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Abstract: The evaporation duct is a special atmospheric stratification that significantly influences
the propagation path of electromagnetic waves at sea, and hence, it is crucial for the stability of the
radio communication systems. Affected by physical parameters that are not universal, traditional
evaporation duct theoretical models often have limited accuracy and poor generalization ability, e.g.,
the remote sensing method is limited by the inversion algorithm. The accuracy, generalization ability
and scientific interpretability of the existing pure data-driven evaporation duct height prediction
models still need to be improved. To address these issues, in this paper, we use the voyage observation
data and propose the physically constrained LightGBM evaporation duct height prediction model
(LGB-PHY). The proposed model integrates the Babin–Young–Carton (BYC) physical model into a
custom loss function. Compared with the eXtreme Gradient Boosting (XGB) model, the LGB-PHY
based on a 5-day voyage data set of the South China Sea provides significant improvement where
the RMSE index is reduced by 68%, while the SCC index is improved by 6.5%. We further carried
out a cross-comparison experiment of regional generalization and show that in the sea area with
high latitude and strong adaptability of the BYC model, the LGB-PHY model has a stronger regional
generalization performance than that of the XGB model.

Keywords: evaporation duct prediction model; Babin–Young–Carton (BYC) model; Paulus–Jeske
model; eXtreme Gradient Boosting (XGB) model; LightGBM algorithm; machine learning with
physical constraints

1. Introduction

The atmospheric duct is a stratification in the atmospheric boundary layer which sig-
nificantly affects the propagation of electromagnetic waves. This is because the refractive
index in the atmospheric boundary layer is sharply decreased with the increase in altitude.
Therefore, the electromagnetic waves may abnormally bend downward, resulting in the
bending radius of the waves becoming smaller than that of the earth. For some frequencies
and angle conditions, the energy of radio waves will be refracted repeatedly in the atmo-
spheric stratification. Hence, the atmospheric stratification acts as a conductor that enables
low attenuation over-the-horizon propagation of electromagnetic waves. Nonetheless,
this limits the transmission of electromagnetic waves only within the atmospheric duct.
Figure 1 shows the radar blind zone caused by the atmosphere duct. Efficient use of the
atmospheric duct not only improves radio communications between the ships at sea but
also shields the communication equipment in the air from radio interference.

The atmospheric duct includes the evaporation duct, surface duct, and suspended
duct. The evaporation duct is a special type of surface duct that is created by the sharp
humidity reduction by increasing altitude. The evaporation duct frequently occurs in
marine environments with an average occurrence probability higher than 60% in the global
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sea area. In the South China Sea, the probability of the available evaporation duct is as
high as 80%, and in some areas, even permanent evaporation ducts exist [1]. Generally,
the evaporation duct appears lower than 40 m above the sea surface, hence significantly
affecting the efficiency of radio communication.
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Evaporation duct height (EDH) directly reflects the lamination height of the evapo-
ration duct and plays a crucial role in the strength of the evaporation duct [2]. Therefore,
investigating the evaporation duct has attracted lots of attention in the research community.

The atmospheric refractive index, N, is an important physical quantity involved in the
generation process of the atmospheric duct and determined by conventional meteorological
elements as follows:

N =
77.6

T
×
(

p +
4810e

T

)
(1)

Where p is atmospheric pressure in hPa, T is the atmospheric thermodynamic temper-
ature in K, and e is the partial pressure of water vapor in hPa, i.e.,

e =
6.105Rhex

100
(2)

x = 25.22× T − 273.2
T

− 5.31× ln
(

T
273.2

)
(3)

and Rh is the atmospheric relative humidity.
The atmospheric modified refractive index, M, is also an essential index for incorpo-

rating the earth’s curvature and determining the height and strength of the evaporation
duct. The vertical and horizontal gradients of M determine the height and strength of the
evaporation duct, respectively. The expression of M is:

M = N +
h
re
× 106 = N + 0.157× h (4)

where h is the target height for calculating the M.
The height of the evaporation duct is determined by either direct detection or indirect

measurement. Direct detection methods use various tools such as meteorological gradiome-
ter, microwave refractometer, low-altitude tethered balloon, or other sounding equipment
to obtain the atmospheric refractive index profile structure. Using the atmospheric re-
fractive index profile structure, the characteristic values of the evaporation duct, such as
the height of the evaporation duct, are then determined. Nevertheless, direct detection
methods are often highly costly and require complex operations.
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Indirect measurement methods include using theoretical models, remote sensing
inversion, and machine learning. The theoretical method is the most commonly used
technique to obtain the height of the evaporation duct. The calculated value of the height
of the evaporation duct is obtained based on known meteorological factors. For instance, in
1971, Jeske of the Hamburg University in Germany proposed the Jeske model [2]. In 1985,
Paulus further improved the Jeske model by studying more accurate data resulting in the
Paulus–Jeske (P-J) model [3]. In the 1980s, A. S. Gavrilov and other scholars of the Russian
National University of Meteorology and Hydrology also proposed the RSHMU evaporation
duct height prediction model [4], which was mainly used in the former Soviet Union. In
1992, Musson-Genon, Gauthier, and Bruth jointly proposed the Musson–Gauthier–Bruth
(MGB) [5] model based on the Monin–Obukhov similarity theory. Later, Babin proposed
the BYC model in 1997 [6], which applied the advanced COARE sea–air flux algorithm.

