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Abstract: Slope units (SUs) are sub-watersheds bounded by ridge and valley lines. A slope unit
reflects the physical relationship between landslides and geomorphological features and is especially
useful for landslide sensitivity modeling. There have been significant algorithmic advances in the
automatic delineation of SUs. But the intrinsic difficulties of determining input parameters and
correcting for unreasonable SUs have hindered their wide application. An improved method of
the evaluation and local multi-scale optimization for the automatic extraction of SUs is proposed.
The Sus’ groups more consistent with the topographic features were achieved through a stepwise
approach from a global optimum to a local refining. First, the preliminary subdivisions of multiple
SUs were obtained based on the r.slopeunit software. The optimal subdivision scale was obtained
by a collaborative evaluation approach capable of simultaneously measuring objective minimum
discrepancies and seeking a global optimum. Second, under the selected optimal scale, unreasonable
SUs such as over-subdivided slope units (OSSUs) and under-subdivided slope units (USSUs) were
further distinguished. The local average similarity (LS) metric for each SU was designed based on
calculating the SU’s area, common boundary and neighborhood variability. The inflection points
of the cumulative frequency curve of LS were calculated as the distinguishing intervals for those
unrealistic SUs by maximum interclass variance threshold. Third, a new effective optimization
mechanism containing the re-subdivision of USSUs and merging of OSSUs was put into effect.
We thus obtained SUs composed of terrain subdivisions with multiple scales, which is currently
one of the few available methods for non-single scales. The statistical distributions of density, size
and shapes demonstrate the excellent performance of the refined SUs in capturing the variability of
complex terrains. Benefiting from the sufficient integrating approach of diverse features for each
object, it is a significant advantage that the processing object can be transferred from general entirety
to each precise individual.

Keywords: slope units; digital elevation model; optimum subdivision parameters; refinement;
terrain adaptability

1. Introduction

Regional landslide risk assessment has been shown to be an effective tool for mitigat-
ing casualties and property damage caused by landslide hazards [1]. To obtain reliable
assessments of landslide risks, it is crucial to first select an appropriate mapping unit for
extracting and distributing geoenvironmental data [2]. Common mapping units mainly
include grid units, slope units (SUs), terrain units and unique condition units [3]. SUs are
associated with the geomorphological process shaping the natural morphology, and thus
reflect the physical relationships between landslides and the environmental information [4].
Therefore, SUs are especially suitable for landslide sensitivity modeling [5,6]. The acquisi-
tion and application of SUs have received increased attention [7].
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Following traditional hydrological principles, SUs are defined as the intersecting zones
of a drainage ridge and a catchment’s valley line [8]. The ridge line is the boundary of the
basin, and the space in the middle of two ridgelines is the catchment area. The valley line
is extracted to slice the basin, and two SUs can be obtained [9]. Accordingly, the forward
and reverse digital elevation model (DEM) hydrological analysis method was developed to
extract SUs automatically and is currently one of the most used and reliable methods [10].
However, geomorphologically, those SUs correspond not only to the single slopes, but also
to multiple slopes or even an entire watershed [11]. Some new definitions and constraints
for SUs have been added to basic hydrological process analyses. The SUs should be an area
with distinctly different topographic features from the adjacent areas [12]. In addition to
ridge and valley lines, topographic discontinuities in aspect, slope and curvature should
also be used and serve as dividing lines [3,13]. Consequently, aspect-based methods [14,15]
curvature-based methods [16,17], and regional growth-based methods [18,19] have been
successively developed to perform automatic extraction of SUs. For aspect-based methods
of the r.slopeunits software, the SUs are still defined as the intersecting zones by hydro-
logical drainage and dividing lines, and the slope aspect is taken as a new constraint for
measuring external heterogeneity and internal homogeneity [14,15]. Furthermore, the SUs
are defined as continuous and enclosed regions of uniform slope gradient and direction
by curvature-based methods [16,17]. These emerging methods are significant improve-
ments over the previous hydrological methods in terms of automation and refinement of
SUs extraction.

However, with the increase in complexity and multi-class parameters setting, determining
input parameters is becoming one of the main obstacles for the automated methods [18].
The input parameters have to be determined by the user based on expertise, with a trial-and-
error approach [20,21]. Compromising between coarser and finer segmentation is the main
strategy for obtaining the final scale parameters [22]. There is a lack of quantitative met-
rics to guide the selection of appropriate segmentation parameters [23]. Huang et al. [18]
proposed an improved supervised trial-and-error method. The extracted image objects
are realistic when the errors between the recorded landslides and the SUs area and shape
index are within a certain threshold. In addition, Alvioli et al. [14,15] proposed the global
score (GS) combining global variance and Global Moran’s I (MI) as a practicable unsu-
pervised evaluation method. The optimal scale can be identified by taking into account
global interior and external heterogeneity [24]. The evaluation approaches contribute to
removing subjectivity from the algorithm and produce more objective results. However,
there is a lack of explicit scientific justification for the matching between the global optimal
scale and actual land surface discontinuities. This is a common defect for unsupervised
evaluation methods [25]. Moreover, a normalization step is required for each global MI
and variance before obtaining the GS value. Thus, under the undefined candidate SUs’
groups, the GS value would be uncertain with the changing extrema in MI or variance [26].
The inconsistent optimal scale would occur correspondingly. Unstable optimal scale results
can be eliminated only once meaningful and realistic SUs sets are selected. Therefore,
the supervised and unsupervised evaluation approaches can be integrally exploited for
determining the optimal scale parameter [23].

