speed, and relative humidity, are also strongly correlated with the
tropospheric NO, VCDs in various cities. Generally, increasing temperature accelerates
photochemical reactions and decreases the atmospheric lifetime of NO,; increasing relative
humidity reduces tropospheric NO, by increasing the rate of NOx conversion to secondary
aerosols; wind speed affects the rate of pollution diffusion and dilution in the atmosphere;
and increasing air pressure increases NO; levels by improving atmospheric stability. From
Figure 7, we find that the GTWR model results present a positive association between air
pressure and NO,. On the other hand, increasing temperature, wind speed, and humidity
can help cities alleviate NO, pollution.

Additionally, we normalized each explanatory variable to examine the variable’s
contribution to NO, pollution. Table 4 summarizes the estimated coefficients for each
explanatory variable after standardization. We compared the mean and median values of
the variables’ coefficients and discovered that population density had the highest positive
coefficients, 0.609 (mean) and 0.611 (median). On the other hand, humidity has the most
significant negative coefficients, —0.375 (mean) and —0.426 (median). As a result, we
quantified the contribution of each variable to NO; pollution by ranking them according to
the absolute magnitude of their coefficients: population density (0.609), humidity (—0.375),
GDP per capita (0.210), air pressure (0.193), temperature (—0.189), the ratio of the tertiary
to the secondary industry (—0.141), foreign investment (0.066), and wind speed (—0.058).

Table 4. Descriptive statistics for standardized coefficients of influencing factors.

Variable Mean Median Min Max
LnFDI 0.066 0.069 —0.070 0.228
LnPD 0.609 0.611 0.229 0.998

LnGDPPC 0.210 0.216 —0.686 0.769
LnTSRatio —0.141 —0.139 —0.260 0.097

LnTemp —0.189 —0.170 —0.601 0.437
LnPres 0.193 0.146 —0.138 0.999
LnWS —0.058 —0.052 —0.882 0.401

LnHumi —0.375 —0.426 —0.814 0.465

4. Conclusions

This study explored the spatial and temporal variations of NO, pollution in the
prefecture-level city from 2005 to 2020, covering the 11th, 12th, and 13th Five-Year Plan
periods. The most polluting cities were located in the North China Plain. NO, VCDs in
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more than half of cities in 2020 was lower than that in 2005. In addition, 86.2% of Chinese
cities experienced a rapid reduction in the NO, VCDs in February and March of 2020 due
to the COVID-19 pandemic. It indicates that both the NO, reduction strategies and the
COVID-19 pandemic have led to the great NO; reduction in the 13th Five-Year Plan. The
global Moran’s I results suggested that NO, pollution in Chinese cities was highly spatially
clustered. The local Moran’s [ results indicated that high—high NO, polluted cities were
located in the North China Plain regions while the low—-low cities were in western China
and northeastern China.

Meanwhile, the results obtained from the GTWR model analysis allow us to bring the
following policy insights. First, the high-density population in cities is not conducive to
reducing NO, pollution, especially in the cities in the northwest and northeast. Therefore,
appropriate adjustment of population size can help reduce air pollution. Meanwhile, people
need to be encouraged to use more clean energy and raise environmental awareness of
energy-saving and conservation. Secondly, although GDP per capita is positively correlated
with NO; pollution, the coefficient of GDP per capita has been gradually decreasing in
recent years, indicating that NO, pollution gradually starts to reduce as income increases.
Finally, if the ratio of the tertiary to the secondary industry increases, it can effectively
reduce NO, pollution, especially in the North China Plain and the Yangtze River Delta. It
can achieve a good effect on alleviating air pollution.

However, this study still has limitations that can be solved in future work. For example,
the satellite observed NO, data used in this study are the tropospheric NO, vertical column
densities products, which have a certain non-linear relationship with the ground-level NO,
concentrations. Future work needs to transform tropospheric NO, column concentrations
to ground-level NO; concentrations with some specific technical means for further analyses
and discussions. In addition, more accurate socio-economic data could be used to replace
the data from traditional yearbooks.