More recently, in 2000, Frederickson et al. of the U.S. Naval Graduate School put
forward the Naval Postgraduate School (NPS) model [7], and in 2001, Liu Chengguo et al.
put forward the pseudo-refractive index model by adding the concept of pseudo refractive
index to the P-J model [8]. In 2002, Dai Fushan et al. replaced the M-O similarity theory
with the local similarity theory based on the BYC model and came up with the Local
model [9]. In 2015, Ding Juli et al. also proposed the Universal Evaporation Duct (UED)
model [10]. Although the theoretical method is convenient, its accuracy and generalization
are still weak.

The uncertainty of the theoretical model is from the empirical parameters of the model,
these parameters are derived from local observations. If the natural conditions of the
applied model area and the natural conditions of the summed empirical parameter area are
very different, the theoretical models may have large deviations. In [6], the Babin–Young–
Carton (BYC) model has a better performance than other models and can better fit the
true value; the root mean square error (RMSE) of the model is 3.0, which results from an
experiment based on the data from Wallops Island. However, in [11], the performance of
the BYC model (the model in reference) in the Yellow Sea, China, is not very good in most
cases and worse than the performance of other models, and the error is more than 5.0 in
some cases. The above examples show that the theoretical model has uncertainties caused
by different regional natural conditions.

The remote sensing inversion method is also one of the most important techniques
to obtain the height of the evaporation duct. Different versions of the remote sensing
inversion method include laser radar inversion, radar clutter inversion, and GNSS occulta-
tion signal inversion. In 2003, Peter Gerstoft et al. conducted sea clutter inversion of the
refractive index of low-altitude atmosphere [12], compared the replica field with sea clutter
observation by using the square error objective function, and conducted a global search for
11 environmental parameters in total by using a genetic algorithm. The inversion algorithm
was based on S-band radar sea clutter data in Vopulos Island, Virginia. It was concluded
that under the unconstrained environment model, the propagation loss and single detection
loss are close to the actual duct. Yardim used the root mean square error considering the
statistical characteristics of the duct region to evaluate the performance of radar sea clutter
in retrieving the atmospheric refractive index [13]. Tian studied the antenna frame height
of maritime search radar under evaporation duct [14] in 2010. The experimental results
show that the appropriate antenna frame height is closely related to the radar working
frequency and the meteorological environment in the sea area. After that, Zhang proposed
a method to improve the inversion performance of duct RFC by using different antenna
height combinations [15]. GNSS occultation inversion [16] method has also been widely
used in the fields of geographic survey, meteorology and hydrology, etc. GNSS refers to the
global navigation satellite system, which uses the ground-based GNSS receiver to receive
satellite signals, calculates the time delay caused by the influence of atmospheric refrac-
tion, etc., and introduces the time delay into the calculation model as a parameter to be
determined. Considering the sources of errors generated by the calculation model and the
methods of eliminating errors, the delay parameters generated by atmospheric refraction
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and positioning parameters can be calculated together. Based on this, the relationship
between the delay parameters and the profile of atmospheric elements can be constructed
to retrieve the profile structure of atmospheric elements, and then evaporation duct height
can be calculated. Wang used the forward propagation model and genetic algorithm to
estimate the evaporation duct height by using the signal power information received by
the ground-based GPS receiver [17]. Although the experimental results show that the effect
is excellent, it is an experiment under ideal conditions: the forward propagation model
ignores the refraction effect from the maximum parabolic equation area height to the GPS
satellite height.

Nevertheless, these remote sensing inversion techniques have their own pros and cons,
which need to be further investigated. Table 1 shows the advantages and disadvantages of
remote sensing inversion methods.

Table 1. The advantages and disadvantages of remote sensing inversion methods.

Method Advantages Disadvantages

Laser radar inversion Continuous and
immediate security

The technology is not yet mature,
and the scheme still needs to

be improved.

Radar sea clutter inversion

The ability of regional
generalization is strong, and
the estimation effect is better

by using suitable
inversion algorithm

Due to the limitation of radiation
silence, it is impossible to
continuously monitor and

diagnose, and it cannot realize
large-scale duct monitoring.

GNSS occultation
signal inversion

High accuracy under
ideal conditions

There is a great error at a specific
angle, which needs to

be improved.

As Table 1 shows, the remote sensing inversion methods generally need to be im-
proved; they are limited by the performance of the inversion algorithm or even the structure
of scheme.

Using machine learning methods facilitates efficient exploration of the hidden patterns
in the data and improves the traditional models. Such techniques may also be used to
develop purely data-driven models that replace the traditional model with more efficient
machine learning methods [18].

