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Abstract: To address the problems in remote sensing image change detection such as missed detection
of features at different scales and incomplete region detection, this paper proposes a high-resolution
remote sensing image change detection model (Multi-scale Attention Siamese Network, MASNet)
based on a Siamese network and multi-scale attention mechanism. The MASNet model took the
Siamese structure of the ResNet-50 network to extract features of different simultaneous images
and then applied the attention module to feature maps of different scales to generate multi-scale
feature representations. Meanwhile, an improved contrastive loss function was adopted to enhance
the learning of change features and improving the imbalance problem between unchanged and
changed samples. Furthermore, to address the current time-consuming and laborious phenomenon
of manually annotating datasets, we provided a change detection dataset from Yunnan Province in
China (YNCD) that contains 1540 pairs of 256 × 256 bi-temporal images with a spatial resolution
of 1 m. Then, model training and change detection applications were studied by expanding a small
number of experimental area samples into the existing public datasets. The results showed that
the overall accuracy of the MASNet model for change detection in the experimental area is 95.34%,
precision rate is 79.78%, recall rate is 81.52%, and F1 score is 80.64%, which are better than those of six
comparative models (FC-EF, FC-Siam-Diff, FC-Siam-Conc, PAN, MANet, and STANet). This verifies
the effectiveness of the MASNet model as well as the feasibility of change detection by expanding
existing public datasets.

Keywords: change detection; deep learning; Siamese network; attention mechanism; Yun-nan datasets

1. Introduction

Remote sensing image (RSI) change detection (CD) refers to the comparison and
analysis of images of the same region in different periods through image processing and
other means to judge the changes between images [1]. With the in-depth development
of aerospace technology and electronic information technology, the resolution of remote
sensing images is continuously improving. The demand for large-scale land cover change or
specified element changes using optical remote sensing images with high spatial resolution
are increasing.

According to different research objects, traditional CD methods can be divided into
pixel-based and object-based change detection methods [2]. The pixel-based change detec-
tion method generates a difference image by directly comparing the spectral information or
texture information of the pixels and obtains the final change result map through threshold
segmentation or clustering [3–5]. Although this method is simple and feasible, it ignores the
spatial background information and generates considerable “salt and pepper” noise during
processing. The object-based change detection method divides the remote sensing image
into disjoint objects and analyzes the differences between spatial-temporal images through
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the rich spectral, texture, structure, and geometric information [6–9]. This method utilizes
the spatial background information of high-resolution RSI, but the artificial feature extrac-
tion process is complicated and shows poor robustness. Wu et al. combined pixel-level
and object-level change detection methods to solve the problem of registration errors, to
which pixel-level change detection is sensitive; the phenomenon of noise is serious, object-
level change detection is greatly affected by segmentation parameters, and the process is
cumbersome but still affected by the selection of scale parameters [10]. At the same time,
although high-resolution remote sensing images can present more detailed information,
the separability between changed and unchanged areas is reduced, and the loose spatial
dependency between ground objects and highly cluttered spatial structures increases the
difficulty of extraction [11]. In addition, the geometric position difference caused by dif-
ferent shooting angles of the sensor is a non-negligible interference factor. These factors
weaken the separability of spectral information and make it more difficult to detect changes
in high-resolution images. Therefore, it is of great scientific significance and application
value to carry out accurate change detection algorithm research for high-resolution images.