Despite the rigorous and logical procedure, many unrealistic SUs are still frequently
observed at the selected optimal scale when using automatic delineation [15]. This is
the consequence of using constant criteria and a common problem of existing automated
methods [15,18]. There are significant differences in geographical and geomorphological
conditions in various high mountain and hilly regions, leading to corresponding differ-
ences in scale and shape features of SUs. A stationary scale can only realize the proper
terrain subdivision of the landscape with certain area and shape characteristics. Others
that produce unreasonable SUs that are not consistent with the terrain may be sacrificed.
Those undesirable objects are defined as over-segmented and under-segmented problems
in the field of land cover classification, image segmentation, target detection and other
related image analyses [27,28]. It is a frontier hot topic and quite a few studies have been
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devoted to the continuous optimization of subsequent unrealistic objects after one “optimal”
segmentation [29,30]. The identification and combination of multiple scales have been
shown to be help resolve undesirable objects [31]. The concepts of over-subdivision and
under-subdivision are equally applicable to classifying undesirable SUs. Unfortunately,
the problem of continuous optimization for the subsequently unreasonable SUs has always
been ignored by researchers, and the corresponding solutions are not tried.

To improve the production of objective and reproducible SUs and make up for the
lack of subsequent amending for unrealistic SUs, an improved quality evaluation and
local multi-scale optimization method for automatically extracting SUs in complex terrains
is proposed. The optimal scale criterion for delineating SUs, and effective integration
of diverse spatial features into refinements of unrealistic SUs are demonstrated in this
paper. It is the first application for improvement of individual SUs’ objects from automatic
subdivision procedures and from which SUs consisted of terrain subdivisions with multiple
scales are obtained.

2. Study Area and Data Preparation
2.1. Study Area

The Yuqu River Basin is at the southeastern margin of the Tibetan Plateau and is a
tributary on the left bank of the Salween River (latitude/longitude: 28◦24′49′′~30◦11′41′′,
97◦22′24′′~98◦41′41′′) (Figure 1a). The region forms a typical high mountain and canyon
landform. The total study area is 9190 km2, with a river drop of 2122 m (Figure 1b). It can
be divided into a high hilly zone, a middle high-mountain zone, a gorge transition zone
and an alpine gorge according to altitude and topography [32,33] (Figure 1c). The high
hilly zone (I) alternates the distribution of an open intermountain basin and rounded
mountains, of which the valley bottom width is 800~5000 m. The middle high-mountain
zone (II) is a widely developed glacier erosion and accumulation landform, located in the
northeast highlands at 4300~5800 m elevation. The gorge transition zone (III) is an erosional
mountain with a “U” type river valley, with an average gradient of 0.69%. River floodplains
and multi-level terraces are generally developed and have a valley width of 50~800 m.
The alpine gorge zone (IV) is located downstream of the river and has an elevation of
1800~3200 m. The width of the deep “V” valley is only 40~80 m and the flow is turbulent,
with an average gradient of 1.12%.
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2.2. Data Preparation

The Advanced Land Observing Satellite-1 from the Japan Aerospace Exploration
Agency (JAXA) provides ALOS-12m DEM data with a spatial resolution of 12.5 m
(Figure 2a). Remote sensing images were obtained from the Gaofen-2 satellite data ac-
quired on 20 January 2020, and a true color image covering the Yuqu River Basin at 1-m
spatial resolution was obtained (Figure 2b). The hillshade of the DEM and images unified
into the projection coordinate system WGS 1984/UTM Zone 47N, were imported in Arc-
Scene 10.6.1 to obtain the three-dimensional terrain representation. Actual comparison
photos of typical locations are obtained by using an unmanned air vehicle (Phantom 4pro
V2.0 by DJI Innovation Technology Co., Ltd., Shenzhen, China, flight altitude 500 m) in
field investigations (Figure 2c).
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Figure 2. Examples of data used in the study, (a) hillshade from DEM, (b) true color Gaofen-2 satellite
image, and (c) the photo in the same region.

2.3. Reference SUs

The reference SUs play a crucial role in the evaluation of optimal scale for the auto-
matically extracted SUs. To obtain normative reference samples, the following procedures
are performed: (1) The forward and reverse DEM hydrological analysis method is selected
to obtain the sub-basins divided by drainage lines and dividing lines. The method con-
forms to researchers’ original definition of SUs, and detailed and common rules can be
referenced to obtain undisputed results [8–10]. Based on the ArcGIS Hydrological analysis
tool, the extraction of ridgelines mainly includes depression filling, flow direction extract-
ing, flow accumulation setting, river network extracting, obtaining catchment area [10].
The extraction of valley lines is obtained through reversing DEM, performing the same
steps as for ridgelines [10,34]. According to previous studies on the adjacent regions [35,36],
the appropriate catchment area thresholds are at the axis between river network density and
catchment area [18,36]. As is shown in Figure 3b, the catchment area threshold of positive
topography is 3000 pixels, and the negative topography is 3500 pixels. The filling thresholds
are set as the recommended defaults (Table 1). (2) In order to pick out the single slopes and
reject multiple slopes or even an entire watershed from the sub-basins, the circular variance
of aspect is taken as measure of homogeneity for each subregion. Referring to experience
about the subdivision of SUs from Alvioli et al. [14,15] and Jacobs et al. [5], only the sub-
basins of aspect circular variance (c) between 0.20~0.30 are selected as candidate reference
SUs. (3) To improve the validity and typicality of those samples, regular hexagonal grid
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zones are created to implement an equally spaced sampling strategy. The abnormal parallel
pseudo valleys (Figure 3a(B)) are abandoned and manually labelled as non-sampling zones,
which is the limitation inherent in the hydrological analysis method. Taking each hexagon
of sampling zones as the center (Figure 3a(A)), the candidate SUs with the largest size in the
statistical area are selected as reference SUs. As is shown in Figure 3c,d, the sub-basins C
with uniform aspect and proper size are more suitable as reference objects in that hexagon
grid zone. (4) Based on the commonly used criteria for estimating the sampling quantity
(the confidence level, 95%; the confidence interval, 3%) [37] and 8875 sub-basins as refer-
ences for estimating the total number of SUs, an appropriate sampling size of reference
SUs should be 952. Accordingly, the research area was divided into 1011 square hexagonal
grids, 59 of which were marked as non-sampling zones, leaving 952 sampling zones to
generate reference SUs (Figure 3a).
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sampling sites of reference SUs. (b) is the relationship between river network density and catchment
area threshold. (c,d) is the scene photo and slope aspect of reference SU C, respectively.