In 2007, S. A. Isaakidis et al. used a three-layer artificial neural network (ANN) to build
a prediction model for the height of the evaporation duct and achieved efficient prediction
results [19]. In 2009, Rémi Douvenot’s team also proposed a technique based on LS-SVM
to invert the height of the evaporation duct [20] and compared their proposed method
with the common quadratic regression inversion method. Their experiments showed that
compared with the common quadratic regression inversion method, LS-SVM avoids many
significant errors and is superior in terms of stability. In 2013, Yang Chao compared the
performance of three machine learning models (RVM, LS-SVM, and RBFNN) applied to the
sea clutter inversion of evaporation duct height [21]. It was then concluded in [21] that the
LS-SVM sea clutter inversion method provides the highest level of accuracy. Further on, in
2018, Zhu Xiaoyu and others tried to combine the traditional evaporation duct theoretical
model with machine learning and optimized the P-J model by adopting the support vector
regression (SVR) method [22]. Compared with the traditional P-J model, the obtained
SVR_PJ model provides higher accuracy. In 2018, using the data collected in the South
China Sea, Zhu Xiaoyu et al. built the SCS-MLP [23], a multilayer perceptron (MLP) [24]
model for predicting the height of evaporation duct in the South China Sea. They then
showed that their approach significantly improved the P-J model. In 2019, Zhao Wenpeng
et al. also applied BP neural network to the prediction of evaporation duct height and
achieved good results [25]. They further proposed a pure data-driven gradient lifting
tree (GBDT) evaporation duct height prediction model, PDD_GBR, which significantly
improved both the accuracy and regional generalization ability of their original model [26].
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In 2020, Zhao Wenpeng used the method of Extreme Gradient Boosting (XGBoost) [27]. As
an improved version of the GBDT algorithm [28], XGBoost is highly efficient in estimating
the evaporation duct height. The experimental results also showed that compared with
the traditional P-J theoretical model the accuracy is significantly improved. Furthermore,
compared with the SCS-MLP and PDD_GBR models, the accuracy and generalization
performance are significantly improved. In 2021, Han Jie used deep learning method
to forecast the proximity of evaporation duct in the Yellow Sea area of China [29]. The
characteristic of the research is that it uses sufficient data obtained from the Yellow Sea
exploration. Using artificial neural network (ANN) and support vector machine (SVM)
as benchmark comparison models, it is found that deep learning method has obvious
advantages in accuracy.

Affected by the physical empirical parameters that are not universal, the traditional
theoretical models of the evaporation duct result in limited accuracy and poor generaliza-
tion ability. The accuracy, generalization ability and scientific interpretability of the existing
purely data-driven height prediction model require further improvements.

In this paper, we propose the LightGBM evaporation duct height prediction model
LGB-PHY. As the training set, we use the evaporation duct height data of the South China
Sea throughout a five-day route. We further compare our proposed model with the XGB
evaporation duct height prediction model. The generalization ability of the LGB-PHY
model is also verified by the cross-validation method using data from four different sea
areas. The experimental results confirm that given sufficient training data, the LGB-PHY
model has higher accuracy and better regional generalization ability than that of the XGB
model in most sea areas.

2. Brief Introduction of Existing Evaporation Duct Height Model
2.1. The Paulus–Jeske Model

The Paulus–Jeske (P-J) model is the most widely used theoretical model of the evap-
oration duct. In 1985, Paulus improved the Jeske model [3] with more accurate data and
proposed the P-J model [2]. The P-J model is a classic and effective evaporation duct
theoretical model which was also adopted in IREPS (Integrated Reflective Effects Prediction
System). IREPS was a software package used by the US navy for evaluating electromagnetic
wave propagation in 1978. This model was also applied to the IREPS upgraded version,
AREPS (Advanced Reflective Effects Prediction System) and other systems. The input
parameters of the model are sea surface temperature, air temperature, relative humidity,
and wind speed, where the sea surface atmospheric pressure is assumed to be 1000 hPa.

The P-J model uses the potential refractive index, Np, instead of atmospheric refractive
index, N. The potential temperature also replaces ordinary temperature, and the potential
water vapor pressure replaces the ordinary water vapor pressure. Assuming that the bit
refractive index is equal to the refractive index, the calculation formula of the bit refractive
index is as follows:

Np =
77.6

θ
×
(

p +
4810× ep

T

)
(5)

where the water vapor pressure ep is:

ep = e1+ 1000
p (6)

The p in the formula means air pressure.
The critical gradient is also defined as the potential refractive index gradient ∂Np /∂z.