Given the rise of artificial intelligence, deep learning algorithms with stronger image
semantic feature extraction abilities have been gradually introduced into the research
of high-resolution remote sensing image interpretation. The remote sensing image CD
method based on deep learning can directly learn the change features from bi-temporal,
multi-temporal, or even time-series remote sensing images, segment the image through the
change features to obtain the change map, and the learned features have strong robustness.
A Siamese neural network extracts features in the same way through multiple inputs for
comparison between images and is often used in change detection tasks. For example,
Zhan and Zhang proposed a method based on a Siamese convolutional neural network
and applied it to change detection in optical aerial images [12,13]. Hughes et al. proposed a
method based on a pseudo-Siamese convolutional neural network and applied it to change
detection of SAR and optical images [14]. Daudt et al. took the U-Net structure as the
backbone extraction network and proposed a Siamese fully convolutional network for
change detection [15]. In addition, Zhang et al. extracted the highly representative features
of bi-temporal images by using a dual-stream structure and then input the extracted
features into the deep supervision difference recognition network for remote sensing
image change detection [16]. Chen et al. proposed a dual-attention Siamese network,
captured the long-term dependency through the dual-attention mechanism to obtain a more
distinctive feature representation, then adjusted the weight of the unchanged feature in the
training process by using the weighted double-margin contrastive loss, which achieved
reasonable results on a public dataset [17]. Dong et al. proposed a multi-scale context
aggregation network (MSCANet) to aggregate multi-scale context information using a
scale-aware feature pyramid module (FPM) and discriminative feature representation
learning with channel-spatial attention module to improve recognition performance [18].
Fang et al. proposed a dense connection Siamese network to reduce the loss of deep
localization information of neural network through compact information transmission and
used an ensemble attention module to extract representative features of different semantic
levels for remote sensing image change detection [19]. Because existing methods fail to
predict the edges and preserve the shape of the changed area from bi-temporal images,
Basavaraju et al. introduced a network based on an encoder-decoder architecture (UCDNet)
that uses improved residual connections and a new spatial pyramid pooling (NSPP) block
to obtain better prediction results while preserving the shape of changing regions [20].
Chen and Lu et al. proposed Siamese-AUNet by combining a Siamese network, attention
mechanism and U-Net for the detection of weakly changing objects, and the representation
ability of weak features is improved by combining a non-local attention module and
convolutional block attention module (CBAM), then the ASPP module is used to improve
the detection effect of multi-scale change features [21].

At present, deep learning change detection methods still have some problems, such
as difficulty detecting small-scale changes, loss of information in the process of feature
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encoding and decoding, integrity of detection results, unbalanced sample ratio, and poor
detection effects on non-public datasets. To solve these problems, we proposed a multi-
scale attention Siamese network (MASNet) and tested its performance in change detection
of high-resolution dataset in Yunnan Province, China (YNCD) in this paper. MASNet
firstly employed a ResNet-50 backbone to capture bi-temporal features. Then, a multi-
scale attention (MSA) module was utilized to model and generate multi-scale features.
Finally, a prediction module was applied to obtain change maps by threshold and bilinear
interpolation. In addition, by improving the contrast loss function, we could improve the
imbalance of the samples and highlight the changed information. Considering that the
result accuracy and model robustness of the deep learning change detection algorithm are
greatly affected by the data samples, in order to carry out research on the change detection
of remote sensing images in the experimental area, this research obtains change detection
samples of the Yunnan experimental area, and adds a small amount of this data to the
public dataset, then discusses the feasibility of the dataset expansion method by comparing
the change detection result accuracy between the experimental area samples with and
without added data. On this basis, the effectiveness of the MASNet model was verified in
comparative experiments and ablation studies.

2. Materials and Methods
2.1. Change Detection Model
2.1.1. Siamese Network

As shown in Figure 1, a Siamese network is different from a general convolutional
network. The Siamese network maps two different inputs into vectors, calculates the
distance between different vectors through two stream networks with the same weight. It
then compares the similarity between the bi-temporal images. These two types of networks
have the same weights, update parameters, and share weights at the same time. After
several convolutions, the feature maps carrying semantic information in each branch
are converted into feature vectors. The feature vectors are filtered and fused to output
decision information.
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2.1.2. Attention Mechanism

The attention mechanism originated from the study of human vision. When people
observe an object, they selectively pay attention to part of all the available information, ig-
noring other visible information. This mechanism is usually called the attention mechanism.
The attention mechanism in deep learning was first used in natural language processing
(NLP). In 2014, Mnih et al. used the attention mechanism for the first time in the field of
image processing [22]. Its essence was to learn the weight distribution in the image, assign
different weights to different important areas. The attention mechanism suppresses the
learning of such features by reducing the weight of features unrelated to the target, and
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at the same time increases the weight of relevant features to strengthen the learning of
these features.

The position attention module (PAM) was proposed by Fu et al. [23], to capture rich
global relationships between pixels in spatial locations in scene segmentation tasks to
capture more discriminative features. Based on this understanding, we introduced PAM
into MASNet. Its structure is shown in Figure 2:
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Figure 2. Structure of PAM model.