Table 1. Parameters Guide for obtaining reference SUs.

Parameters Criterion Reference

Filling threshold (Positive topography) 40 m; (Negative topography) 60 m [35,36,38]
Catchment area (Positive topography) 3000 pixels; (Negative topography) 3500 pixels [35,36,38]

Aspect circular variance 0.20 ≤ c ≤ 0.30 [14,15,39]
Area The maximum area of candidate reference SU in each sampling zone [14]

3. Methodology

Given the challenges in the determination of the optimal scale and refining of un-
realistic SUs, this study proposes an iterative process to achieve SUs more consistent
with the terrain (Figure 4). (1) Multiple sets of the preliminary SUs are created by the
r.slopeunits v1.0 (created by Ivan Marchesini and Massimiliano Alvioli, Perugia, Italy)
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with multi-parameter combinations. (2) The candidate SUs of good consistency with the
referenced SUs by the measurement of object consistency error (OCE) are selected. Then,
the Global Moran’s I indicating external heterogeneity and global variance to denote the
internal homogeneity are combined and used for the final determination of an optimal
subdivision scale. (3) The local average similarity (LS) with consideration of the spatial
area, common boundary, and neighborhood mutation properties of each SU is created for
the identification of OSSUs and USSUs. (4) Based on multiple local heterogeneities and
potential homogeneity changes, the merging criterion and effective verification procedure
are designed for optimizing the improper SUs.
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Figure 4. Flow diagram of the proposed assessment and local multi-scale optimization method.

3.1. Initial Subdivision of SUs

Due to its extensive use and demonstrated skill in capturing the aspect variability of
the landscape [5,15,39], the r.slopeunits software v1.0 (Ivan Marchesini and Massimiliano
Alvioli, Perugian, Italy) was adopted to obtain the multiple groups of the preliminary
subdivision of SUs. Given a DEM and some input parameters, the algorithm first partitions
the digital topography into several larger half basins (HBs); then, the sub-basins are
continuously divided under the reduced factor (r) of the initial flow accumulation area
threshold (t) in each iteration [39]. When the child of an HB matches the user-defined
parameters of minimum area (a) and circular variance (c), it is selected as a candidate SU
and the iterative procedure ends. The software of r.slopeunits v1.0 was obtained from the
portal of the Geomorphology Research Group (http://geomorphology.irpi.cnr.it/tools/
slope-units (accessed on 10 June 2022)). Users need to define the following parameters: the
initial flow accumulation area threshold (t), minimum surface area (a), minimum circular
variance (c), reduction factor (r), threshold value for the cleaning procedures (Cleansize).

http://geomorphology.irpi.cnr.it/tools/slope-units
http://geomorphology.irpi.cnr.it/tools/slope-units
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3.2. Determination of the Optimal Subdivision Scale
3.2.1. Object-Level Consistency Error (OCE)

The ability to explicitly calculate the error between the automatically extracted SUs
and the reference SUs from the ground truth is of prior importance in our assessment frame-
work. It is the first step for eliminating the unreasonable SUs result. The common error
measures are constructed by regarding the assessment as a process of intersection (correct)
or difference (wrong) pixel labeling [40,41]. Consequently, it cannot accurately distinguish
the error originated from under-subdivision or over-subdivision. When the combination
of multiple extracted SUs is exactly the same as reference SUs, the error measure would
consider the two to be consistent. Therefore, the object level consistency error (OCE) was in-
troduced to evaluate the performance of extracted SUs objectively [25]. The error measures
are based on object-by-object comparisons of extracted SUs and reference SUs. Compared
to existing error measures, it can take into account the size, shape, and position of each
recorded SUs at the object level. Moreover, it is sensitive to both under-subdivision and
over-subdivision, which contributes to make reasonable inferences from stepwise errors
evolution analyses. The OCE is calculated as:

OCE(Ig, Is) = min(Eg,s, Es,g) (1)

where Eg,s represents the part error of automatically extracted SUs to reference SUs, and Es,g
represents the part error of reference SUs compared to automatically extracted SUs. The part
error Eg,s is measured as:

Eg,s(Ig, Is) =
M
∑

j=1

[
1−

N
∑

i=1

|Aj∩Bi|
|Aj∪Bi| ×Wji

]
wj,

Wji =
δ(|Aj∩Bi|)|Bi |

N
∑

k=1
δ(|Aj∩BK|)|Bk |

,

Wj =
|Aj|

∑M
l=1|Al |

(2)

where Ig = {A1, A2, . . . , AM} is the reference SUs, and Aj is the jth SU in Ig; Is = {B1, B2, . . . , BN}
is the automatically extracted SUs, and Bi is the ith SU in Is;

∣∣Aj
∣∣ represents the number

of grid cells in A;
∣∣Aj ∩ Bi

∣∣ and
∣∣Aj ∪ Bi

∣∣ denotes the intersection and combination of Aj
and Bi, respectively; Wji weights each Bi that intersects with Aj according to the size of Bi
relative to all grid cells in Is that intersect with Aj; Wj weights the importance of Aj relative
to Ig; δ(x) is the delta function. In addition, Eg,s is calculated by replacing Aj and Bi in
Equation (2).

OCE is normalized between [0, 1], where 0 means completely consistent without error,
1 means completely mismatched. It is generally considered that OCE < 0.35 has good con-
sistent matching [25,27]. The standardized acquisition of ground truth (reference) objects
is fundamental to the proper functioning of OCE. The lack of explicit correspondence
between historical landslides and extracted SUs is not recommended as reference objects.
Experts should widely accept high quality reference SUs following detailed processing
guidelines to eliminate subjectivity and enhance reproducibility.