Differentiating Equation (5), we then obtain

∂Np

∂z
=

∂N
∂z
− ∂N

∂P
× ∂P

∂z
(7)



Remote Sens. 2022, 14, 3448 6 of 19

Assuming the standard temperature of 15 ◦C, the atmospheric pressure of 1000 hPa,
and the acceleration of gravity g = 9.8 m/s2, the critical refractive index gradient of the
atmospheric duct is obtained as:

∂Np

∂z
= −0.125 (8)

The potential refractive index is a similar variable and satisfies the following conditions:

∂Np

∂z
=

SNp ϕ

ρκu∗(z + z0)
(9)

where SNp is the vertical flux of potential refractive index, Z denotes the measuring height
of more than 6 m, z0 is dynamic roughness, ϕ denotes a universal function, k is the Kalman
constant which is 0.4, and u∗ is the friction speed. Universal function ϕ is a function of Z/L
and represents the atmospheric stability near the surface. In stable atmospheric conditions,
the universal function is

ϕ = 1 + α1 ×
Z
L

(10)

where α1 is a constant with a value of 5.2, and L is the Monin–Obukhov length.
Under unstable atmospheric conditions:

ϕ4 − 4α2
Z
L

ϕ3 = 1 (11)

where α2 is a constant with a value of 4.5.
Paulus concluded the empirical relationship from a large number of experiments.

Combined with these empirical relations, the predicted value of the height of the evapora-
tion duct is then obtained using Equation (11). Further details about the P-J model can be
found in [2].

2.2. The BYC Model

The widely used P-J model does not consider the extension of similarity theory under
low wind speed conditions and further ignores the correction of seawater salinity. These
factors result in a deviation of prediction accuracy in some cases. Babin et al. obtained
the BYC model by introducing the toga COARE air–sea flux algorithm. In the BYC model,
the Buck equation [30] is used to improve the accuracy of water vapor partial pressure
calculation, and the salinity is corrected. The M-O similarity theory is further extended to
low wind speed [31]. In theory, the M-O is a more advanced traditional evaporation duct
height prediction model than that of the P-J model. In the BYC model, the atmospheric
refractive index gradient is written as

∂N
∂z

= A + B
∂θ

∂z
+ C

∂q
∂z

(12)

Using the Monin–Obukhov similarity theory, ∂θ
∂z and ∂q

∂z are also obtained as

∂θ

∂z
=

θ∗ϕh
κz

(13)

∂q
∂z

=
q∗ϕq

κz
(14)

For the refractive index gradient ∂N
∂z = −0.157, the height of the evaporation duct can

be determined based on the above formula. Furthermore, the height of the evaporation
duct under stable or neutral atmospheric conditions is

zEDH =
−(Bθ∗ + Cq∗)

κ(A + 0.157) + 5
L (Bθ∗ + Cq∗)

(15)
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Under unstable conditions [26], the height of the evaporation duct is

zEDH =
−(Bθ∗ + Cq∗)ϕh

κ(A + 0.157)
(16)

where θ∗, q∗ and ϕh are derived from the COARE air–sea flux algorithm. See [6] for
further details.

In theory, the BYC model is more comprehensive than that of the P-J model. Further-
more, using the air–sea flux algorithm, COARE, enables a more accurate description of the
physical phenomena, hence a more efficient extension of the M-O similarity theory [32].
Nevertheless, the BYC model has higher complexity, more physical constraints, and more
empirical parameters, hence greater sensitivity than the P-J model. This may result in
model deviations in the unsuitable air–sea environment.

2.3. The XGB Model

XGBoost (eXtreme Gradient Boosting) is a machine learning algorithm that is an opti-
mization model based on gradient boosting. Gradient boosting decision tree (GBDT) [33,34]
is an integrated model of the ensemble learning algorithm. Using GBDT for regression tasks
is referred to as the Gradient Boosting Regression (GBR). The gradient boosting algorithm
is a tree class integration method, through the integrated training of multiple weak learners.
The overfitting problem is also addressed effectively by improving accuracy. In general,
it is a model that combines several single weak models to improve the training effect. In
this setting, each model learns from the mistakes of the previous weak learner model. For
m weak learners, it needs m iterations, each iteration produces a new model, and in each
iteration, the value of the loss function moves to its negative gradient. This results in a
smaller loss function. Finally, the weighted sum of the models in each stage is used to
obtain the final result. The basic formula is as the following:

Fm(x) =
m

∑
i=1

β fi(x) (17)

where m is the number of weak learners, β is the weight coefficient, f is a weak learner, and
F is the whole model. The objective here is to obtain a general model with the minimum
loss function L:

Fmargmin
n
∑

i=1
L(yi, Fm(xi))

= βmargmin
n
∑

i=1
L(yi, Fm−1(xi) + βm fm(xi))

(18)

Gradient boosting is based on the Greedy algorithm [35,36]. Therefore, it only solves
the next weak learner as a new term at a time. In (18) βm fm(xi) is to obtain the fastest
reduction of the loss function, and hence, each time, the new term should be equal to the
negative gradient of the loss function, i.e.,

βm fm(xi) = γ
∂L(yi, Fm−1(xi))

∂Fm−1(xi)
(19)

where γ is the step size, which sets the weight coefficients β and a negative sign representing
the negative gradient. Nevertheless, βm fm(xi) is generally expressed as pseudo residual
R, i.e.,

Rim = γ
∂L(yi, Fm−1(xi))

∂Fm−1(xi)
(20)