First, we used the stack of feature maps X(1), X(2) extracted from two different phase
images to generate the feature tensor A and input it into the PAM model. The PAM model
obtained two new feature layers through a convolution layer with batch normalization
and a ReLU layer. To reduce the number of feature dimensions, the number of channels
was changed to a quarter of the original, and then the two new feature layer dimensions
are converted to R ∈ (C× N), where C refers the number of channels of the feature map,
N ∈ H ×W × 2, and H, W are the width and height of the feature map, respectively. Then,
the softmax function was used to calculate matrix multiplication between B, D to obtain
the similarity matrix S, which can be denoted as

S = so f tmax

(
BT ·D
1
2

√
C

)
(1)

The same convolution layer was used to generate the feature map E. We multiplied
feature map E by similarity matrix S, and added the result to the original feature map A to
obtain the result matrix F containing spatial position features. This can be denoted as

F = (E·S) + A (2)

2.1.3. Multi-Scale Attention Siamese Network

According to the principle of the neural network and attention mechanism, we intro-
duced a multi-scale attention mechanism into the Siamese network to detect changes be-
tween image in the experimental area. As shown in Figure 3, MASNet contains three parts:
Siamese CNN feature extractor, multi-scale attention module, and prediction module.
Detailed information about each part are as follows.

The MASNet feature extraction module uses Siamese ResNet-50 without the global
pooling layer and the fully connected layer as the backbone network to extract bi-temporal
features. This includes a convolutional layer, maximum pooling layer, and 4 residual
blocks (ResBlock). Each residual block contains {3,4,6,3} 3 × 3 convolutional layers, and
the features in each ResBlock are fused by adding the upper- and lower-level feature
information before being input to the ReLU layer. The number of output channels of each
ResBlock is 256, 512, 1024, and 2048.
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Feature maps of different scales contain semantic information of different scales. Large-
scale feature maps have more global semantic information, and small-scale feature maps
tend to highlight local semantic information. The semantic information in feature maps of
different scales is fused to enhance the feature information extraction capability. According
to Figure 3, the multi-scale attention module in MASNet applies PAM to the features of
four different scales extracted by the feature extraction module. The attention mechanism
is often used in the final feature map extracted by the feature extraction module. Since the
continuous convolution process causes a loss of information in the image, we changed it to
act on the feature map generated by the feature extraction module at different stages. PAM
was directly applied to the feature map with the size of H′ ×W ′ extracted by ResBlock-1.
In this paper, the size of the original image after one convolution and maximum pooling is
H′ = W ′ = 128. Other ResBlock feature extraction results are up-sampled and concatenated
with low-level features to generate multi-scale attention features through PAM to obtain
local feature representation at different scales. The process in MSA can be expressed as

Feai = Concat

(
i

∑
n=1

ResBlock− n

)
, i = 1, 2, 3, 4 (3)

The attention maps of different scales generated by PAM are concatenated with the
original feature maps after passing through 1 × 1 Conv, where the sizes of the feature
maps are

{
1, 1

2 , 1
4 , 1

8

}
H′ ×W ′ to generate the to-be-predicted results containing feature

information of different scales.
The prediction module interpolates the multi-scale features extracted by the feature

extraction module and the multi-scale attention module to the original image size using
bilinear interpolation. It then calculates the Euclidean distance between feature pixels and
obtains the final change detection result through threshold segmentation.

2.2. Loss Function

The traditional contrastive loss can be formulated as

CL = ∑
i,j

1
2

[(
1− yi,j

)
·D2

i,j + yi,j·max
(
m− Di,j, 0

)2
]

(4)

where yi,j represents the pixel value at the position of (i, j), 0 indicates that the pixel is
unchanged, 1 indicates that the pixel has changed, Di,j indicates the distance between the
pixels corresponding to position (i, j) on the bi-temporal image, and m is the threshold
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value of the change feature. When the distance between the change features distributes
in 0 to m, the loss value gradually decreases as Di,j increasing the distances among the
changed pixels increased by optimizing the loss function to minimize the loss value. From
Equation (4), it was found that when the distance value between unchanged image pairs is
0, the loss function is not affected. However, in practice, the image is affected by factors
such as sensors and illumination. The distance value between unchanged image pairs is not
0, which leads to the unchanged image pairs also affecting the loss function. In addition, in
the change detection task, the proportion of unchanged pixels is usually larger than that
of changed pixels, and there is an imbalance between changed and unchanged samples.
Referring to the CL designed by Chen [17], and Chen [24], we improve the contrastive loss
function (ICL) as