Author Contributions: Conceptualization, Y.C. and L.J.; Data curation, H.Z. and Q.H.; Methodology,
L.J. and Y.C,; Visualization, H.Z. and Y.C.; Writing—original draft and formal analysis, Y.C. and L.J.;
Writing—review and editing, L.J. and Y.D.; resources, Y.D. and L.Q. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Humanities and Social Science project of Ministry of
Education of China (20YJCZHO014), the National Natural Science Foundation of China (42101326),
the Fundamental Research Funds for the Central Universities (B220201008), the project(C) of Qian-
jiang Talent Plan of Zhejiang Province, China (QJC1902005), and the Postdoctoral Fund of China
(2021M703298).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Richter, A.; Burrows, J.P.; Nusz, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from
space. Nature 2005, 437, 129-132. [CrossRef] [PubMed]

2. Cooper, M.J.; Martin, R.V.; Hammer, M.S; Levelt, PE,; Veefkind, P.; Lamsal, L.N.; Krotkov, N.A.; Brook, J.R.; McLinden, C.A.
Global fine-scale changes in ambient NO, during COVID-19 lockdowns. Nature 2022, 601, 380-387. [CrossRef] [PubMed]

3.  Cui, Y; Zhang, W.; Bao, H.; Wang, C.; Cai, W.; Yu, J.; Streets, D.G. Spatiotemporal dynamics of nitrogen dioxide pollution and
urban development: Satellite observations over China, 2005-2016. Resour. Conserv. Recycl. 2019, 142, 59-68. [CrossRef]

4.  Huang, S,; Li, H.; Wang, M.; Qian, Y.; Steenland, K.; Caudle, WM.; Liu, Y.; Sarnat, J.; Papatheodorou, S.; Shi, L. Long-term
exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2021, 776, 145968.
[CrossRef]

5. Zhang, Q.; Geng, G.; Wang, S.; Richter, A.; He, K.B. Satellite remote sensing of changes in NOy emissions over China during
1996-2010. Chin. Sci. Bull. 2012, 57, 2857-2864. [CrossRef]

6. Li, K;Jacob, D.J,; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A two-pollutant strategy for improving
ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906-910. [CrossRef]

7. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015.


http://doi.org/10.1038/nature04092
http://www.ncbi.nlm.nih.gov/pubmed/16136141
http://doi.org/10.1038/s41586-021-04229-0
http://www.ncbi.nlm.nih.gov/pubmed/35046607
http://doi.org/10.1016/j.resconrec.2018.11.015
http://doi.org/10.1016/j.scitotenv.2021.145968
http://doi.org/10.1007/s11434-012-5015-4
http://doi.org/10.1038/s41561-019-0464-x

Remote Sens. 2022, 14, 3487 14 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Persello, C.; Wegner, ].D.; Hansch, R.; Tuia, D.; Ghamisi, P.; Koeva, M.; Camps-Valls, G. Deep Learning and Earth Observation to
Support the Sustainable Development Goals: Current Approaches, Open Challenges, and Future Opportunities. IEEE Geosci.
Remote Sens. Mag. 2022, 10, 172-200. [CrossRef]

Fu, B.; Wang, S.; Zhang, J.; Hou, Z; Li, ]. Unravelling the complexity in achieving the 17 sustainable-development goals. Natl. Sci.
Rev. 2019, 6, 386-388. [CrossRef]

Streets, D.G.; Canty, T.; Carmichael, G.R.; de Foy, B.; Dickerson, R.R.; Duncan, B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K,;
Houyoux, M.R.; et al. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 2013, 77,
1011-1042. [CrossRef]

Zhang, L.; Lee, C.S.; Zhang, R.; Chen, L. Spatial and temporal evaluation of long term trend (2005-2014) of OMI retrieved NO,
and SO, concentrations in Henan Province, China. Atmos. Environ. 2017, 154, 151-166. [CrossRef]