Equation (20) indicates that the pseudo residual error of F is obtained according to
the previous model. For the known weak learner, a new weak learner, fm, can be obtained
through X and Y training in the known training samples. The step size γ can be further
obtained by substituting fm into the formula.
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XGBoost generally continues the use of gradient boosting and is characterized by the
second-order Taylor expansion of the loss function where the regularization term is also
added to the loss function [37]. The loss function L is therefore defined as

L = ∑
i

l(y_hati, yi) + ∑
k

Ω( fk) (21)

The formula in (21) is composed of two terms. The first term represents the loss of the
gradient boosting algorithm, where i is the number of training samples and L is the loss of
a single sample. The second term includes the regularization part, where

Ω( f ) = γT +
1
2

λ||w||2 (22)

In 2020, Zhao Wenpeng proposed a pure data-driven evaporation duct prediction
model based on the XGBoost algorithm, which is called the XGB model [27]. It was further
shown through experimental studies that this model overperforms the accuracy of the
traditional theoretical model. Its generalization performance is also significantly higher
than the MLP model based on multilayer perceptron and the GBR model based on the
traditional GBDT algorithm. In this paper, we consider the XGB model, where according
to the observed data the parameters of the models are fine-tuned, and the XGB model
obtained is compared with the LGB-PHY model.

3. LightGBM Evaporation Duct Height Prediction Model with Physical Information
(LGB-PHY Model)
3.1. Introduction to the LightGBM Algorithm

LightGBM is a boosting regression algorithm proposed by Microsoft [38]. It is one
of the latest machine learning algorithms also based on decision tree, and the logic about
the contributions of each predictor to the final model is the same with the XGB model.
It uses the idea of an algorithm based on a histogram to discretize continuous features
into several discrete bins. The algorithm based on the histogram avoids calculating all
continuous features and takes discrete bins as the unit. This method improves the training
efficiency and reduces the memory overhead. In particular, the histogram algorithm also
has a subtraction feature, where a target leaf can subtract its neighbor nodes from its parent
node. This further accelerates the convergence speed of the algorithm.

In addition to the histogram algorithm (Figure 2), LightGBM adopts the leaf-wise tree
growth (Figure 3) strategy and selects the leaf with the largest split gain to grow. Unlike
many boosting algorithms that use a level-wise tree growth (Figure 4) strategy, it is a depth-
first tree growth strategy. The leaf-wise selects the leaf with the largest split gain to grow,
and hence, the depths of different leaf nodes are not the same. Experiments show that the
leaf-wise tree growth strategy results in a lower loss. To avoid the over-fitting phenomenon
caused by excessive longitudinal growth, LightGBM further sets the maximum depth of
the tree.

As an optimized GBDT algorithm, LightGBM has relatively high complexity and
is capable of solving nonlinear problems. LightGBM is both efficient and accurate with
histogram algorithm, leaf-wise tree growth strategy and other characteristics. The tree
model is efficient on the tabular data type used for height prediction of evaporation duct.
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3.2. Construction of LGB-PHY Model

The traditional theoretical model of evaporation duct height incorporates nonlinear
factors, such as sea surface temperature, air temperature, relative humidity, wind speed, and
atmospheric pressure. For example, the P-J model is a function of sea surface temperature
(SST), air temperature (Ta), relative humidity (RH), and wind speed (U), where the function
value is the evaporation duct height (EDH):

EDH = f (SST, Ta, RH, U, P) (23)

The BYC model is a semi-empirical physical model based on a large number of
regional observation experiences and the Monin–Obukhov similarity theory [3]. This model
describes the complex physical relationship between the basic meteorological elements and
evaporation duct height. This model combines the sea–air flux algorithm of COARE, which
has complex physical constraints. After the calculation, we have obtained the contributions
of each predictor, 26% from wind speed, 22.3% from air temperature, 21.3% from sea surface
temperature, 18.9% from air pressure and 11.5% from relative humidity.

The LightGBM is efficient at dealing with the regression problem of low-dimensional
data and can be applied to the low-dimensional observation data sets. The evaporation
duct height prediction model based on the LightGBM replaces the traditional theoretical
model (which has a large number of physical process descriptions and empirical parameter
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assumptions) with a machine learning algorithm. This relies on the capability of machine
learning algorithms to capture the correlation between data, hence addressing the bot-
tleneck of traditional theoretical models which are limited by physical assumptions and
empirical parameters. At the same time, combining the physical formula of the BYC model
with the loss function of the LightGBM model imposes certain physical constraints on
the process of training and extracting data association. Such constraints lead to a more
accurate and scientific machine learning model. Figure 5 shows the way to combine the
physical constraints.
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The LightGBM evaporation duct height prediction model combining physical informa-
tion takes the actual observation data as the starting point. Therefore, for the construction of
the model the observation data set should be preprocessed first. The sample pair should be
set as (xi, yi)

n
i=1, and vector xi expressed as xi = (SSTi, Ti, RHi, Ui, Pi) is a five-dimensional