3.2.2. Global Optimal Heterogeneity

A moderate scale of subdivision of the terrain is also required to pursue a global
optimal optimum. All the SUs should maximize the internal and external heterogene-
ity. The SUs closest to this assumption should be selected as the global optimal scale.
The Global Moran’s Index (MI) and global variance (V) are adopted to make a straight-
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forward evaluation of external heterogeneity and internal homogeneity, respectively [42].
The two quantities are calculated by Equations (3) and (4):

MI =
m

m
∑

i=1

m
∑

h=1
wih(yi − y)(yh − y)

m
∑

i=1
(yi − y)( ∑

i 6=h
∑ wih)

(3)

V =

m
∑

i=1
sici

m
∑

i=1
si

(4)

where m is the total number of SUs; wih is an indicator for spatial proximity, whose value
equals 1 when SUh and SUi share a common border, 0 otherwise; yi is the average aspect of
SUi, y is the average aspect of the whole terrain aspect; si and ci are the area and circular
variance of SUi. Note that the angle is needed to convert to radians. The average values and
the difference should be intended vectorially following the equation in Alvioli et al. [15].

The global heterogeneity score (GS) is calculated by Equation (5):

GS =
Vmax −V

Vmax −Vmin
+

MImax −MI
MImax −MImin

(5)

The group of highest GS is considered to achieve the maximum balance of the internal
homogeneity and external heterogeneity and identified as the best subdivision. However,
as the candidate SU scale sets gradually increase, the maximum or minimum of MI and
V may change accordingly and so does the highest GS value. To compensate for the
uncertainty in confirming the optimal scale in existing methods, a combinative use of
the OCE strategy is implemented. The measures of OCE are first performed to filter out
unrealistic terrain subdivisions, and then qualified SU groups are left to participate in the
calculation of GS values.

3.3. Identification of USSUs and OSSUs

Accurately distinguishing these unreasonable SUs is critical for subsequent providing
refining objects. In this section, a new metric is designed to automatically detect those
unrealistic SUs and categorize them as USSUs and OSSUs. Their specificities are summa-
rized from field investigation and three-dimensional topographic analysis. From a general
impression, the USSUs form a larger area than their adjacencies, and a loose boundary
along the landform. They have stronger aspect differences between their adjacencies and
low intra-unit similarity. Correspondingly, the OSSUs have smaller and more fragmentized
sizes than normal units. They are usually mixed with surrounding SUs and share a rela-
tively long common boundary. Thus, the OSSUs have higher intra-unit similarity and few
differences in aspect with their adjacencies.

To compare the similarity and difference of each unit in a more reasonable way, we took
the indirect value of the neighborhood variability of aspect difference or standard deviation
rather than their direct values. The average value of all the adjacent SUs was taken as
the reference standard of the normal level. The ratio of the SU value to the average value
was the neighborhood variability. When the ratio was far from 1, the magnitude of the
difference from the normal value was highlighted.
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Firstly, the interior similarity and adjacent differences for each SU were determined by
the neighborhood variability of aspect difference (Da) and the neighborhood variability of
aspect standard deviation (Dsd), as shown in Equations (6) and (8), respectively.

Da
i = Yi/(Yi) = Yi/(

m
∑
i

wimYm

∑
i 6=m

∑ wim
) (6)

Yi = (

m
∑
i

wim
∣∣yi − ym

∣∣
∑

i 6=m
∑ wim

) (7)

Dsd
i = SDi/SDi =

m
∑
i

wimSDm

∑
i 6=m

∑ wim
/SDi (8)

where Yi and Yi is the aspect difference of SUi and the average value difference with
its adjacent SUs, respectively; yi, wim are defined as in Equation (3); SDi and SDi is the
standard deviation of SUi and the average value of its adjacent SUs, respectively.

These SUs conflicted with the original terrain discontinuity, and had spatial features
that were too large, too small, or oddly shaped. Secondly, to improve the accuracy of the
identification, the diversity of the SUs’s size and boundary were considered by introducing
the area ratio (ra) and the length ratio (rl), respectively. The area ratio ra for each SU was
calculated as in Equation (9), where ai and am was the s area of SUi and its adjacent SUs,
respectively. The length ratio rl was the maximum length of the common boundary to its
perimeter, calculated using the Equation (10), indicating the degree of coincidence of the
common boundary. Where pi and lin were the perimeter of SUi and the length of common
boundary of its adjacent SUs, respectively:

ra
i = ai/

m

∑
i

wimam (9)

rl
i =

max
[
li1 , li2 , li3 , . . . . . . , lin

]
pi

(10)

Subsequently, the area, boundary and aspect difference were integrated into local
heterogeneity heL, which was calculated with Equation (11). Similarly, the area and aspect
uniformity were integrated into local homogeneity hoL and calculated with Equation (12).

heL
i = (ra

i +
1

1 + rl
i
)Da

i
2 (11)

hoL
i ==

1
1 + ra

i
Dsd

i
2 (12)

The design structure of the formulas was ingenious. Taken heL for example, the form
of the square power function could enhance specificity with Da larger than 1. The part of
(ra

i +
1

1+rl
i
) was a combinatorial representation of the SU’s local area feature and boundary

morphology, acting as the coefficient of Da. The single excessive Da was neutralized with
smaller coefficients when the area and common boundary of the SUs were not in accord
with USSUs, thereby reducing the probability of being misjudged.

Finally, after performing a normalization procedure for heL and hoL, a general algebraic
formula was employed to characterize the quantitative comparison of two parts [27].



Remote Sens. 2022, 14, 3444 10 of 22

The metric of local average similarity (LS) for each SU was calculated with Equation (13),
where the LS was in the range [−1, 1].