ICL = ∑
b,i,j

1
2

[
1

Nu
·
(

1−Mb,i,j

)
·max

(
Db,i,j −mu, 0

)2
+

1
Nc
·Mb,i,j·max

(
mc − Db,i,j, 0

)2
]

(5)

Similar to Equation (4), in Equation (5), we added a threshold for unchanged pixels.
When the distance between unchanged pixels is less than mu, the loss function is not
affected. The thresholds mu, mc representing unchanged and changed features are set
to 0.2 and 2.0 in this paper, respectively. At the same time, considering the imbalance
between the unchanged and the changed samples, a self-adjusting weight coefficient 1

Nu
, 1

Nc
is introduced according to the ratio of the number of unchanged and changed pixels in
different images of the current training batch to reduce the impact of the unchanged region
on the changed region. This can be defined as follows:

Nu =

B
∑

i=1
nui

B
Nc =

B
∑

i=1
nci

B
(6)

B represents the batch size, and nu, nc represents the number of unchanged and
changed pixels, respectively. At the same time, the training idea of [24], was introduced
into Formula (5), where M represents a batch of change labels, and b represents a pair of
images in a batch. The previous training from a single image was changed to batch image
training, which made the training process smoother. The loss curve did not shock greatly
and was consistent with the self-adjusting weight coefficients in terms of batch size in
this paper.

3. Dataset
3.1. CDD

The Change Detection Dataset (CDD) is an open-source multi-type change detection
dataset [25], that covers remote sensing images of the same area with seasonal changes.
CDD contains 11 pairs of 0.3–1 m high-resolution images, of which there are 7 pairs of
images with a size of 4725 × 2200 that change with seasons and 4 pairs of images with
a size of 1900 × 1000 that change with seasons without labels. In the process of making
labels, only the appearance or disappearance of objects is considered to have changed,
while ignoring the changes caused by seasonal differences, brightness, and other factors.
In [25], the author processed the original data to generate the dataset consists of 16,000 pairs
of samples of images with 10,000 pairs for training, 3000 pairs for validation, and 3000 pairs
for testing. Examples of CDD are displayed in Figure 4.
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3.2. YNCD

In this paper, high-resolution satellite images obtained by the Gaofen-2 PMS sensor on
11 March 2015 and 25 February 2021, are used to generate image pairs with a resolution of
1 m after preprocessing, registration, and fusion. The data cover part areas of Kunming
and Qujing city in Yunnan Province, China. According to a size of 256 × 256 pixels, the
original image was cropped without overlapping to obtain 1540 pairs of change samples.
The changed information was marked based on the visual interpretation of artificial targets
such as protected agriculture, buildings, roads, mining areas, and small targets in the test
area. We used the LabelMe tool for labeling, which is an image labeling tool developed
by the Massachusetts Institute of Technology (MIT) Computer Science and Artificial In-
telligence Laboratory (CSAIL). In order to make the outline and range of the change area
more accurate, we marked the changes on the bi-temporal images respectively, and then
combined them to obtain the bi-temporal change labels. We used 255 and 0 for changed and
unchanged pixels, respectively. Table 1 gives a brief introduction of YNCD. Among them,
the changes caused by seasonal differences, brightness, and other factors were ignored in
the process of change information labeling. Examples of YNCD are displayed in Figure 5.
The change detection data in the Yunnan experimental area were divided to three parts:
1000 pairs of images used as training samples; 300 pairs of images used as validation
samples; and 240 pairs of images used as testing samples. The data from the Yunnan experi-
mental area (YNCD) and CDD data were combined to generate the dataset used for change
detection analysis, in which the proportions of the data from the Yunnan experimental area
in the training, validation, and test sets were 10%, 10%, and 8%, respectively.

Table 1. A brief introduction to YNCD dataset.

Attribute Value

Total Image Pairs 1540
Total Changed Pixels 8,000,699

Total Unchanged Pixels 92,924,741
Image Size 256 × 256

Image Resolution 1 m
Time Interval 6 years

Type RGB image
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4. Experiments and Results
4.1. Parameters Setting

The code is implemented using the PyTorch framework. During the training process,
a batch size of four and a learning rate of 0.001 were adopted for all model training using
an Adam optimizer. The learning rate was adjusted through a dynamic learning rate
decay strategy based on the deviation of the validation set. The training process lasted for
150 epochs, while data augmentation strategies including flipping, mirroring, and random
rotation were randomly applied to the training set to avoid overfitting. We used both
YNCD and CDD for training and validation. In the testing process, the test set of YNCD
was used to evaluate the accuracy of the change detection results.