Cui, Y,; Jiang, L.; Zhang, W.; Bao, H.; Geng, B.; He, Q.; Zhang, L.; Streets, D.G. Evaluation of China’s Environmental Pressures
Based on Satellite NO, Observation and the Extended STIRPAT Model. Int. . Environ. Res. Public Health 2019, 16, 1487. [CrossRef]
[PubMed]

Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W,; et al. Drivers of improved PM, 5
air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463-24469. [CrossRef] [PubMed]

Miiller, L.; Erbertseder, T.; Taubenbock, H. Tropospheric NO,: Explorative analyses of spatial variability and impact factors.
Remote Sens. Environ. 2022, 270, 112839. [CrossRef]

Wang, C.; Wang, T.; Wang, P. The Spatial-Temporal Variation of Tropospheric NO, over China during 2005 to 2018. Atmosphere
2019, 10, 444. [CrossRef]

Huang, J.; Zhou, C.; Lee, X;; Bao, Y.; Zhao, X.; Fung, J.; Richter, A; Liu, X.; Zheng, Y. The effects of rapid urbanization on the
levels in tropospheric nitrogen dioxide and ozone over East China. Atmos. Environ. 2013, 77, 558-567. [CrossRef]

Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, PK.; Boersma, K.F.; Veefkind, J.P.; Gleason,
J.E; Pickering, K.E. A new stratospheric and tropospheric NO, retrieval algorithm for nadir-viewing satellite instruments:
Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607-2626. [CrossRef]

Lin, J.T.; McElroy, M.B. Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese
economic downturn. Atmos. Chem. Phys. 2011, 11, 8171-8188. [CrossRef]

Bichler, R.; Bittner, M. Comparison between economic growth and satellite-based measurements of NO, pollution over northern
Italy. Atmos. Environ. 2022, 272, 118948. [CrossRef]

Mijling, B.; van der, A.R.J.; Boersma, K.F,; Van Roozendael, M.; De Smedt, I.; Kelder, H.M. Reductions of NO, detected from space
during the 2008 Beijing Olympic Games. Geophys. Res. Lett. 2009, 36, L13801. [CrossRef]

Wang, Y.; Liao, H. Effect of emission control measures on ozone concentrations in Hangzhou during G20 meeting in 2016.
Chemosphere 2020, 261, 127729. [CrossRef]

Feng, S.; Jiang, F; Wang, H.; Wang, H.; Ju, W.; Shen, Y.; Zheng, Y.; Wu, Z; Ding, A. NOx Emission Changes Over China During the
COVID-19 Epidemic Inferred from Surface NO, Observations. Geophys. Res. Lett. 2020, 47, €2020GL090080. [CrossRef] [PubMed]
Cao, H.; Han, L. The short-term impact of the COVID-19 epidemic on socioeconomic activities in China based on the OMI-NO,
data. Environ. Sci. Pollut. Res. 2022, 29, 21682-21691. [CrossRef] [PubMed]

Luo, Z.; Xu, H.; Zhang, Z.; Zheng, S.; Liu, H. Year-round changes in tropospheric nitrogen dioxide caused by COVID-19 in China
using satellite observation. J. Environ. Sci. 2022, in press. [CrossRef]

Liu, Q.; Malarvizhi, A.S.; Liu, W.; Xu, H.; Harris, J.T.; Yang, J.; Duffy, D.Q,; Little, M.M.; Sha, D.; Lan, H.; et al. Spatiotemporal
changes in global nitrogen dioxide emission due to COVID-19 mitigation policies. Sci. Total Environ. 2021, 776, 146027. [CrossRef]
Liu, F; Zhang, Q.].; van der, A.R.; Zheng, B.; Tong, D.; Yan, L.; Zheng, Y.; He, K. Recent reduction in NOyx emissions over China:
Synthesis of satellite observations and emission inventories. Environ. Res. Lett. 2016, 11, 114002. [CrossRef]

Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan,
B.N.; et al. Aura OMI observations of regional SO, and NO, pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16,
4605-4629. [CrossRef]