LSi =
hoL

i − heL
i

hoL
i + heL

i
(13)

It is easily inferred that a higher LS represented the stronger nature of hoL (local
homogeneity) and was preferred to be identified as an OSSU. Conversely, a smaller or
even close to −1 LS, represented the SUs with weak hoL but high heL (local heterogeneity),
which is in accord with an USSU.

The metric of local similarity was able to transform the evaluation object from a general
entirety to each precise individual, which was an obvious improvement in evaluation scales.
For demonstrating the role of spatial boundary features and neighborhood variability in
the identification of OSSUs and USSUs, three local similarities (LS) from different variables
were prepared: (1) No A condition, where the factors related to difference Da or standard
deviation Dsd were replaced with the actual value; (2) No B condition, where the factor
related to spatial size and boundary as ra and rl were discarded; (3) A and B condition,
where both of the spatial features and neighborhood variability were taken into account.

The histogram frequency diagram of LS was established to demonstrate the distribu-
tion of the SUs with different properties at the optimal scale. Through the dual inspection of
OCE and GS value, the selected optimal scale can make the majority of SUs consistent with
the subdivision of the terrain and they were defined as moderate-subdivided SUs (MSSUs).
The remaining small part of specific local heterogeneity or homogeneity was concentrated
near the 1 or −1 of LS. The X-axis is the LS value, and 40 intervals of 0.05 were assigned in
the range [−1, 1]. The discontinuity points of curve shapes on [−1, 0] and [0, 1] were used
as threshold intervals to distinguish the USSUs, MSSUs and OSSUs. The discontinuities
were calculated by the maximum between-cluster variance (Otsu) method [43].

3.4. The Optimization of USSUs and OSSUs

Setting separately variable (smaller or larger) scales for certain parts during the de-
lineation of SUs remained a conceptual problem with operational difficulty [44]. After
being marked as unrealistic SUs, a new effective optimization mechanism containing the
re-subdivision of USSUs and merging of OSSUs was put into effect.

Firstly, the regions related to USSUs were substituted by corresponding SUs in multiple
finer subdivisions, following which the substitution of the highest GS was considered as the
best. Nevertheless, the optimal substitution could not guarantee to be the proper terrain re-
subdivision for all coexisting USSUs. Some substitutions might generate new subdivisions.
Therefore, the re-subdivision of SUs will be marked as OSSUs for examination in the next
optimization stage.

Then, although those aggregated and adjacent SUs could be amended conveniently
and effectively through merging, the technical difficulties were merging sequences and
preventing excessive merging. Referring to Section 3.3, the sub-region merging metrics
of local similarity change (LSC) were defined. The principles of LSC merger guidelines
were as follows: on the one hand, local heterogeneity (heL) had a fundamental effect on
determining the merging order. Among two or more neighboring OSSUs, the one of lower
local heterogeneity had merging priority. On the other hand, the internal homogeneity
changes between the new SUs and the original SUs needed to be estimated. The merging
between quite different SUs could generate new SUs with complex internal structures.
It is the situation of over-merging and should be avoided. The formula mode is shown
in Equation (14), and each OSSU can obtain the value by merging with its adjacent and
largest SUs.

LSCA = heL
Ae[yCSDC− 1

2 (yASDA+yBSDB)] (14)

where SUC is the new SU generated by the SUA merges with its adjacent SUB. y is the
average aspect of SU and acts as the weight of the standard deviation, which are combined



Remote Sens. 2022, 14, 3444 11 of 22

to represent the uniformity of SU. A given threshold of LSCT is used for quantifying those
excessive merging situations. The LSCT is consulted from a large number of LSC produced
by an artificial training merging process and is presented detailed in optimization results.
In our study, we used a Debian GNU/Linux10.0 system (https://www.debian.org/releases/
stable/ (accessed on 10 June 2022)) and GRASS GIS 7.6.0 software to invoke the vector
commands of v.category, v.edit and v.dissolve (https://grass.osgeo.org/grass80/manuals/
vector/ (accessed on 10 June 2022)) and execute the multi-scale optimization of USSUs
and OSSUs.

4. Results
4.1. Global Optimal Subdivision Scale

Considering the diversity of the Yuqu River Basin, the t parameter attempted to
set additional multiple values, from 50 × 104 m2 to 150 × 104 m2 with an interval of
25 × 104 m2. The other parameters were set as the recommended defaults [5,14,15,39]
(Table 2). There were 30 valid terrain subdivisions obtained from different combinations of
the (t, c) parameters. Figure 5 shows 8 of the 30 results, from the finest to the coarsest SU
partitioning, from the upper left corner of (50, 0.1) to the lower right corner of (150, 0.6).
The level of detail of the SUs’ subdivisions depends heavily on the changes in parameter
combinations of (t, c), especially the parameter t. However, the parameter t was considered
as having no explicit geomorphological meaning and it was suggested to have a large value
(500 × 104 m2) in previous studies [14,15,39]. Compared with the reference SUs, extremely
large or extremely small t (such as 50 or 150× 104 m2) cannot produce a proper subdivision
of the landscape.

Table 2. Parameters settings for r.slopeunits.

Parameter Value Setting

Initial flow accumulation threshold (t) (50, 75, 100, 125, 150) × 104 m2

Minimum circular variance (c) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6)
Minimum surface area (a) 300,000 m2

Reduction factor (r) 11
Cleaning size 15,000 m2Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 24 
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The quantitative indicators of OCE and GS were thoroughly exploited to determine
the optimal scale. Firstly, the errors between 952 reference SUs and the corresponding
extracted SUs of different scales were calculated. As is shown in Figure 6a, the errors were
at a consistently high level at the finer scale. With the gradual increase of t from 50 to
100 × 104 m2, the errors decreased accordingly until they stabilized. However, the errors
increased again as t continuously increased to 150 × 104 m2. The evolution features of
OCE are significant because they are consistent with the three stages of over-subdivision,
optimal-subdivision and under-subdivision as scale increases scale. The evolution trend
analysis indicates that the t of 100 × 104 m2 represents an appropriate scale.
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OCE under 0.35. (c,d) are the GS and global MI, global V of 30 SUs, respectively. The red dotted
icons in (d) indicate the MI and V involved in the calculation of GS of (b).