Furthermore, owing to the selection of the values of mu and mc having a great influence
on the results of the network, lots of experiments were designed to find the values of mu
and mc with the best performance. We set up mu = {0.0,0.1,0.2,0.3,0.4}, mc = {1.8,2.0,2.2},
and trained through the pairwise combinations between them to seek the optimal match
on the test set. Figure 6 shows the performance of a MASNet network with different mu
and mc values. It is not difficult to see that when mu and mc are 0.2 and 2.0 respectively,
the performance of MASNet is the best.
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4.2. Comparative Experiment
4.2.1. Evaluation Metrics

To verify the effectiveness of the proposed method, four common metrics were selected
for accuracy assessment: precision (P), recall (R), F1-score (F1), and overall accuracy (OA).
Their calculation formula is as follows:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2× P× R

P + R
(9)

OA =
TP + TN

TP + TN + FN + FP
(10)

where TP indicates the correct number of changed pixels detected, TN indicates the correct
number of unchanged pixels detected, FP indicates the error number of changed pixels
detected, and FN indicates the error number of unchanged pixels detected. P indicates
the ratio of the correct number of changed pixels detected to the total number of changed
pixels detected. A larger P indicates less probability of false prediction. R indicates the ratio
of the detected correct number of changed pixels to the total number of actual changed
pixels. A larger R indicates less probability of missed detection. F1 considers P and R
comprehensively and stands for the overall performance. OA indicates the ratio of the
number of pixels detected correctly to the total number of pixels.

4.2.2. Comparative Analysis of Results of MASNet with and without YNCD

To evaluate the influence of the presence of YNCD samples in the training samples
on the change detection results and to verify the feasibility of expanding the experimental
area samples to the public dataset to improve the detection accuracy of change detection,
the model detection results with and without experimental area samples are compared
and analyzed in this paper. The MASNet model was trained by using CDD and part of
YNCD samples, and change detection and analysis are carried out for the test samples of
YNCD. The P, R, F1, and OA results are compared in Table 2, and prediction change maps
of MASNet are shown in Figure 7.

Table 2. Comparison of change detection index with or without YNCD samples (%).

Datasets OA P R F1

CDD 90.32 34.61 19.49 24.94
CDD + YNCD 95.34 79.78 81.52 80.64

According to the evaluation indicators in Table 2, the results of model training using
only the CDD and change detection in the experimental area were poor in accuracy, but
the OA indicators were high. The reason for this result is that the number of unchanged
pixels in YNCD accounted for a relatively high proportion, resulting in a large number of
OA values. After adding the YNCD data, the evaluation indicators of P, R, F1 increased by
45.17%, 62.03%, and 55.7%. According to Figure 7, the model trained with CDD could detect
the changes in a small part of the 3rd and 5th columns but hardly detected the changes in
the other groups of images correctly. This phenomenon shows that the change detection
model is greatly affected by the training samples. Compared with the label, the overall
result of the change detection obtained by the training model after adding the YNCD was
better, the detection area was relatively complete, and the phenomenon of missed detection
was reduced. This indicates that even if a small amount of sample of the experimental area
is added to the public dataset, the model can also obtain better results.
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4.2.3. Comparison Methods and Result Comparisons

Six methods for bi-temporal change detection were employed in our experiments
for comparison.

(1) STANet (Spatial-Temporal Attention Network) [24]: STANet utilizes a weight-sharing
Siamese deep semantic segmentation network to generate two independent features
and designs a spatial-temporal attention mechanism that captures the rich global
spatial-temporal relationships between pixels in the whole spatial-temporal space and
generates more discriminative features by calculating the attention weights of any
two pixels at different times and locations. Finally, the metric learning method is used
to calculate the distance between the two features and generate prediction maps.

(2) MANet (Multi-scale Attention Net) [26]: The MANet network designs two mod-
ules: the Position-wise Attention Block (PAB) and the Multi-Scale Fusion Attention
Block (MFAB). PAB analyzes the interdependencies of modeled features in the spatial
dimension, thereby capturing the spatial dependencies between pixels in a global
view. MFAB captures the channel dependencies between any feature maps through
multi-scale semantic feature fusion.