Cui, Y,; Lin, J.; Song, C.; Liu, M,; Yan, Y.; Xu, Y.; Huang, B. Rapid growth in nitrogen dioxide pollution over Western China,
2005-2013. Atmos. Chem. Phys. 2016, 16, 6207-6221. [CrossRef]

Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house
prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383—401. [CrossRef]

Dong, F,; Li, J.; Zhang, S.; Wang, Y.; Sun, Z. Sensitivity analysis and spatial-temporal heterogeneity of CO, emission intensity:
Evidence from China. Resour. Conserv. Recycl. 2019, 150, 104398. [CrossRef]

Li, T; Shen, H.; Yuan, Q.; Zhang, L. Geographically and temporally weighted neural networks for satellite-based mapping of
ground-level PM; 5. ISPRS ]. Photogramm. Remote Sens. 2020, 167, 178-188. [CrossRef]

Qin, K,; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO, Concentrations over Central-Eastern
China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [CrossRef]
Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal
differentiation and varying importance. Resour. Conserv. Recycl. 2021, 168, 105477. [CrossRef]


http://doi.org/10.1109/MGRS.2021.3136100
http://doi.org/10.1093/nsr/nwz038
http://doi.org/10.1016/j.atmosenv.2013.05.051
http://doi.org/10.1016/j.atmosenv.2016.11.067
http://doi.org/10.3390/ijerph16091487
http://www.ncbi.nlm.nih.gov/pubmed/31035528
http://doi.org/10.1073/pnas.1907956116
http://www.ncbi.nlm.nih.gov/pubmed/31740599
http://doi.org/10.1016/j.rse.2021.112839
http://doi.org/10.3390/atmos10080444
http://doi.org/10.1016/j.atmosenv.2013.05.030
http://doi.org/10.5194/amt-6-2607-2013
http://doi.org/10.5194/acp-11-8171-2011
http://doi.org/10.1016/j.atmosenv.2022.118948
http://doi.org/10.1029/2009GL038943
http://doi.org/10.1016/j.chemosphere.2020.127729
http://doi.org/10.1029/2020GL090080
http://www.ncbi.nlm.nih.gov/pubmed/33041389
http://doi.org/10.1007/s11356-021-17415-4
http://www.ncbi.nlm.nih.gov/pubmed/34767168
http://doi.org/10.1016/j.jes.2022.01.013
http://doi.org/10.1016/j.scitotenv.2021.146027
http://doi.org/10.1088/1748-9326/11/11/114002
http://doi.org/10.5194/acp-16-4605-2016
http://doi.org/10.5194/acp-16-6207-2016
http://doi.org/10.1080/13658810802672469
http://doi.org/10.1016/j.resconrec.2019.06.032
http://doi.org/10.1016/j.isprsjprs.2020.06.019
http://doi.org/10.3390/rs9090950
http://doi.org/10.1016/j.resconrec.2021.105477

Remote Sens. 2022, 14, 3487 15 of 15

34.

35.

36.

37.

38.

Boersma, K.F; Eskes, H.].; Dirksen, R.J.; van der, A.R.].; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.L.; Sneep, M.; Claas, J.;
et al. An improved tropospheric NO, column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011,
4,1905-1928. [CrossRef]

Boersma, K.F.,; Eskes, H.].; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J H.G.M.; Zara, M.; Peters, E.; Van
Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO; retrievals: Results from the quality
assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 2018, 11, 6651-6678. [CrossRef]

Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93-115. [CrossRef]

Wu, B,; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices.
Int. . Geogr. Inf. Sci. 2014, 28, 1186-1204. [CrossRef]

Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A Geographically and Temporally Weighted Regression Model for
Ground-Level PM, 5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 2016, 8, 262. [CrossRef]


http://doi.org/10.5194/amt-4-1905-2011
http://doi.org/10.5194/amt-11-6651-2018
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1080/13658816.2013.878463
http://doi.org/10.3390/rs8030262

	Introduction 
	Materials and Methods 
	Data Description 
	Methodology 

	Results and Discussions 
	Analysis of Spatio-Temporal Variation of NO2 Pollution 
	Regression Results 

	Conclusions 
	References

