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Abstract: Numerous individual tree detection (ITD) methods have been developed for use with
airborne laser scanning (ALS) data to provide tree-scale forest inventories across large spatial extents.
Despite the growing number of methods, relatively few have been comparatively assessed using a
single benchmark forest inventory validation dataset, limiting their operational application. In this
study, we assessed seven ITD methods, representing three common approaches (point-cloud-based,
raster-based, hybrid), across coniferous forest stands with diverse structure and composition to
understand how ITD and height measurement accuracy vary with method, input parameters and
data, and stand density. There was little variability in accuracy between the ITD methods where the
average F-score and standard deviation (±SD) were 0.47 ± 0.03 using a lower pulse density ALS
dataset with an average of 8 pulses per square meter (ppm2) and 0.50 ± 0.02 using a higher pulse
density ALS dataset with an average of 22 ppm2. Using higher ALS pulse density data produced
higher ITD accuracies (F-score increase of 10–13%) in some of the methods versus more modest gains
in other methods (F-score increase of 1–3%). Omission errors were strongly related with stand density
and largely consisted of suppressed trees underneath the dominant canopy. Simple canopy height
model (CHM)-based methods that utilized fixed-size local maximum filters had the lowest omission
errors for trees across all canopy positions. ITD accuracy had large intra-method variation depending
on input parameters; however, the highest accuracies were obtained when parameters such as search
window size and spacing thresholds were equal to or less than the average crown diameter of trees in
the study area. All ITD methods produced height measurements for the detected trees that had low
RMSE (<1.1 m) and bias (<0.5 m). Overall, the results from this study may help guide end-users with
ITD method application and highlight future ITD method improvements.

Keywords: airborne laser scanning; individual tree detection; individual tree inventory; LiDAR

1. Introduction

Accurate forest inventories are necessary for sustainable forest management and
supply chain planning. For more than a century, manually collected subsampling of tree
conditions across a landscape has driven forest inventory. These conventional methods are
time- and accuracy-limited [1] and are often cost-prohibitive to execute at large scales [2].
Numerous methods utilizing airborne scanning light detection and ranging (LiDAR),
commonly referred to as airborne laser scanning (ALS), have been developed to predict
stand-level forest inventories and imputations of population-level summaries, and detect
individual tree locations at various spatial extents [3–6]. The segmentation of single-trees
from ALS is often referred to as individual tree detection (ITD) and multiple methods
have been developed and broadly considered as potential tools for providing near-census
forest inventories [7–9], improving growth and yield modeling [10–12], monitoring tree-
scale growth and mortality [13], and optimizing harvest planning and operations [14]. A
limited number of studies have assessed different ITD method approaches using a single

Remote Sens. 2022, 14, 3480. https://doi.org/10.3390/rs14143480 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14143480
https://doi.org/10.3390/rs14143480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1286-3770
https://orcid.org/0000-0002-0400-0716
https://orcid.org/0000-0003-0071-9958
https://doi.org/10.3390/rs14143480
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14143480?type=check_update&version=1


Remote Sens. 2022, 14, 3480 2 of 19

benchmark dataset [15–18]. The study by [17] is notable as it evaluated eight ITD methods
using high-density (5–121 ppm2) ALS data in the Alps. However, cross-comparison of ITD
methods to benchmark datasets associated with different forest structures remains relevant,
especially given the rapid advances in ALS technology, computational power, and machine
learning.

Individual tree detection methods using ALS data can generally be grouped into
three major types based on what input data they use: point-cloud-based, raster-based, and
hybrid approaches. Point-cloud-based approaches identify individual trees using a variety
of methods that take advantage of tree crown shape and spacing (e.g., [19]) and vertical
and horizontal return density changes in the ALS point cloud (e.g., [20]). Raster-based
ITD methods rely on gridded data that provide summary information extracted from ALS
point clouds, such as minimum and maximum height of all returns within a grid cell.
Raster-based ITD methods typically use canopy height models (CHMs), which represent
the normalized height of non-ground objects in each grid cell. Many ITD methods that use
CHMs focus on techniques to find local maxima in the CHM, which are assumed to be
treetops [21–24]. Hybrid ITD approaches utilize gridded point cloud data (e.g., CHMs) and
information extracted from the original point cloud to identify individual trees. In some
approaches, CHMs are used to initially identify trees/tree clusters and the point cloud is
used to further separate those clusters into individuals [9,25].

Numerous ITD approaches have been proposed and discussed throughout the litera-
ture in both formal and informal reviews [3,23,26–30]; however, there are a limited number
of method comparison and benchmark studies available and these have been predomi-
nantly focused on forests in Europe (e.g., [15–18,31]). Many of these comparison studies
have employed data ≥10 years old and have not assessed data from contemporary ALS
sensors. These prior studies found that regardless of ITD method, dominant trees (trees
in dominant and codominant canopy-height positions) have higher detection rates than
subdominant trees (trees in intermediate and suppressed canopy-height positions), owing
to smaller trees being occluded by the dominant forest canopy [32,33]. Some benchmarking
studies found that choice of method was the dominant factor of ITD accuracy [16], while
others found that stand density and structure were more important [17,31]. Furthermore,
ALS pulse density has been found to improve ITD accuracy in some studies [18,34] but
not others [16], with discrepancies potentially resulting from the sensor model, acquisition
flight parameters, and/or laser-scanning pattern [3,35].