(3) PAN (Pyramid Attention Networks) [27]: PAN method combines an attention mech-
anism with a spatial pyramid, performs a spatial pyramid attention structure on
high-level feature output, and combines global pooling to learn better feature rep-
resentation. A Global Attention Upsample module is introduced on each decoder
layer to serve as the global contextual information for the localization details of the
low-level feature selection category.

(4) FC-EF (Fully Convolutional Early Fusion) [15]: FC-EF is based on U-Net model and EF
strategy. It concatenates the bi-temporal images before passing them through the net-
work and uses the skip connection structure to fuse the low- and high-level features.

(5) FC-Siam-Conc (Fully Convolutional Siamese-Concatenation) [15]: With a similar
structure to the feature extraction module in MASNet, a Siamese network model
combines three features from the two encoder branches and corresponding layers of
the decoder. The graph performs skip connections to supplement the deeper, more
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abstract, and less localized information with low-level spatial detail information,
resulting in more accurate boundary predictions in the output image.

(6) FC-Siam-Diff (Fully Convolutional Siamese-Difference) [15]: The difference between
FC-Siam-Diff and FC-Siam-Conc is that different temporal features are not processed
in channel stacking, but the absolute difference of bi-temporal image features in the
encoder is combined with the features of the decoder through skip connections in
FC-Siam-Diff method.

The CDD combined with part of YNCD samples was used for comparative experi-
mental analysis, and the comparative experimental accuracy evaluation was conducted
only for the YNCD data. The prediction change maps of several methods are illustrated in
Figure 8, and the evaluation results are given in Table 3.
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Table 3. Comparison of change detection indices for different models (%).

Method P R F1

FC-Siam-Conc 64.94 53.78 58.84
FC-Siam-Diff 63.82 60.08 61.89

FC-EF 70.31 60.65 65.12
PAN 73.14 66.13 69.46

MANet 74.62 73.62 74.12
STANet 78.46 77.00 77.72
MASNet 79.78 81.52 80.64

From the indicators in Table 3, the P, R and F1 of MASNet are 79.78%, 81.52%, and
80.64%, respectively, which are significantly improved compared to other models for
many indicators. Compared with the STANet model with the best detection effect in
the comparison model, the indicators increased by 1.32%, 4.52%, and 2.92%, respectively,
which proves that MASNet has the best performance in the experimental area. According
to Figure 8, especially for the results in the red box area, the advantages and disadvantages
of the detection results of different methods are shown. FC-Siam-Conc has the worst
change detection results because its encoding and decoding process is relatively simple and
no attention mechanism is introduced, so the phenomenon of false detection and missed
detection is serious. FC-Siam-Conc has the same problem, but FC-Siam-Diff and FC-EF
work better than FC-Siam-Conc, with F1 of 61.89% and 65.12%, respectively. Compared
with FC-Siam-Conc, due to PAN and MANet introducing pyramid attention and multi-
scale attention mechanisms, respectively, the detection results greatly improve, but the
change region detection is still incomplete. STANet adopts the strategy of contrastive loss
and spatial-temporal attention and obtains good change detection results, but there are still
problems for small-scale change detection. In this paper, by improving the contrastive loss
to enhance the characteristics of changing regions, reducing the impact of sample imbalance
and adopting a multi-scale attention mechanism to improve the change detection ability of
regions at different scales, the performance of the MASNet model was improved.

4.3. Ablation Study

In this part, we conducted an ablation study to verify the effectiveness of the ICL and
MSA introduced in MASNet. “Test 1©” used only contrastive loss and MSA for model
training. “Test 2©” used only the ICL to optimize the network. “Test 3©” used both MSA
and ICL to optimize the network. Figure 9 provides visualized comparisons of the ablation
and evaluation results listed in Table 4.

Table 4. Ablation study evaluation results of loss function and attention module (%).

ICL MSA OA P R F1

1© 3 94.25 70.46 74.03 72.20
2© 3 94.61 71.78 78.26 74.88
3© 3 3 95.34 79.78 81.52 80.64