Furthermore, there were 15 groups of SUs selected as meaningful subdivisions to
perform the normalization step, when OCE < 0.35 was set as the screening criterion. They
are SUs’ groups with the parameter combinations of t (75, 100, 125) and c (0.2, 0.3, 0.4, 0.5,
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0.6). The GS value of those candidate groups is shown in Figure 6b. The maximum GS is
1.88 with the parameter combination of (100, 0.3), indicating that both internal homogeneity
and external heterogeneity are the greatest. This is selected global optimal SUs’ subdivision
in this paper. As a comparison, under the method of Alvioli et al. [14,15] and Jacobs et al. [5]
without the inspection of the OCE, the GS was calculated in Figure 6c. The highest GS
value of all 30 groups was 1.83 produced by the parameter combinations of (100, 0.1), which
would be judged as optimal under the existing method. However, the SUs of (100, 0.1) are
distinctly over-subdivided for the landscape (Figure 5) and the OCE is accordingly as high
as 0.38. The scale of (100, 0.3) from the new proposed method is more appropriate for the
selection of the optimal scale.

To understand why different optimal scales are generated by the two methods, each
MI and V in the calculation of GS were collected in Figure 6d. The MI and V indices of
different scales SUs groups varied widely. Following the gradual increase of the scale pa-
rameters, the holistic trend of MI index went through reduction, stabilization and increase
successively, and the V index increased monotonically. With the candidate SUs’ groups
increasing from 15 to 30 or even 100, the maximum or minimum of MI and V may show
new changes and eventually an uncertain optimal scale is generated. It is originated from
the absence of an effective screening mechanism and an inherent drawback of unsupervised
evaluation. Therefore, the candidate groups can be confirmed by retaining only meaningful
subdivisions when jointing the supervised evaluation of OCE, thus producing a stable
and consistent optimal scale. This complementary evaluation strategy is a significant
improvement over the existing method.

4.2. Identification Result of USSUs and OSSUs

In this section, the OSSUs, MSSUs and USSUs were distinguished at the selected
optimal scale. The frequency distribution with three kinds of LS are shown in Figure 7.
In the No A condition (Figure 7a), the frequency of LS appeared to be relatively concen-
trated in the range of [−1.0, 0], and the frequency of the cumulative curve did not show
discontinuity characteristics, as expected. In Figure 7b,c, instead, the frequency followed a
normal distribution, and emerged with good discontinuity at the ends. Further, compared
to A and B condition, the frequency of No B condition was more concentrated in the middle
interval of LS, and less distributed at high values, implying that more SUs may be identified
as MSSUs and insufficient SUs are classified into OSSUs.

Consequently, the thresholds of discontinuity points were calculated from the fre-
quency cumulative curve via the Otsu method [43]. The results were summarized in Table 3
and typical examples of classification were given in Figure 7d–f. For the No A condition,
due to the absence of neighborhood variability, poor discriminative power was exhibited
for all three types of SUs, both in terms of quantity and accuracy (Figure 7d). Subsequently,
the recognition capability of USSUs was improved in No B condition, as only the SU with
distinct differences from its surrounding SUs were identified as USSUs, and the proportion
descended from 61.14% to 3.14% (Table 3). However, many SUs with narrow and long
boundaries were still wrongly selected as MSSUs and the recognition ability for OSSUs was
insufficient (Figure 7e). Once spatial weight and neighborhood variability both functioned
during the identification process, more SUs was marked as OSSUs, with an increase from
8.31% to 14.6%. The USSUs are also more reasonable, with large SUs correctly distinguished
and small SUs excluded (Figure 7f). The threshold ranges of USSUs, MSSUs and OSSUs are
[−1, −0.4], [−0.4, 0.6] and [0.6, 1], respectively.

Table 3. Classification threshold and corresponding proportion of MSSUs, USSUs and OSSUs.

Feature
Selection

USSUs
Threshold

MSSUs
Threshold

OSSUs
Threshold

USSUs
Percentage

OSSUs
Percentage

No A (−1.0~0.60) (−0.60~0.90) (0.90~1.0) 61.14% 4.28%
No B (−1.0~0.35) (−0.35~0.60) (0.55~1.0) 3.41% 8.31%

A and B (−1.0~0.40) (−0.40~0.60) (0.60~1.0) 1.63% 14.6%
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Figure 8 shows the spatial distribution of each type of SU in the Yuqu River Basin.
A total of 6514 SUs, 106 cases of USSUs with an average area of 3.47× 106 m2, and 952 cases
of OSSUs with an average area of 2.41 × 105 m2. As details are shown in local regions,
the large SUs that divided the whole gentle valley into one SU are correctly classified as
USSUs (Figure 8a), and the narrow polygons formed by the interference of broken steep
terrain are labeled as OSSUs (Figure 8b,c). Therefore, the method proposed for identifying
USSUs and OSSUs is practicable.

4.3. Multi-Scale Optimization of Undesirable SUs

According to the multi-scale optimization method proposed in Section 3.4, ascertaining
the merging threshold of the OSSUs is crucial. Some of the samples are shown in Figure 9a,b.
There are 392 MSSUs obtained at the selected optimal scale (100, 0.3) and 1009 SUs assumed
as OSSUs in the corresponding region at the finer scale (75, 0.3). A total of 1637 reference
LSC values gained pass through five simulation merging processes (Table 4). The frequency
distribution of LSC in each iteration is shown in Figure 9c; the main interval gradually
increases with upper limit. Therefore, the frequency cumulative curve is constructed by
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summarizing the LSC of five merges. A value below 95% of all LSC is selected as the final
merging criteria, that is, LSCT < 0.50.
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Table 4. Statistical table of artificial merging process from OSSUs to MSSUs.