While prior benchmarking has provided valuable comparison information on ITD
approaches, uncertainties remain for forests within North America (e.g., [4]), partly as
a result of advances in ALS technology and processing tools. In particular, there is an
outstanding need for testing and comparing ITD methods in forests with high tree species
diversity where crown shapes and structure vary significantly, like many forests found in
North America. Additionally, the effects of input-parameter selection and methodology
on the resulting accuracy are not well-understood. As different ITD methods become
incorporated into freely available processing tools and software (e.g., LidR [36], rLiDAR [24],
FUSION [37]), it is increasingly important to assess how the accuracy of these methods
compare with commercial products that may not provide the user with detailed descriptions
of the underlying methodologies (e.g., grey- or black-box methods) to help guide end-user
decisions and application.

The need for accurate, timely, and cost-effective forest inventory information has
continued to increase globally as end-users decide actions to meet objectives on forested
landscapes, and developers identify improvements to ITD methods. Therefore, the objective
of this study was to understand how ITD accuracy varies by method, input parameters,
and pulse density of the input ALS data across coniferous forest stands with diverse stand
structure and composition within the inter-mountain West, USA. Seven ITD methods,
representing three common approaches (point-cloud-based, raster-based, and hybrid),
were assessed for ITD and height measurement accuracy via comparison with a single
benchmark forest inventory dataset in north-central Idaho, USA. All methods were tested
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using a lower pulse density ALS dataset with an average of 8 pulses per square meter
(ppm2) and a higher pulse density ALS dataset with an average of 22 ppm2, and accuracies
were reported using a suite of standard metrics.

2. Materials and Methods
2.1. Study Area

This study was conducted in the University of Idaho Experimental Forest (UIEF),
which is located on the Palouse Range in north-central Idaho, USA (Figure 1). The UIEF is
a mixed-conifer temperate forest and dominant tree species include Pseudotsuga menziesii
(Mirb.) Franco var. glauca (Beissn.) Franco (Douglas fir), Abies grandis (Douglas ex D. Don)
Lindl. (grand fir), Thuja plicata Donn ex D. Don (western redcedar), and Larix occidentalis
Nutt. (western larch). Other species within the study area include Pinus ponderosa C.
Lawson var. scopulorum Engelm. (ponderosa pine), Pinus contorta Douglas ex Louden
(lodgepole pine), Pinus monticola var. minima Lemmon (western white pine), and Picea
engelmannii var. glabra Goodman (Engelmann spruce). The species within the study area
have high crown shape and structure diversity ranging from narrow, pyramid-like crowns
(e.g., Pseudotsuga menziesii, Larix occidentalis), to rounded cylindrical crowns (e.g., Pinus
ponderosa, Pinus contorta), to irregularly shaped crowns (e.g., Thuja plicata). The UIEF has a
diverse range of stand structures and composition (Figure 1) resulting from its multi-use
management for timber, research, and education purposes. Prior studies have used this
location to evaluate ITD and stand-level forest structural attributes due to the variability of
stand structure and species (e.g., [4,23,38,39]).
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Figure 1. Location of the University of Idaho Experimental Forest study area and field inventory plots
in north-central Idaho, USA. A Landsat 8 false color composite (red: B7, green: B5, blue: B4), acquired
26 July 2020, is used as background to highlight the variability of forest stands within the study
area. Pink-colored areas represent recently harvested areas and newly planted stands. Light-green
areas represent younger, more homogenous stands. Dark-green speckled areas represent older, more
heterogeneous stands.
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2.2. ALS Data and Preprocessing

Two ALS datasets were used in this study. The first ALS dataset was acquired across
the study area in the summer of 2018. These data were collected with a Teledyne Geospatial
Optec Galaxy PRIME sensor (Teledyne Geospatial, Toronto, ON, Canada) mounted on a
fixed-wing aircraft and collected under the guidance of the Teledyne Geospatial Swath-
TRAK™ software to achieve a 50% flight-line overlap with respect to the 60-degree sensor
field-of-view. SwathTRAK™ software uses plane pitch, roll, and yaw for optimization of
flight line efficiencies by varying the field-of-view to account for areas with highly variable
terrain. Elevation of the aircraft varied between 3550 and 4200 m above ground level and
flight lines alternated orientations while maintaining an average pulse density of 8 pulses
per square meter. The average per-pulse return rate over forested areas was two. These ALS
data were processed using GeoCue LP360 (GeoCue, Huntsville, AL, USA) and Terrasolid
TerraScan software (Terrasolid, Helsinki, Finland) and returns were classified as bare earth
and vegetation following the 2019 United States Geological Survey, 3D elevation program
(3DEP) specification [40] before being delivered as 1000 m2 tiles.

The second ALS dataset was acquired across the study area in the summer of 2021,
using a RIEGL VQ-1560II sensor (RIEGL, Horn, Austria) mounted on a fixed-wing aircraft
fitted with a gyro-stabilized mount. Elevation of the aircraft was maintained between 1700
and 1900 m above ground level and flight lines alternated orientations while maintaining
a 55% flight-line overlap with respect to a 58-degree sensor field-of-view. The average
pulse density was 22 pulses per square meter and the average per-pulse return rate over
forested areas was four. These ALS data were preprocessed by the supplier to normalize
laser intensity using the RIEGL RiPROCESS software, and returns were classified as bare
earth, vegetation, water, buildings, and noise before being delivered as 500 m2 tiles.

2.3. Field Validation Dataset

Sixty-seven 13 m radius forest inventory plots were established in the summer of 2020
following a stratified sampling design (Figure 1). The plot sampling strategy was designed
to capture the variation in structure and composition across the study area and was guided
by structural metrics derived from the ALS point clouds. All plots were precisely located
using a Triumph-2 global navigation system (JAVAD, San Jose, CA, USA) and Samsung
Galaxy tablet with a Rover pole. All trees > 1.5 m in height were stem-mapped using
azimuth and distance from plot center using a Vertex Laser Geo 360 (Haglof, Sweden). In
addition to location, each tree was measured for height, DBH, species, live/dead status,
and canopy position (i.e., dominant, codominant, intermediate, and suppressed). Canopy
position definitions were adapted from [41], where dominant trees receive light from
3–4 directions, codominant trees receive light from 1–2 directions, intermediate trees receive
light mainly from the top, and suppressed trees are entirely shaded and underneath the
stand canopy. Tree measurement summary statistics are presented in Table 1.