From the comparison results of various indicators in Table 4, the improved contrastive
loss and the multi-scale attention module comprehensively improved the performance
of the model, and the indicators of F1 increased by 5.76% and 8.44%, respectively. In
Figure 9, small-scale areas were missed in the change detection results of the first and
third columns for “Tests 1©” and “Test 2©”, and the detection areas were incomplete and
false in the results of the other columns. The improvement in model performance can
be attributed to the following aspects. Firstly, reducing the false change information
extraction, the phenomenon of incomplete detection area and false detection is improved
by improving the contrastive loss. Secondly, by setting self-adjusting weight coefficients
to enhance the extraction of changing features, the problem of imbalance between the
categories of invariant pixels and changing pixels is alleviated. Finally, the multi-scale
attention module can obtain the feature information at different scales. The detection
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effect of adding the multi-scale attention module alone in “Test 1©” is not ideal. This
phenomenon may occur because the pseudo-change information has a great negative
impact on the model training during the training process. However, from the change
detection results of “Test 3©”, on the basis of improving the contrastive loss, adding the
multi-scale attention module enhances the detection effect of small-scale regions, which
illustrates the effectiveness of the multi-scale attention module.
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5. Conclusions

To solve the problems of incomplete detection of change regions and missed detection
of small-scale areas in remote sensing image change detection, a multi-scale attention
Siamese network (MASNet) was constructed based on a Siamese network and attention
mechanism. Using the remote sensing image data of the Gaofen-2 PMS sensor, a high-
resolution change detection dataset of some regions in Yunnan was created and combined
with the CDD to carry out research on the change detection method of the experimental area.

We set up comparative experiments and an ablation study to verify the performance of
MASNet. The following conclusions are drawn: (1) The detection results of the change de-
tection model are greatly affected by the samples. Adding a small amount of experimental
area data to the model training dataset can improve the experimental area change detection
results and save on manual marking costs to a certain extent. This has important reference
and application value for solving the change detection task when samples are lacking in
the test area. (2) MASNet can suppress the information of the unchanged region by improv-
ing the loss function, highlighting the information of the changed region, strengthening
the learning of the features of the changed region, and optimizing the change detection
results. (3) The multi-scale attention mechanism can enhance the information extraction
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of different scale regions and improve the model detection performance. (4) Compared
with STANet, FC-Siam-Conc, FC-EF, FC-Siam-Diff based on the Siamese architecture, and
MANet and PAN models based on multi-scale attention, the MASNet model has the best
overall performance and change detection results. Compared with other change detection
models, MASNet improved the F1-score and recall by at least 2.92% and 4.52%, respectively.
However, it can also be seen from the change detection results that the MASNet model is
ineffective in detecting the boundary and internal details of the changed area, and further
research work will be carried out on this issue in the future.

Author Contributions: Conceptualization, S.Z. and J.L.; methodology, G.Z. and S.Z.; software, J.L.;
validation, G.Z. and Y.X.; dataset production and curation, Y.G. and J.L.; writing—original draft
preparation, J.L.; writing—review and editing, S.Z. and Y.X.; project administration, G.Z.; funding
acquisition, S.Z. and Y.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(42171101, 41871028).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the China Centre for Resources Satellite
Data and Application for the provision of Gaofen-2 PMS data, and the Foundation for financial
supports of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tong, G.F.; Li, Y.; Ding, W.L.; Yue, X.Y. Review of remote sensing image change detection. J. Image Graph. 2015, 20, 1561–1571.
2. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to

object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]
3. Celik, T. Unsupervised change detection in satellite images using principal component analysis and k -means clustering.

IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [CrossRef]
4. Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral,

bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 1998, 64, 1–19. [CrossRef]
5. Wu, C.; Du, B.; Zhang, L.P. Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens.

2013, 52, 2858–2874. [CrossRef]
6. Qin, Y.; Niu, Z.; Chen, F.; Li, B.; Ban, Y. Object-based land cover change detection for cross-sensor images. Int. J. Remote Sens. 2013,

34, 6723–6737. [CrossRef]
7. Ma, L.; Li, M.; Blaschke, T.; Ma, X.; Tiede, D.; Cheng, L.; Chen, Z.; Chen, D. Object-based change detection in urban areas:

The effects of segmentation strategy, scale, and feature space on unsupervised methods. Remote Sens. 2016, 8, 761. [CrossRef]
8. Zhang, Y.J.; Peng, D.F.; Huang, X. Object-based change detection for VHR images based on multiscale uncertainty analysis.

IEEE Geosci. Remote Sens. Lett. 2017, 15, 13–17. [CrossRef]
9. Zhang, C.S.; Li, G.J.; Cui, W.H. High-resolution remote sensing image change detection by statistical-object-based method. IEEE J.

Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2440–2447. [CrossRef]
10. Wu, R.J.; He, X.F.; Wang, J. Coastal wetlands change detection combining pixel-based and object-based methods. J. Geo-Inf. Sci.