vector in which the eigenvalues represent the sea surface temperature, air temperature,
relative humidity, wind speed and atmospheric pressure, respectively. Set the measured
data as a label yi = EDH_Obsi. Here, N is number of samples of which 80% is selected
as the training set and the remaining 20% as the test set. Different application areas and
data attributes will have different key parameters configuration. According to the specific
conditions of the experimental data and some prior knowledge, the parameters are finally
determined as follows through a large number of computer experiments: learning rate
(learning_rate) = 0.1, number of weak learners (n_estimators) = 4000, number of leaves
of the model (num_leaves) = 28, minimum leaf node sample weight (min_child_weight)
= 0.001, and minimum leaf node samples (min_child_samples) = 20. The loss function
is custom loss function, for training the function name it is custom_normal_train, and
for validating the function name it is custom_normal_valid. The key parameters will be
fine-tuned according to the amount of data. The flowchart of the model is depicted in
Figure 6.

The custom loss function of the model is defined as:

Loss = MSE + αMSE_BYC (24)

As shown in the above formula, the loss function is divided into two parts. The first
part is MSE, calculated by the predicted value of evaporation duct height and the tag
value, and the second part is MSE_BYC, calculated by the BYC model; the tag value, α, is a
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weight parameter to ensure that the magnitude balance of the MSE in the two parts. In our
experiments, we tried different values of α and found α = 0.01 is an efficient choice.

MSE =
1
n

n

∑
i=1

(y_pred− y_true)2 (25)

The above formula is the RMSE obtained from the predicted value and label value of
evaporation duct height, where y_pred denotes the predicted value of the model, and y_true
represents the true value label of the height of the evaporation duct

MSE_BYC =
1
n

n

∑
i=1

(y_BYC− y_true)2 (26)

The above formula, i.e., MSE_BYC is obtained from the height value and label value
of the evaporation duct calculated by the BYC model, where y_BYC refers to the height
value of the evaporation duct calculated by the BYC model.
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4. Experiment and Result Analysis
4.1. Experimental Scheme

In this study, we obtain the data by deploying observation equipment on the ships,
and different data sets correspond to different routes. The ship is equipped with six layers
of hydrometeorological fundamental element measuring sensors on the ship deck from
low to high and a set of infrared sea surface water temperature sensors. The sensors record
the air temperature (◦C), relative humidity (%), wind speed (m/s), air pressure (hPa), and
SST(◦C). For EDH measurement, preprocess the sensor measurement data of the six-layer
to refractive index profile, and EDH corresponds to the point with a slope of 0. The method
of EDH measurement is improved from Babin’s method [6]. The sensor parameters are
shown in Table 2.
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Table 2. The parameters of sensors.

Sensor Category Range Precision Resolution

Air temperature sensor −40~+70 ◦C ±0.3 ◦C 0.1 ◦C
Relative humidity sensor 0~100% ±2% 1%

Pressure sensor 300~1100 hPa ±0.5 hPa 0.1 hPa
Wind speed sensor 0.1~60 m/s ±3% 0.01 m/s

Sea surface temperature sensor −55 ◦C~+80 ◦C ±0.2 ◦C 0.1 ◦C

The observation voyage routes have been shown in Figure 7 and the data consists of
the following parts:

Part 1: Voyage exploration experiment in the South China Sea (SCS) from 16 November
2020 to 21 November 2020. The corresponding data set is referred to as 5 DaysSCS.

Part 2: Short-distance voyage exploration experiment in the South China Sea. The
corresponding data set is called Back, which represents the short-range return data of the
South China Sea.

Part 3: Voyage exploration experiment in the Equator. The corresponding data set is
referred to as ER.

Part 4: Sailing exploration experiment in the Sea of Sri Lanka. The corresponding data
set is called SSL.

Part 5: Navigation exploration experiment in the North Bengal Bay. The corresponding
data set is referred to as NBB.
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The characteristic values of the above meteorological and hydrological observation
data samples are composed of sea surface temperature, air temperature, relative humidity,
wind speed at 10 m height on the deck and air pressure. The corresponding EDH values are
also collected as the data labels. Eliminating the missing and abnormal data, a total of about
83,000 groups of samples were made available. For the 5 DaySCS data set that includes
a large number of samples, the data set was divided into days as a whole. Therefore, the
data of the first four days can be used to predict the data of the fifth day. The experiment is
divided into two parts. In the first part, 80% of the available data is used as the training set
and 20% as the test set to evaluate the comprehensive effect of the LightGBM model. In the
second part, the data of four different regions, including Back, ER, SSL and NBB, are used
for cross-training. Here, all the data of one region is considered as the training set and the
remaining three regions are considered as the test set. The goal is to test the generalization
ability of the model area.

The root means square error (RMSE) and R-square (SCC) are also used as performance
evaluation indexes. RMSE reflects the accuracy of the model in predicting the height of
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the evaporation duct. The lower the RMSE value, the higher the prediction accuracy of
the model. The SCC represents the goodness of fit between the predicted result and the
detected true value. The SCC value is in the range of (0, 1), and a value closer to 1 represents
a better goodness of fit, i.e., the higher the degree of explanation of independent variables
to dependent variables.