Table 1. Tree measurement summary statistics for the validation inventory plots.

Metric Minimum Maximum Median Mean SD

Tree Density (trees/ha) 18.8 1846.7 508.8 542.7 386.7
Basal Area (m2/ha) 0.4 111.6 31.3 31.9 23.0
DBH (cm) 5.1 137.2 19.1 23.2 14.6
Height (m) 6.1 40.9 14 15.9 7.6

2.4. Individual Tree Detection Methods

Seven ITD methods, representing three common approaches (point-cloud-based,
raster-based, hybrid), were assessed for individual tree detection and height measure-
ment accuracy. Each method can produce widely varying results depending on the input
data and parameters. To assess which parameter combinations were the most accurate, we
tested each method using both ALS datasets and multiple parameter inputs. The following
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sections describe the input data and parameters used for each method approach and Table 2
provides a summary of the method approaches. For a detailed description of each method,
the reader should consult each method’s associated citation.

Table 2. ITD method approaches tested in this study. CHM: canopy height model; SW: search
window.

Method ALS Pulse Density (ppm2) Input Parameters Total # of Method
Approaches

ForestView® 8 Default CHM and point cloud metrics 1
22 Default CHM and point cloud metrics 1

[19]
8 3 spacing thresholds 3

22 3 spacing thresholds 3

lidR LMF
8 2 CHM resolutions, 3 SW sizes, 2 SW shapes 12

22 3 CHM resolutions, 3 SW sizes, 2 SW shapes 18

rLiDAR LMF
8 2 CHM resolutions, 3 SW sizes, 1 SW shape 6

22 3 CHM resolutions, 3 SW sizes, 1 SW shape 9

SWA
8 2 CHM resolutions 2

22 3 CHM resolutions 3

VWF
8 2 CHM resolutions, 2 SW size algorithms 4

22 3 CHM resolutions, 2 SW size algorithms 6

Watershed
8 2 CHM resolutions 2

22 3 CHM resolutions 3

2.4.1. Point-Cloud-Based Approach

We tested a point-cloud-based approach developed by Li et al. [19]. This approach
segments the ALS point cloud in a top-to-bottom manner, starting with the highest return to
the lowest. Returns are segmented into individual trees by including and excluding returns
based on user-defined horizontal spacing thresholds, suggested to be approximately equal
to the average crown radius. The algorithm proceeds ‘down’ the tree from the highest
return by including points that fall within the user-defined horizontal spacing thresholds
and excluding those that fall outside. Once all points within the spacing threshold have
been classified, the segmented points are removed, and the method moves to the next
highest return in the point cloud. This method was assessed using both ALS datasets and
adaptive spacing thresholds of 0.75 m, 1.25 m, and 1.75 m for returns less than 15 m in
height and thresholds of 1.25 m, 1.75 m, and 2.25 m for returns greater than 15 m. These
thresholds are centered on the average crown diameter of dominant and codominant trees
on the Palouse Range [4].

2.4.2. Canopy-Height-Model-Based Approaches

Two of the assessed CHM-based methods employ local max filters (LMF) with fixed
radius moving search windows to locate individual trees. The ‘lmf’ function in the ‘lidR’
package [36] and the ‘FindTreesCHM’ function in the ‘rLiDAR’ package [42] were tested in
this paper. Both methods use a moving window of user-defined size to identify peaks in the
CHM, which are assumed to be treetops. The rLiDAR LMF uses a square search window
sized in pixels, whereas lidR LMF can use either a circular or square search window sized in
map units. The lidR LMF method was assessed using circular and square search windows
of 1.5 m, 2.5 m, and 3.5 m. The rLiDAR LMF method was assessed using square search
windows of 1.5 m, 2.5 m, and 3.5 m. These search window sizes are centered on the average
crown diameter of dominant and codominant trees on the Palouse Range [20].

A CHM-based method that uses a local max filter with a variable radius search window
filter (VWF), developed by Popescu and Wynne [22], was also tested. This method was
implemented using the ‘ForestTools’ R package in R [43]. This method passes a series
of local max filters over the CHM, where the size of each local max filter is based upon
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the allometric relationship between tree height and tree crown diameter. We tested two
allometric equations, the default in the ‘ForestTools’ package (crown diameter = (0.06 ×
height + 0.5) × 2) and an allometric relationship developed for the Palouse Range (crown
diameter = 0.14 × height + 2.56) [4].

Spatial wavelet analysis (SWA), a method that has been applied in prior studies to
identify individual trees using ALS-derived CHMs [4,23], was also tested. SWA has been
widely applied to aerial photography and other imagery to assess crown widths across a
range of scales from individual shrubs to large trees; the method is described in detail in the
literature [44–48]. SWA passes a series of sequentially larger two-dimensional Mexican hat
wavelet functions over the input CHM. Mexican hat wavelets are used as they are similar
in shape to a conifer crown in a CHM. The maximum wavelet coefficient that is associated
with a given step-size is then assumed to equal the crown width. After all wavelet sizes
have been passed over the CHM, location, diameter, and height can be extracted from
the CHM using the retained wavelets. We tested wavelet sizes from 1 to 8 m in 0.1 m
increments.