Sequence Total
Number

New
Completed

Not
Done

Completed
Proportion

Initial SUs 0 1009 0%
1st merging 1009 214 403 54.59%
2rd merging 617 138 179 89.79%
3th merging 531 27 40 96.68%
4th merging 419 9 6 98.97%
5th merging 398 4 0 100%

Total 392 1637

Subsequently, the gradual optimization process is shown in Figure 10. The original
SUs at the selected optimal scale of (100, 0.3) (Figure 10a) are categorized as OSSUs, MSSUs,
USSUs (Figure 10b). As the second operation, the USSUs were replaced with the corre-
sponding three finer SUs of (100, 0.2), (75, 0.2) and (75, 0.3), respectively. The substitution
with the largest GS value of (100, 0.2) was considered the appropriate re-subdividing SUs.
As is shown in Figure 10c, those USSUs of super-large area were effectively partitioned into
two to four more refined SUs. There are 756 finer SUs generated by the re-subdividing pro-
cess of the 106 USSUs and re-classified as OSSUs (Table 5). In compliance with the merging
criteria of LSCT < 0.5, 1708 SUs were merged for the first time and 867 SUs required a next
merge iteration. Finally, the same merging iterations were executed four times until the new
LSC did not meet the condition. 1058 undesirable SUs were refined into 1117 appropriate
SUs with the scale combinations of (100, 0.2), (100, 0.3) and other coarser scales. The OCE
was improved to as low as 0.22 with a decrease of 27%.
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Figure 10. Gradual optimization process by the proposed method. (a) are the original SUs at optimal
scale of (100, 0.3). (b) are the classification for the original SUs before refining. (c) are the first
operation of replacing the USSUs with finer scale of (100, 0.2). (d) is the final MSSUs after refining
unrealistic SUs.



Remote Sens. 2022, 14, 3444 17 of 22

Table 5. Statistical table of gradual optimization process from OSSUs and USSUs to MSSUs.

Classification
Initial State Replacement 1st Merging 4th Merging

Number OCE New SUs Number LSC < 0.5 New SUs LSC < 0.5 OCE

OSSUs 952

0.30

0
1708

880
17 0

0.22
USSUs 106 756 415
MSSUs 5456 0 5456 0 1100 0

Total 6514 756 7164 1295 1117 0

With the aid of the field photography, a detailed comparison between the SUs of a
single optimal scale and refined SUs after multi-scale recombination was carried out in the
red box marked in Figure 10. As is shown in Figure 11c, almost each SU has achieved accu-
rate matching with the terrain discontinuous line. Those tiny OSSUs without any terrain
meaning have been merged with adjacent larger SUs. The USSUs of watersheds or large
valleys have been re-subdivided along the inherent aspect turnings. Through comparing
the SUs of yellow dashed lines, the refined SUs have better performance than the original
SUs (Figure 11b) in terms of consistency with the actual scene. Therefore, the proposed
multi-scale optimization method has well improved the limitation of matchless between
the SUs and the geomorphologic background under a single scale.
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Figure 11. Comparison between the original SUs at single optimal scale and the refined SUs after
multi-scale recombination. (a) is the field photo for verification, (b) are the original SUs before
improvement. (c) are the final refined SUs achieved by the proposed optimization method, and the
yellow dashed line marks the corresponding SUs in (a).

5. Discussion
5.1. Rationality of the Evaluation and Post-Processing for the Optimal Scale

The existing measures cannot address issues in determining the input scale parameter
for the automatic delineation of SUs. Additionally, there is a lack of subsequent solution for
unrealistic SUs generated from a single optimal subdivision, especially in complex terrains.
This paper applied an effective subdivision quality evaluation and multi-scale refinement
approach to improve consistency in a complex natural landscape. The parameters and cri-
teria involved in the improved method are objective and can be established independently
from the geographical extent. It is the first application for the improvement of individual
SUs objects from automatic subdivision procedures in the Tibetan Plateau.
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The advantages of unsupervised evaluation cooperated with supervised means for de-
termining the optimal scale were significant. The method enriched the scientific justification
for matching between the global optimal scale and the actual land surface discontinuities.
The uncertainty in calculating the GS value was removed through defining qualified candi-
date SUs’ groups. Compared to previous research [14,15,39], the OCE could serve as a new
supervised evaluation tool for comparing terrain subdivision algorithms and adjusting the
subdivision parameters. The 952 reference samples used for this study are compliant with
the standard SU definition, sampling from the entire basin at equal intervals. They are capa-
ble of representing the local topography and actual land surface discontinuities. The OCE
can be used to reliably quantify the error with the subdivision SUs with different levels
of details. The discrepancy value during the process of the overgrowth parameters can be
sensitively confirmed, as the OCE accordingly went through the decreasing, plateauing
and increasing phases. Moreover, the cooperative evaluation application was sequential.
The OCE, acting as supervised evaluation, was first performed to filter out unrealistic
terrain subdivisions, and qualified SUs groups were left to participate in the calculation
of GS values. Consequently, the very fine scale (100, 0.1) improperly determined as the
optimal subdivision by the previous method was eliminated. In addition, the parameter t
contributed the fundamental upslope area for the calculation of the orientation average
value and circular variance and should be dealt with as prudently as parameter c.