The calculation formulas of RMSE and SCC are as the following

RMSE =

√
1
n

n

∑
i=1

( f (xi)− yi)
2 (27)

SCC =

(n
n
∑

i=1
f (xi)yi −

n
∑

i=1
f (xi)yi

n
∑

i=1
yi)

2

(n
n
∑

i=1
f (xi)

2 − (
n
∑

i=1
f (xi))

2
)(n

n
∑

i=1
yi

2 − (
n
∑

i=1
yi)

2
)

(28)

4.2. Data Augmentation

The 5 DaysSCS data set is a voyage observation data set and many labels are missing
in this data set. To make up for this deficiency, we apply data enhancement based on the P-J
model, which is the most widely used theoretical model of the evaporation duct. The P-J
model has simple principles, a wide application range and provides stable calculated data.
The percentage of data coming from data augmentation is 15%. During the observation,
because of the observation equipment error and extreme natural conditions [39], sometimes
the data label is missing, and the missing data accounts for about 15% of the total data
volume. Here, for the data with missing labels, the value of the evaporation duct height
model is calculated by using the P-J evaporation duct theoretical model. We then add
Gaussian noise [40] to the obtained missing label values calculated by the P-J model to
construct enhanced data. This provides samples that closely follow the natural law and
meets the research requirements. Additionally, 15% data augmentation makes the data
set more diverse on the premise of not reducing the influence of real observation data, the
probability of overfitting in the training process is alleviated to some extent.

4.3. Evaluation of Model Prediction Effect

To test the prediction effect of the LGB-PHY model, the XGB model driven by pure
data and the theoretical BYC model are used as references in the experiment. An 80% of
the observed data of 5 DaysSCS obtained from the 5-day South China Sea cruise is also
used as the training set, and the remaining 20% is used as the test set for verification.
Figure 8 shows the evaporation duct height prediction in the test set which combines the
LightGBM model and XGB model. The red line is the real observation value, and the blue
line shows the predicted value of evaporation duct height using the LightGBM model with
physical information.
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It is seen from the above that the predicted value of the evaporation duct by the
LightGBM model with physical information closely follows the actual observation value.
Figure 8 shows the effectiveness of the new model LightGBM model for the existing
data sets.

Figure 9 further shows the difference distribution between the predicted value and the
real value of the LGB-PHY and XGB models. The blue line shows the difference distribution
between the predicted value and the real value of LGB-PHY, and the red line shows the
difference distribution between the predicted value and the real value of the XGB model. It
is seen that the LGB-PHY model provides better fitting performance of real values. Table 3
shows the RMSE and SCC values of the LGB-PHY and XGB models.
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Table 3. The RMSE and SCC values of LGB-PHY and XGB models.

RMSE SCC

LGB-PHY 0.166 0.993
XGB 0.512 0.932

As is seen in Table 3, LGB-PHY model overperforms the XGB both in terms of RMSE
and SCC.

4.4. Model Area Generalization Ability Test

To investigate the performance of the generalization ability, a sub-region data of each
observed data set is used as the training set, and the rest of the sub-region data are used
as the test set. The XGB model and LGB-PHY model are then compared in different
combinations of experimental areas. This experiment shows that the LGB-PHY model
overperforms the XGB model in terms of regional generalization.

Back, NBB, SSL, and ER data sets in four different regions, and all of the sub-data sets,
are used as the training set each time. The trained model is then tested in the remaining four
regions, and the prediction results are shown in Figure 10, where the blue line indicates the
output result predicted by the LGB-PHY model combining physical information, and the
red line indicates the output result predicted by XGB model. The green line also indicates
the observation value of the evaporation duct height in this area.

The plots in Figure 10 show the comparison between the predicted value and the real
value of the model using Back data as the training set and the data of the other three areas
as the test set. The plots below also present the difference between the output value of the
two models and the true value.

The plots above in Figure 11 demonstrate the comparison between the predicted value
and the real value of the model using ER data set as the training set and the data of the
other four areas as the test set. The plots below in Figure 11 also indicate the difference
between the output value of the two models and the true value.
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The plots above in Figure 12 indicate the comparison between the predicted value and
the real value of the model using NBB data as the training set and the data of the other four
regions as the test set. The plots below in Figure 12 show the difference between the output
value of the two models and the true value.

In Figure 13, we also present the comparison between the predicted value and the real
value of the model using SSL data as the training set and the data of the other four areas as
the test set. The plots below in Figure 13 demonstrate shows the difference between the
output value of the two models and the true value.
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 Train Area SSL NBB Back ER 

LGB-PHY 
(SCC) 

SSL - 0.47 0.82 0.77 
NBB 0.65 - 0.92 0.84 
Back 0.66 0.31 - 0.34 
ER 0.83 0.90 0.86 - 

Figure 13. Comparison between the predicted value and the real value of the model using SSL data
as the training set and the data of the other three areas as the test set.