We also tested a watershed segmentation method [49] implemented using the ‘TreeSeg’
program in FUSION [37]. Watershed algorithms invert CHMs so that trees/tree clusters
appear as basins. Conceptually, these basins are ‘filled’ with water and edges of each basin
are established where water overflows into the next basin. Pixels within each basin are
assigned the same identification code and are assumed to be an individual tree or tree
cluster. Location and height for each tree/tree cluster can then be extracted from each
uniquely identified basin.

All CHM-based methods were assessed using 10 cm, 25 cm, and 50 cm resolution
CHMs derived from the 22 ppm2 ALS dataset and 25 cm and 50 cm CHMs derived from the
8 ppm2 ALS dataset. The 8 ppm2 ALS dataset had insufficient pulse density for producing
10 cm resolution CHMs, and thus only 25 cm and 50 cm CHMs were used. All CHMs
were generated using pit-free methodology detailed in Khosravipour et al. [50]. While
prior studies have found the pit-free CHM methodology to be superior to other methods in
coniferous forests (e.g., [24,51]), other methods including Gaussian smoothing may produce
better results in certain instances.

2.4.3. Hybrid Approach

A hybrid approach, the ForestView® ITD algorithm developed by Northwest Man-
agement Incorporated (NMI, Moscow, Idaho) was also assessed [8,9]. This approach
iterates through several CHM-based methods, similar to watershed segmentation and local
max filtering, to detect peaks in the CHM, which are assumed to be treetops. To refine
individual tree detection and derive tree attribute information, ForestView® calculates
structure-related metrics (e.g., height percentiles, stratified return densities, crown shape)
from the ALS point cloud for each tree. Tree attributes for each detected tree are modeled
using the ALS-derived structural metrics, LiDAR intensity values, and an internal database
of field and ALS-measured stem mapped trees, each with species, height, DBH, crown con-
dition, and taper information. Along with location and height, ForestView® also provides
individual tree DBH, volume, species, and live/dead status.

2.5. Matching ALS Detected and Reference Trees

An automated approach was used to match ITD method detected trees and reference
trees in the field validation dataset. For each ALS detected tree, a candidate reference tree
list was generated by selecting reference trees within 2.5 m of the detected tree, a distance
that represents the average crown diameter of dominant and codominant trees on the
Palouse Range [4]. The Euclidean distance and difference in height between each reference
tree in the list and the ALS detected tree were calculated. Reference trees in the candidate
list were removed from consideration if their height difference with the ALS detected tree
was greater than 2 m. This height difference threshold corresponds to the observed RMSE in
height between ALS estimated and field measured conifers [52]. The ALS detected tree was



Remote Sens. 2022, 14, 3480 7 of 19

recorded as a commission error if no reference trees met the height difference criteria. The
reference tree with the smallest combined error (Euclidean distance and height difference)
was matched with the ALS detected tree. Given that each of the distance and height can be
considered independent errors, the combined error was calculated as the square root of the
sum of the squared errors: i.e., ∆k =

√
[(∆k1)2 + (∆k2)2] following standard approaches [53].

In cases where multiple reference trees had the same combined error, one was randomly
selected to be matched with the detected tree. Reference trees that were not matched with
ALS detected trees were recorded as omission errors.

2.6. Accuracy Assessment

Individual tree detection accuracy for each of the methods was assessed using standard
metrics that quantify commission and omission errors. Specifically, recall (r), precision (p),
and F-score [19] were used:

r =
TP

TP + FN
(1)

p =
TP

TP + FP
(2)

F− score = 2× r× p
r + p

(3)

where TP = correct detection, FN = false negative (omission error, or trees missed by the
ITD method), and FP = false positive (commission error, or trees identified by the ITD
method but which do not exist). Recall is inversely related to omission error, precision
is inversely related to commission error, and F-score is the harmonic mean of recall and
precision. All three metrics range from 0 to 1, with values closer to 1 representing higher
accuracy.

To quantify the effects of forest structure on method accuracy, the relationships be-
tween accuracy metrics and common stand density metrics were evaluated using linear
regression. Standard metrics and coefficients including regression slope, coefficient of
determination (r2), and regression significance (p-value) were reported. Stand density
index [54] and other metrics used in this analysis are presented in Table 3.

Table 3. Canopy cover and stand density metric descriptions and equations.

Metric Description Equation

CC ALS-derived canopy cover # ALS f irst returns>1.37 m
Total # ALS f irst returns

TPH Trees per hectare N
A

BA Basal area (m2) per hectare ∑i(0.00007854×DBH2)
A

SDI Stand density index TPH ×
(

qmd
25.4

)1.605

N = number of trees, A = area of plot (ha), DBH = diameter at breast height (cm), qmd = quadratic mean diameter (cm).

Regression-based equivalence tests [55] were used to assess the accuracy of tree height
derived from each ITD method. These tests evaluate regression slope and intercept equality
between paired sets of data. Intercept equality implies that the mean of one dataset is not
significantly different than the mean of another dataset. Slope equality implies that the
regression slope is not significantly different than 1. Following similar studies [4,8,9,55],
the region of equality was set to ±25% of the mean for the intercept and ±25% for the slope.
The null hypothesis of dissimilarity is rejected if the region of equivalence contains two
joint one-sided 95% confidence intervals for the intercept or slope. Additional accuracy
measures, including average root mean square error (RMSE) and mean bias were calculated
between ALS-derived and reference tree height measurements as follows:

RMSE =

√
∑n

i=1 (x̂− xi)
2

n
(4)



Remote Sens. 2022, 14, 3480 8 of 19

Mean Bias =
∑n

i=1(x̂− xi)

n
(5)

where (x̂) are the predicted values, xi are the observed values, and n is the number of
observations. All statistical analyses were conducted in R [56], and the ‘equivalence’ R
package [57] was used to conduct the regression-based equivalence tests.