Further, the spatial characteristics of each SU’s area, boundary and aspect were suffi-
ciently emphasized and effectively integrated during the processes of identification and
optimization. The measuring of local homogeneity and heterogeneity for each SU was
ingenious and practicable. In particular, the variability of aspect beyond the normal level
of the surrounding regions could more appropriately indicate the differences and simi-
larities between each SU and its adjacent SUs. Due to the scarcity of available statistical
properties, the diversity of the SUs size and boundary were taken into account and acted
as a neutralization coefficient. Only when the difference or similarity of aspect were in
accord with the features of boundaries and regions can the specificities of local hetero-
geneity or homogeneity be outstanding. Thus, this linkage mechanism could reduce the
probability of misclassification. Although the assumption that the discontinuity of the
curve was consistent with the threshold interval of the SUs’ classification lacks sufficient
theoretical basis, it was an efficient and reproducible objective method. Compared with the
single optimum parameter optimal, those regions with special landforms demanded other
coarser or finer parameters. Both the re-subdivided with the finer scale for USSUs and
the re-merged with adjacent SUs for OSSUs were defined as detailed operation guidelines.
An effective examination criterion was implemented for the two refinement stages, and the
reference knowledge was obtained through many manual merging training processes. After
a series of identification, re-subdivision and merging processes, the SUs’ groups consisting
of multiple scales were achieved. This is currently one of the few available methods for
non-single scales.

5.2. Terrain-Adaptive Performance of the SUs Subdivision

Owing to the complex terrains of the Yuqu River Basin and the diversity of thousands
of SUs, evaluating the performance of the SUs’ subdivision against the corresponding topo-
graphic feature was not an easy target. The density, spatial scale, and spatial morphology
of the SUs in four topographic patterns were statistically analyzed. In general, the slopes
tended to be long and large at the bigger relative relief with severe geomorphic cutting,
so the density, size and shapes of SUs should be distinguished from those of small and
low elevation differences. Firstly, the I, II, III and IV geomorphic regions were divided
into 2~4 intervals according to the 300 m interval of elevation difference. As shown in
Figure 12a,b, the average density of SUs (the ratio of the number of SU to the area of the
statistical interval) decreases linearly with the increase of the elevations’ relative relief,
and the average area of SUs increases. In the high hilly zone (I), the height difference
was between 0.5~1.1 km, the SUs presented the most intensive distribution with average
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density values (1.47 SU/km2), which corresponded to a large number of homogeneous
low-lying hills and valleys. In the alpine gorge zone (IV), the height difference was between
1.4~2.3 km, the average area of SUs was shown as a maximum value of 0.99 km2, which is
in accordance with a tall valley formed by the rapid river downcutting.
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In addition, the shapes of SUs were also sensitive to various topographic features.
The shape index (R index) was calculated using the equation from Hang et al. [18,45],
which was the ratio of the square of the perimeter to the corresponding area. For more
narrow-flat or more strip-shaped polygons, the R index increased, such as the triangle is
20.78 and the rectangle that the length to width of 6:1 is 32.67. As shown in Figure 12c,
the shape index of SUs from each geomorphic region were distinguishable. The average
minimum value of the R index in the high hilly zone (I) was about 27.72, showing that the
geometric shape more resembled a triangle. Even in the same height interval of 0.8~1.1 km,
the R index of the middle-high mountain zone (II) was as high as 31.5, indicating that the
shape of SUs were narrower and longer. It conformed to the characteristics of mountain
landscape shaped by glacier erosion. The sensitive change of the R index also existed
in the interior of geomorphic regions, especially the gorge transition zone (III). The R
index in the interval [0.9–1.2 km] connecting the broad and gentle landform in the upper
reach was 27.01, implying a more uniform shape of aspect ratio of the SUs. However,
the R index was 34.05, up 25% in the interval of [1.2~1.5 km] transition to deep canyon
landform, corresponding to a narrow strip shape change of SUs. Therefore, the multi-scale
optimization of SUs was able to capture the morphological variability of the landscape and
divided the study area into SUs with different shapes and sizes.

6. Conclusions

A set of appropriate SUs that properly partition a complex landscape into reasonable
terrain subdivisions is crucial for landslide sensitivity modeling. Difficulties in determining
the input scale parameters and the absence of subsequent amending procedures have
restrained the wide application of existing automatic extraction methods. An improved au-
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tomatic subdivision quality evaluation and multi-scale refinement method were proposed
in this paper. An evaluation approach coordinated with supervised and unsupervised
means were exploited. The OCE value is an effective discrepancy metric that can inhibit the
uncertainty existing in optimal scale from the combination of global variance and global MI.
Multiple space geometry features and aspects were effectively integrated into the process
of the identification and refinements of undesirable SUs. In the example region, 6514 SUs
were automatically obtained at the optimal subdivision scale, of which 106 cases were
distinguished as USSUs and 956 were OSSUs. To better deal with unreasonable SUs at
the selected single optimal scale, an effective optimization mechanism was established.
The final SUs’ groups composed of terrain subdivisions with multiple scales were achieved,
which is an infrequently available method for non-single scales. Field investigations and
statistical distribution characteristics have demonstrated the excellent performance of the
SUs for the corresponding geomorphological reality. With improved organization and
distribution of geoenvironmental data, the refining SUs have great application potential
in landslide sensitivity modeling and other situations that require the identification of
homogeneous terrain domains.
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Variable Description First Introduced
a Minimum surface area (m2) r.slopeunits parameter
c Minimum circular variance r.slopeunits parameter
t the initial flow accumulation area threshold (m2) r.slopeunits parameter
r Reduction factor r.slopeunits parameter
OCE the object-level consistency error Equation (1)
MI Moran’s I index Equation (3)
V Variance index Equation (4)
GS the global heterogeneity score Equation (5)
Da the neighborhood variability of aspect difference Equation (6)
Dsd the neighborhood variability of the standard deviation Equation (8)
ra the area ratio of SU to its total area of adjacent units Equation (9)
rl the degree of coincidence of the common boundary Equation (10)
heL Local heterogeneity Equation (11)
hoL Local homogeneity Equation (12)
LS the average local similarity Equation (13)
LSC the average local similarity change Equation (14)
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