The model performance differs among regions because the different data sets from
different regions have different data characteristics. The machine learning models are
pure data-driven evaporation duct models. The LightGBM algorithm and the physical
constraints give the model a better ability to extract features of data and fit the true
observation value of the evaporation duct height.

The data sets of different regions are from the observative experiment in different
regions. Influenced by different meteorological and hydrological conditions in different
regions, the different data sets from different areas have different data characteristics, and
the different data characteristics affect the feature extraction of the model and the fitting
effect of the true value.
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Tables 4–7 show the root mean square error (RMSE) and R-square (SCC) values of
different models under different experimental conditions.

Table 4. The RMSE values of LGB-PHY model in model area generalization ability test.

Train Area SSL NBB Back ER

LGB-PHY
(RMSE)

SSL - 2.41 1.30 1.40
NBB 1.49 - 0.89 1.18
Back 1.47 2.75 - 2.39
ER 1.03 1.04 1.17 -

Table 5. The RMSE values of XGB model in model area generalization ability test.

Train Area SSL NBB Back ER

XGB
(RMSE)

SSL - 2.46 1.04 1.20
NBB 1.95 - 0.92 1.48
Back 1.84 1.91 - 1.90
ER 1.44 1.07 1.35 -

Table 6. The SCC values of LGB-PHY model in model area generalization ability test.

Train Area SSL NBB Back ER

LGB-PHY
(SCC)

SSL - 0.47 0.82 0.77
NBB 0.65 - 0.92 0.84
Back 0.66 0.31 - 0.34
ER 0.83 0.90 0.86 -

Table 7. The SCC values of the XGB model in model area generalization ability test.

Train Area SSL NBB Back ER

XGB
(SCC)

SSL - 0.44 0.88 0.83
NBB 0.39 - 0.91 0.75
Back 0.46 0.66 - 0.58
ER 0.67 0.89 0.81 -

Based on the above results, the following observations are made:

(1) In most cases, the RMSE of the predicted value of the LGB-PHY model is smaller
than that of the XGB model, and the SCC of the predicted value of the LGB-PHY
model is larger than that of the XGB model. Hence, the LGB-PHY model has better
generalization performance in most cases.

(2) In cases where the SSL data set is used as the training set, the RMSE of the LGB-PHY
model is slightly larger than that of the XGB model where Back and ER are used as
test sets, and SCC is slightly smaller than that of the XGB model. In cases where the
Back data set is used as the training set, the RMSE of the LGB-PHY model is larger
than that of the XGB model when NBB and ER are used as the test sets, and SCC is
also smaller than that of the XGB model. According to the adaptability analysis of the
BYC theoretical model, it can then be argued that the reason for the errors in some sea
areas is that the LGB-PHY model, which combines the physical information of the
BYC model, also inherits some of the properties of the BYC theoretical model. Note
that there are empirical parameters from the actual observation in the BYC model
(i.e., the data of the extracted empirical parameters come from the meteorological
and hydrological data observed by the U.S. Navy in the middle and high latitudes)
which are significantly different from the air and sea environments in the low latitudes
around the equator. It is difficult for the BYC model to achieve good results in the
waters near the equator, which leads to the error in some areas of the LGB-PHY model
as it combines the physical information of the BYC model.
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5. Conclusions

Influenced by the physical parameters that are not universal, the traditional evapo-
ration duct theoretical models have limited accuracy and poor generalization ability. In
this study, we address these issues by proposing the physically constrained LightGBM
evaporation duct height prediction model (LGB-PHY). By comparing this model with the
existing pure data-driven XGB evaporation duct height prediction model, the following
conclusions are drawn:

(1) In the South China Sea, the LGB-PHY model has higher fitting accuracy than the XGB
model. The experiments performed that the LGB-PHY model has higher performance
in terms of RMSE and SCC than that of the XGBM model, where the RMSE index
decreases by 68% and the SCC index increases by 6.5%.

(2) In the cross-comparison experiment of regional generalization, the LGB-PHY model
shows better generalization ability than that of the XGB model in most cases. Never-
theless, for the case with the Back data set as the training set and the NBB data set
being used as the test set, the LGB-PHY model demonstrates lower. It is attributed
to the fact that some empirical parameters in the BYC model are derived from actual
observation. However, the observation site is situated where the empirical parameters
are mostly located in the sea area of the middle and high latitudes, which are quite
different from the atmosphere and sea environment of the low latitudes around the
equator. Affected by the poor universality of the physical experience parameters, the
BYC model has difficulty achieving good results in the waters near the equator and at
low latitudes. This results in lower accuracy of the LGB-PHY model, which combines
the physical information of the BYC model. In general, our experiments confirm that
in the middle and high latitudes, where the BYC model has strong adaptability, the
LGB-PHY model has a stronger regional generalization performance.

Compared with the previous pure data-driven model based on machine learning, the
proposed LGB-PHY model, which combines physical conditions, improves the accuracy
and generalization ability. This model also inherits the characteristics of the theoretical
model, hence being physically explainable. The proposed method constitutes a novel
technique integrating physical constraints into machine learning methods.
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