3. Results
3.1. Individual Tree Detection Accuracy

The individual tree detection results are presented in Table 4. Across all method
approaches, recall had an average (±SD) value of 0.38 ± 0.07 using the 8 ppm2 ALS data
and an average of 0.41 ± 0.1 using the 22 ppm2 ALS data. Precision was higher with an
average value of 0.66 ± 0.1 using the 8 ppm2 ALS data and an average of 0.65 ± 0.1 using
the 22 ppm2 ALS data.

Table 4. ITD accuracy for all method approaches in terms of recall, precision, and F-score. The highest
accuracy approaches for each ITD method are bolded and filled in grey. CHM = canopy height model,
SW = search window.

Method and Input Parameters
8 ppm2 ALS Data 22 ppm2 ALS Data

Recall Precision F-Score Recall Precision F-Score

ForestView®

Default CHM and point cloud metrics 0.39 0.58 0.45 0.47 0.62 0.50
[19]
Spacing thresh: 0.75 m 0.46 0.55 0.48 0.46 0.56 0.47
Spacing thresh: 1.25 m 0.40 0.67 0.48 0.41 0.64 0.47
Spacing thresh: 1.75 m 0.35 0.73 0.46 0.37 0.67 0.45

lidR LMF
CHM: 10 cm, SW: circular 1.5 m 0.55 0.44 0.45
CHM: 10 cm, SW: circular 2.5 m 0.46 0.66 0.51
CHM: 10 cm, SW: circular 3.5 m 0.40 0.71 0.48
CHM: 10 cm, SW: square 1.5 m 0.52 0.51 0.48
CHM: 10 cm, SW: square 2.5 m 0.43 0.69 0.50
CHM: 10 cm, SW: square 3.5 m 0.37 0.72 0.46
CHM: 25 cm, SW: circular 1.5 m 0.48 0.51 0.47 0.53 0.46 0.46
CHM: 25 cm, SW: circular 2.5 m 0.41 0.71 0.51 0.45 0.66 0.51
CHM: 25 cm, SW: circular 3.5 m 0.36 0.74 0.47 0.40 0.71 0.48
CHM: 25 cm, SW: square 1.5 m 0.45 0.61 0.50 0.48 0.58 0.49
CHM: 25 cm, SW: square 2.5 m 0.38 0.73 0.49 0.42 0.70 0.49
CHM: 25 cm, SW: square 3.5 m 0.33 0.76 0.44 0.36 0.71 0.44
CHM: 50 cm, SW: circular 1.5 m 0.47 0.54 0.48 0.50 0.60 0.52
CHM: 50 cm, SW: circular 2.5 m 0.41 0.69 0.50 0.44 0.71 0.52
CHM: 50 cm, SW: circular 3.5 m 0.36 0.73 0.47 0.40 0.73 0.49
CHM: 50 cm, SW: square 1.5 m 0.47 0.54 0.48 0.50 0.60 0.52
CHM: 50 cm, SW: square 2.5 m 0.39 0.71 0.50 0.43 0.71 0.51
CHM: 50 cm, SW: square 3.5 m 0.34 0.74 0.45 0.38 0.73 0.47
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Table 4. Cont.

Method and Input Parameters
8 ppm2 ALS Data 22 ppm2 ALS Data

Recall Precision F-Score Recall Precision F-Score

rLiDAR LMF
CHM: 10 cm, SW: square 1.5 m 0.44 0.58 0.49
CHM: 10 cm, SW: square 2.5 m 0.22 0.69 0.36
CHM: 10 cm, SW: square 3.5 m 0.13 0.71 0.24
CHM: 25 cm, SW: square 1.5 m 0.41 0.63 0.49 0.44 0.63 0.50
CHM: 25 cm, SW: square 2.5 m 0.28 0.72 0.42 0.28 0.70 0.41
CHM: 25 cm, SW: square 3.5 m 0.21 0.75 0.35 0.17 0.68 0.30
CHM: 50 cm, SW: square 1.5 m 0.45 0.55 0.48 0.50 0.61 0.52
CHM: 50 cm, SW: square 2.5 m 0.35 0.71 0.47 0.38 0.72 0.49
CHM: 50 cm, SW: square 3.5 m 0.25 0.74 0.39 0.25 0.70 0.39

SWA
CHM: 10 cm 0.39 0.71 0.49
CHM: 25 cm 0.33 0.68 0.42 0.38 0.70 0.47
CHM: 50 cm 0.27 0.68 0.38 0.34 0.71 0.43

VWF
CHM: 10 cm, SW: default function 0.44 0.67 0.49
CHM: 25 cm, SW: default function 0.39 0.72 0.49 0.44 0.67 0.49
CHM: 50 cm, SW: default function 0.39 0.71 0.49 0.43 0.71 0.50
CHM: 10 cm, SW: Palouse Range
function 0.33 0.71 0.42

CHM: 25 cm, SW: Palouse Range
function 0.31 0.77 0.42 0.34 0.70 0.42

CHM: 50 cm, SW: Palouse Range
function 0.31 0.76 0.42 0.34 0.73 0.42

Watershed
CHM: 10 cm 0.62 0.30 0.37
CHM: 25 cm 0.51 0.40 0.42 0.51 0.52 0.48
CHM: 50 cm 0.41 0.51 0.45 0.44 0.68 0.52

Across all method approaches, ITD accuracy in terms of F-score increased 2.6% on
average using the higher pulse density ALS data versus the lower pulse density ALS data.
ForestView®, SWA, and watershed methods benefited the most from higher pulse density
ALS data, with F-scores increasing over 10% on average. Methods including [19], lidR
LMF, rLiDAR LMF, and VWF benefitted the least from higher pulse density ALS data, with
F-scores increasing 1.2% on average.