2020, 22, 2078–2087.
11. Zhang, X.L.; Chen, X.W.; Li, F.; Yang, T. Change detection method for high resolution remote sensing images using deep learning.

Acta Geod. Cartogr. Sin. 2017, 46, 999–1008.
12. Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change detection based on deep siamese convolutional network for optical

aerial images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [CrossRef]
13. Zhang, Z.; Vosselman, G.; Gerke, M.; Tuia, D.; Yang, M.Y. Change detection between multimodal remote sensing data using

siamese CNN. arXiv 2018, arXiv:1807.09562.
14. Hughes, L.H.; Schmitt, M.; Mou, L.; Wang, Y.; Zhu, X.X. Identifying corresponding patches in SAR and optical images with a

pseudo-siamese CNN. IEEE Geosci. Remote Sens. Lett. 2018, 15, 784–788. [CrossRef]
15. Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th

IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: New York, NY, USA, 2018;
pp. 4063–4067.

16. Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2013.03.006
http://doi.org/10.1109/LGRS.2009.2025059
http://doi.org/10.1016/S0034-4257(97)00162-4
http://doi.org/10.1109/TGRS.2013.2266673
http://doi.org/10.1080/01431161.2013.805282
http://doi.org/10.3390/rs8090761
http://doi.org/10.1109/LGRS.2017.2763182
http://doi.org/10.1109/JSTARS.2018.2817121
http://doi.org/10.1109/LGRS.2017.2738149
http://doi.org/10.1109/LGRS.2018.2799232
http://doi.org/10.1016/j.isprsjprs.2020.06.003


Remote Sens. 2022, 14, 3464 15 of 15

17. Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual attentive fully convolutional siamese
networks for change detection in high-resolution satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14,
1194–1206. [CrossRef]

18. Dong, J.; Zhao, W.F.; Wang, S. Multiscale context aggregation network for building change detection using high resolution remote
sensing images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

19. Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A densely connected siamese network for change detection of VHR images.
IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

20. Basavaraju, K.S.; Sravya, N.; Lal, S.; Nalini, J.; Reddy, C.S.; Dell’Acqua, F. UCDnet: A deep learning model for urban change
detection from bi-temporal multispectral sentinel-2 satellite images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [CrossRef]

21. Chen, T.; Lu, Z.; Yang, Y.; Zhang, Y.; Du, B.; Plaza, A. A Siamese Network Based U-Net for Change Detection in High Resolution
Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2357–2369. [CrossRef]

22. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. arXiv 2014, arXiv:1406.6247.
23. Fu, J.; Liu, J.; Tian, H.J.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE:
New York, NY, USA, 2019; pp. 3146–3154.

24. Chen, H.; Shi, Z.W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection.
Remote Sens. 2020, 12, 1662. [CrossRef]

25. Lebedev, M.A.; Vizilter, Y.V.; Vygolov, O.V.; Knyaz, V.A.; Rubis, A.Y. Change Detection in Remote Sensing Images Using
Conditional Adversarial Networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 565–571. [CrossRef]

26. Fan, T.L.; Wang, G.L.; Li, Y.; Wang, H. Ma-net: A multi-scale attention network for liver and tumor segmentation. IEEE Access
2020, 8, 179656–179665. [CrossRef]

27. Li, H.C.; Xiong, P.F.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180.

http://doi.org/10.1109/JSTARS.2020.3037893
http://doi.org/10.1109/LGRS.2021.3121094
http://doi.org/10.1109/LGRS.2021.3056416
http://doi.org/10.1109/TGRS.2022.3161337
http://doi.org/10.1109/JSTARS.2022.3157648
http://doi.org/10.3390/rs12101662
http://doi.org/10.5194/isprs-archives-XLII-2-565-2018
http://doi.org/10.1109/ACCESS.2020.3025372

	Introduction 
	Materials and Methods 
	Change Detection Model 
	Siamese Network 
	Attention Mechanism 
	Multi-Scale Attention Siamese Network 

	Loss Function 

	Dataset 
	CDD 
	YNCD 

	Experiments and Results 
	Parameters Setting 
	Comparative Experiment 
	Evaluation Metrics 
	Comparative Analysis of Results of MASNet with and without YNCD 
	Comparison Methods and Result Comparisons 

	Ablation Study 

	Conclusions 
	References