The highest accuracy method approaches, in terms of F-score, are highlighted in Table 4.
Variation in accuracy among the top seven method approaches was low (8 ppm2 ALS data
F-score SD = 0.03 and 22 ppm2 ALS data F-score SD = 0.02). F-score ranged from 0.42 to
0.51 for the lower pulse density ALS data and ranged from 0.47 to 0.52 for the higher pulse
density data. The CHM-based fixed search window methods (lidR LMF and rLiDAR LMF)
were two of the highest accuracy methods for both the low and high pulse density ALS
datasets. These methods used search windows smaller than the average crown diameter
for the study area (i.e., <2.5 m). The most accurate CHM-based method approaches tested
using the 8 ppm2 ALS data used 25 cm CHMs whereas the most accurate approaches tested
using the 22 ppm2 ALS data used 50 cm CHMs. The observed differences in accuracy
between the different CHM resolutions were small (F-score difference of 0.01–0.02).

Omission errors, or missed trees, for all methods, regardless of ALS data, were pre-
dominately associated with intermediate and suppressed trees. The distributions of correct
detections and omissions or false negatives (FN) for the seven most accurate ITD method
approaches highlighted in Table 4 and derived from the 8 ppm2 and 22 ppm2 ALS datasets
are presented in Figures 2 and 3.
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Figure 2. Correct detection and false negative (omissions) distributions by canopy position for the
seven most accurate ITD method approaches derived from the 8 ppm2 ALS dataset (highlighted in
Table 4). Dark-green coloration indicates where the two distributions overlap. Canopy positions are
as follows: S = suppressed, I = intermediate, CD = codominant, D = dominant. The method shown in
(b) refers to [19].
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Figure 3. Correct detection and false negative (omissions) distributions by canopy position for the
seven most accurate ITD method approaches derived from the 22 ppm2 ALS dataset (highlighted in
Table 4). Dark-green coloration indicates where the two distributions overlap. Canopy positions are
as follows: S = suppressed, I = intermediate, CD = codominant, D = dominant. The method shown in
(b) refers to [19].
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3.2. Effects of Stand Density on ITD Method Accuracy

The relationships between ITD accuracy metrics, averaged across the top seven meth-
ods for each ALS dataset, and stand density metrics are presented in Table 5. Recall for all
ITD methods decreased with increasing stand density, implying higher omission errors in
denser stands. Average recall for the top seven methods had negative relationships with all
stand density metrics (Table 5). Recall for the top seven method approaches stratified by
canopy cover is presented in Figure 4. Precision was poorly related (r2 < 0.07) with all of
the stand density metrics (Table 5).

Table 5. Linear regression results between the top ITD method accuracies, averaged to the plot scale,
and stand density metrics.

Accuracy Metric
Canopy Cover Trees per Hectare Basal Area per Hectare Stand Density Index

r2 Slope p r2 Slope p r2 Slope p r2 Slope p

8 ppm2 ALS dataset
Recall 0.05 −0.15 0.07 0.19 −0.0002 <0.01 0.16 −0.003 <0.01 0.20 −0.0002 <0.01
Precision 0.01 0.06 0.43 0.07 0.0001 <0.05 0.01 −0.0002 0.82 0.01 −0.0001 0.87
F−score 0.08 −0.16 <0.05 0.14 −0.0001 <0.01 0.19 −0.003 <0.01 0.21 −0.0001 <0.01
RMSEhgt 0.01 −0.05 0.66 0.03 −0.0001 0.17 0.02 −0.001 0.28 0.02 −0.0001 0.22
Biashgt 0.02 0.33 0.22 0.01 0.0001 0.49 0.20 0.01 <0.01 0.16 0.0005 <0.01

22 ppm2 ALS dataset
Recall 0.16 −0.29 <0.01 0.27 −0.0002 <0.01 0.38 −0.006 <0.01 0.40 −0.0003 <0.01
Precision 0.01 −0.002 0.98 0.02 −0.0001 0.19 0.02 −0.001 0.17 0.01 −0.0005 0.36
F−score 0.08 −0.21 <0.05 0.13 −0.0001 <0.01 0.30 −0.004 <0.01 0.30 −0.0002 <0.01
RMSEhgt 0.07 0.26 <0.05 0.03 0.0001 0.16 0.23 0.005 <0.01 0.20 0.0002 <0.01
Biashgt 0.07 0.42 <0.05 0.03 0.0002 0.13 0.20 0.009 <0.01 0.17 0.0004 <0.01Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 19 
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Figure 4. Recall results of the top ITD method approaches highlighted in Table 4 and derived from
the (a) 8 ppm2 ALS dataset and (b) 22 ppm2 ALS dataset and stratified by ALS-derived canopy cover.
Red crosses represent median recall values across all plots.
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3.3. ITD Method Height Measurement Accuracy

The average height measurement RMSE for the top ITD method approaches derived
from the 8 ppm2 ALS dataset was 1.01 ± 0.05 m and average bias was −0.35 ± 0.09 m.
Height bias was positively correlated with both basal area per hectare (r2 = 0.20, p < 0.01) and
stand density index (r2 = 0.16, p < 0.01) (Table 5). The average height measurement RMSE
for the top method approaches derived from the 22 ppm2 ALS dataset was 0.80 ± 0.03 m
with an average bias of 0.12 ±0.17 m. Height RMSE was positively related to basal area per
hectare (r2 = 0.23, p < 0.01) and stand density index (r2 = 0.20, p < 0.01) (Table 5). Likewise,
height bias had positive relationships with both basal area per hectare (r2 = 0.20, p < 0.01)
and stand density index (r2 = 0.17, p< 0.01).

Figures 5 and 6 present results from the regression-based equivalence tests. For all
paired datasets (top ITD methods using 8 ppm2 ALS data vs. reference and top methods
using ALS 22 ppm2 data vs. reference), the 95% confidence interval for the intercept
(vertical grey bar) was within the ±25% region of equivalence (grey polygon), indicating
that the null hypothesis of dissimilarity can be rejected (i.e., paired datasets are equivalent).
Likewise, for all paired datasets, the 95% confidence interval for the slope (vertical black
bar) was within the ±25% region of equivalence (grey dashed lines), indicating slopes were
significantly similar to 1.
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Figure 5. Equivalence test graphs for reference tree height versus tree height from top method
approaches derived from the 8 ppm2 ALS dataset highlighted in Table 4. The grey polygon represents
the±25% region of equivalence for the intercept. The ALS-derived and cruised heights are equivalent
to the felled height when the vertical red bar is completely within the grey polygon. The grey dashed
lines represent the ±25% region of equivalence for the slope. If the vertical black bar is within the
grey dashed lines, then the regression slope is significantly similar to 1. The solid black line represents
the best-fit linear regression model. The method shown in (b) refers to [19].
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Figure 6. Equivalence test graphs for reference tree height versus tree height from top method
approaches derived from the 22 ppm2 ALS dataset highlighted in Table 4. The grey polygon represents
the±25% region of equivalence for the intercept. The ALS-derived and cruised heights are equivalent
to the felled height when the vertical red bar is completely within the grey polygon. The grey dashed
lines represent the ±25% region of equivalence for the slope. If the vertical black bar is within the
grey dashed lines, then the regression slope is significantly similar to 1. The solid black line represents
the best-fit linear regression model. The method shown in (b) refers to [19].

4. Discussion

This study sought to cross-compare seven different ITD approaches with reference
to a common validation dataset and as we expand on below, ITD accuracy metrics that
account for both omission and commission errors (e.g., F-score) did not vary considerably
by method. Notably, despite the diversity of the applied methods and parameters, the
results were broadly similar with comparable accuracies obtained. While F-score was
similar across the methods, detection rates, or the proportion of reference trees that were
detected, did vary by canopy position across methods. All methods had similar detection
rates of dominant trees but ForestView®, lidR LMF, rLiDAR LMF, and watershed meth-
ods had greater detection rates for codominant and subdominant trees (intermediate and
suppressed). For applications where dominant trees are the focus, it could be argued that
the selection of a specific ITD method is somewhat arbitrary and may rely more on user
preference. This is important, as it means that more research can focus on exploring the ap-
plications regardless of the specific selected approach and cross-comparisons of application
studies that use different ITD methods may be more readily achievable than previously
considered. Such applications can include, but are not limited to: quantifying wildlife
habitats [58–60]; assessing crown fire risk [61,62]; reducing uncertainties associated with
estimating carbon stocks due to forest crown consumption through exploring the relative
number of tree crowns that form standing dead biomass (snags) versus the formation of
fallen large woody debris following fires [63–65]; developing new allometric relations using
structural datasets and reducing uncertainties in the stand to landscape scale assessments
in carbon monitoring, forest growth, and yield [10,66,67]; assessing structural metrics of
fire severity [68–71]; assessing metrics of ecosystem vulnerability [72]; and mapping urban
forests [73].

Overall, F-score accuracies varied little between the different methods, ranging from
0.42 to 0.51 for the 8 ppm2 ALS data and 0.47 to 0.52 for the 22 ppm2 ALS data with regard to
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the top seven best performing methods. This similarity is likely influenced by the consistent
‘top-down’ approach of the methods, where dominant overstory trees are identified but
many subdominant trees are occluded by overstory canopies. ITD accuracy increased with
increasing pulse density across all methods, regardless of method type (point-cloud-based,
raster-based, hybrid). This is in contrast with several prior studies where increasing pulse
density increased ITD accuracy for mainly point-cloud-based methods and not raster-
based methods [18] and those that did not observe a significant effect of increasing pulse
density on ITD accuracy [16]. While ITD accuracy increased with increasing pulse density,
results show that some methods (ForestView®, SWA, watershed) benefited more than other
methods ([19], lidR LMF, rLiDAR LMF, VWF).

In part due to the top-down design of the assessed methods, most undetected trees
(omission errors) were in intermediate and suppressed canopy positions (Figures 2 and 3).
All seven top ITD methods detected most dominant trees (66% on average for 8 ppm2

ALS dataset and 71% on average for the 22 ppm2 ALS dataset). Only ForestView®, lidR
LMF, rLiDAR LMF, and watershed detected a majority of codominant trees using both ALS
datasets. Other benchmarking studies using similar ITD methods observed higher detection
for dominant (85%) and codominant trees (70%) [18], although stand density was lower
(median: 353 trees hectare−1) than the stands assessed in this study (median: 509 trees
hectare−1). Additionally, the stand composition, crown shape variation, and structural
heterogeneity in the study area were likely greater than many prior benchmark studies
given the higher number of species and diverse management history. Across all methods
and for both ALS datasets, detection of intermediate trees was less than 31% and detection
of suppressed trees was less than 13%. This is the direct result of trees in subdominant
canopy positions being occluded by the dominant forest canopy [32,33]. Detection of
dominant and codominant trees using the 22 ppm2 ALS dataset was 4% higher on average,
compared to methods using the 8 ppm2 data. Higher detection rates using ALS datasets
with higher pulse densities have been observed in other North American and European
forests (e.g., [18,74]), but in some cases higher pulse density has not improved ITD [16].
CHM-based top ITD methods that used a fixed search window size (lidR LMF and rLiDAR
LMF) achieved the highest detection across all canopy classes using the 22 ppm2 ALS
dataset and performed well using the 8 ppm2 ALS dataset. Other ITD method comparisons
have also found that simple local maximum-finding can be one of the most accurate and
easy-to-implement methods [16,17]. However, these simple raster-based methods may not
perform as well as point-cloud-based methods for subcanopy tree detection [18,74].

There was large intra-method accuracy variability depending on the input datasets and
parameters. ITD methods that used spacing thresholds (i.e., [19]) or LMF search window
sizes (i.e., lidR LMF, rLiDAR LMF) smaller than the average crown diameter tended to
have higher commission error, while those with larger thresholds/windows tended to have
higher omission error. Generally, ITD methods that used spacing thresholds or LMF search
window sizes that were equal to or less than the average crown diameter for study area
trees (2.5 m) were the most accurate. While most raster-based ITD methods applied to the
8 ppm2 ALS data produced improved results with a 25 cm CHM over a 50 cm CHM, the
difference was minimal (average F-score difference < 1%). Likewise, most CHM-based ITD
methods using the 22 ppm2 ALS data produced more accurate results when applied to a
50 cm CHM than to a 25 cm CHM, but the difference was small (average F-score difference
< 4%). These particular accuracy results may be owing to differences in the pulse density
created by the differing scanning patterns of the two ALS datasets. The 2018 dataset was
acquired in a sawtooth, or ‘zig-zag’, pattern and likely has higher pulse density at the edges
of flight paths where scans overlap and lower pulse density in between flight paths. The
2021 dataset was acquired in an equidistant pulse-spread, or ‘matrix’, scan that produces
more consistent pulse densities across the flight path. We did not apply any point cloud
thinning methods to homogenize the pulse density across either of the point clouds, but
clearly this is an issue that should be explored in future work as pulse density can have
significant effects on individual tree detection accuracy [18,34].
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Like other ITD method comparison studies (e.g., [4,31]), stand density was a larger
driver of method accuracy than the individual methods themselves. Typically, as stand
density increases, space in between tree crowns decreases and more overlapping tree
crowns are present, complicating identification of individual trees. Additionally, as the
dominant forest canopy increases in density, more subdominant smaller trees are likely to
become occluded, except where gaps within the canopy occur [32,33]. This suggests that
non-raster-based ITD methods that operate directly on the ALS point cloud may be better
suited for denser forest conditions [18,75].

All of the ITD methods produced height measurements for the detected trees that had
low RMSE (<1.1 m) and bias (<0.5 m). Height bias was larger for methods using the 8 ppm2

ALS dataset (mean bias: −0.35 m) than for the 22 ppm2 dataset (mean bias: 0.12 m). The
larger bias observed for the 8 ppm2 ALS dataset is likely due in part to tree growth between
the dates of ALS acquisition (2018) and reference-tree field data collection (2020). Generally,
the mean height growth of mature mixed conifer species present within this study area is
0.4 m per year [39]. Regardless, all methods using either of the ALS datasets produced tree
heights that were statistically similar to the reference tree heights.

This study primarily focused on assessing methods that use a ‘top-down’ approach
to identify individual trees. The findings of this research outline the need for future
benchmarking to include methods that utilize a ‘bottom-up’ approach (e.g., layer stacking
methods in [20]) and methods that create separate CHMs for dominant and subdominant
trees (e.g., [25]). However, it should be noted that detection rates of intermediate and
suppressed trees (35% and 21%, respectively) reported in Duncanson et al. [25] are not
substantially higher than those obtained by the ‘top-down’ methods in this study (31% of
intermediate trees and 13% of suppressed trees).

5. Conclusions

This study assessed the individual tree detection and height measurement accuracy of
different tree detection approaches via comparison with a benchmark dataset with diverse
structure and composition. Generally, stand density and canopy cover were larger drivers
of ITD accuracy than ITD method choice. However, results show that detection of trees
in certain canopy positions can vary by method. All methods detected most trees with
dominant canopy positions but ForestView®, lidR LMF, rLiDAR LMF, and watershed
methods had the highest detection proportion of codominant and subdominant trees and
CHM-based local-maximum filter methods had the lowest omission errors across all tree
canopy positions. This study additionally supports the value of ALS data with pulse
densities > 8 ppm2 for ITD, given higher pulse density data increased average F-scores by
10% for ForestView®, SWA, and watershed methods and 1.2% for [19], lidR LMF, rLiDAR
LMF, and the VWF methods. The results emphasize the importance of input parameter
selection when applying ITD methods, as intra-method ITD accuracy variability was large
depending on data and parameter selection. For CHM-based methods, ITD accuracy
was generally highest using finer resolution CHMs (~25 cm) when lower pulse density
ALS data (8 ppm2) were available, which contrasted with CHM-based ITD results when
higher pulse density ALS data were available (22 ppm2 and a 50 cm resolution CHM).
Likewise, CHM-based methods that utilized fixed size search windows achieved the highest
accuracy with sizes equal to or less than the average tree crown diameter. All methods were
comparable in terms of height measurements for the detected trees, but errors increased
with increasing stand density. The results presented here should help end-users with
the choice and application of these and similar ITD methods on available ALS datasets.
Future benchmarking studies for ITD methods should consider more diverse methods
(e.g., bottom-up approaches) that detect more subdominant trees and explore the influence
of ALS scanning patterns (e.g., oscillating mirror vs. rotating polygonal mirror) on ITD
accuracy.
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