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Supplementary materials 

S1. SEBS for estimating daily ET 

S1.1 Theoretical background 
The SEBS is based on the theory of surface energy balance, linearly expressing the 

relationship between different heat fluxes as follows [7]: 

n wR G H etλρ= + +                           (S-1) 

where Rn is net radiation flux at the surface (J m-2 s-1); G is soil heat flux (J m-2 s-1); H is turbulent 
sensible heat flux (J m-2 s-1); λρwet is turbulent latent heat flux (J m-2 s-1); λ is latent heat of 
vaporization of water (2.47 × 106 J kg-1); ρw is density of water (1,000 kg m-3); et is actual 
evapotranspiration rate (mm s-1). Through taking both short and long wave radiations into 
consideration, Rn is estimated with surface reflectance (calculated using different fitting 
formula changing with remote sensing data sources), emissivity (calculated based on 
normalized differential vegetation index, NDVI) and radiation temperature obtained from 
remote sensing images by atmospheric correction method [18,19]; G is split from Rn through a 
few state variables such as land cover characteristics (often represented by NDVI) and soil 
water content [7,20]. 

Different from other single-source energy balance models, SEBS introduces a parameterized 
calculation method for heat transfer conduction coefficient and estimates the sensible heat flux 
H through an iterative process [21], which can effectively reduce the uncertainty-caused error 
by the scalar roughness height for heat transfer on underlying heterogeneous surface in a large 
scale. Its main simulation process includes: Firstly, based on the similarity theory of 
atmospheric boundary layer, three nonlinear equations are established by combining unknown 
variables such as friction velocity u*, sensible heat flux H and Obukhov length L [22]. Then, the 
equations are iteratively solved by Broyden method to obtain accurate and reliable H. In the 
simulation process, only those readily measured parameters, including wind speed, 
temperature, surface temperature and NDVI at the reference height, are needed, but other 
complicated surface energy balance terms are unnessary to be considered [7]. In a word, et in 
Eq. (S-1) can be conveniently estimated using Rn, G and H obtained from remote sensing images 
and meteorological data through aforementioned process.  

It should also be noted that the images acquired by the satellite during transit are all transient 
results, that is, the regional et obtained based on remote sensing demonstrates an instantaneous 
distribution. However, evapotranspiration dynamics are usually practically required on a daily 
scale. Therefore, the estimated instantaneous et should be up-scaled to a daily average 
evapotranspiration rate ET (mm d-1). SEBS provides an approach to calculate 
evapotranspiration fraction and thus daily evapotranspiration by introducing the dry- and wet-
limit of H to obtain the surface energy balance index (SEBI) “pixel by pixel”. Corresponding 
principle and calculation processes are presented as follows. 

Under the dry-limit condition, soil water supply is absent for evapotranspiration, thus 
leading negligible λρwetdry and maximum Hdry as: 
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dry n w dry nH R -G - λ et R -Gρ= =                      (S-2) 

Contrarily, under the wet-limit, soil water supply yields maximum etwet and thus 
minimum Hwet, i.e.: 

wet n w wetH R -G - λ etρ=                         (S-3) 

Consequently, the relationship between relative evapotranspiration rΛ  (ratio of actual to 

maximum λρw etwet) and SEBI is described as:  
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In meteorology, the ratio of actual latent heat flux to available energy is called 
evapotranspiration fraction Λ , viz.:   

 ( )= 1w r w wet w wet
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On the basis of acquiring instantaneous et (mm s−1) through Eq. (S-1), ET (mm d-1) can then 
be easily calculated by integrating et within 24 hours. Due to the fact that the 
evapotranspiration fraction basically remains unchanged within 1 day, it should be reasonable 
to use the instantaneous Λ to approximate the daily evapotranspiration fraction for obtaining 
ET as Su et al. (2001) [21]:   
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= × × ×                          (S-6) 

where nR  and G  are mean daily net radiation flux and soil heat flux, respectively, in which

nR is estimated using the method recommended by Su et al. (2001) [21], and G  is assumed to 

be zero since the downward soil heat flux during the day is roughly equivalent to the upward 
soil heat flux at night.  
S1.2 Simulation procedure 

Following four steps were designed in the simulation process of SEBS [7]: 
Step 1: A series of surface parameters such as land surface albedo, emissivity, temperature 

and NDVI were inversely estimated using remote sensing data (e.g. visible, near-infrared and 
short-wave infrared bands of Landsat and MOD09GA; thermal infrared band of Landsat and 
MOD11A1, etc.). 

Step 2: Rn was estimated by effective long-wave and short-wave radiation, using surface 
parameters (e.g. solar zenith angle and surface temperature, etc.) derived from remote sensing 
inversion, atmospheric transmittance obtained by quoting the Digital Elevation Model (DEM) 
and measured mean air temperature as the input data. G was estimated through splitting Rn 
according to the vegetation coverage fc calculated from NDVI. 
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Step 3: H was obtained through iteratively solving nonlinear equations between u*, H and L 
based on fc and meteorological data (e.g. wind speed, air temperature and surface temperature) 
according to the atmospheric boundary layer similarity theory. 

Step 4: SEBI was used to define the dry- and wet-limit and calculate Λ  and ET.  
All of the above simulation processes were conducted based on ENVI 5.5 (Exelis Visual 

Information Solutions, America) and Python 2.7 (Python Software Foundation, America). 

S2. ESTARFM for fusing remote sensing data 

S2.1 Theoretical background 
Both ETLandsat and ETMODIS estimated by SEBS were fused through ESTARFM [23] to obtain 

ETESTARFM during the growing season of CFFMDI. Before the fusion, the nearest neighbor 
interpolation method included in ArcGIS10.3 (Esri, America) was used to re-sample ETMODIS 
data to 30 m pixels, which were then accurately registered and clipped with ETLandsat as the 
input data of ESTARFM. The corresponding fusion process was realized through Interactive 
Data Language (IDL) programming according to the equations of Zhu et al. (2010) [23]: 

/2 /2 /2 /2 /2 /2, , , , , ,w w p m m w w p n n w w pET x y t T ET x y t T ET x y t= × + ×（ ） （ ） （ ）       (S-7) 
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where N is the number of similar pixels including the central predicted pixel; w is the width of 
the search window used for distance normalization, set as the recommended value of 5 by Zhu 
et al. (2010) [23]; (xw/2, yw/2) is the central location of predicted pixel; (xi, yi) is the location of ith 
similar pixel (i = 1, 2, …, N), which is identified using a method proposed by Gao et al. (2006)  
[16]; ET (xw/2, yw/2, tp) represents the finally obtained high spatial and temporal resolution ET 
value at prediction time of tp (d) after fusion, in which tp should be chosen between two 
reference times of tm and tn; ETm (xw/2, yw/2, tp) represents the high-resolution ET at tp time, which 
was jointly predicted by combining Landsat plus MODIS images at tm time with MODIS images 
at tp time; Similarly, ETn (xw/2, yw/2, tp) represents the high-resolution ET at tp time, jointly 
predicted by combining Landsat plus MODIS images at tn time with MODIS images at tp time; 
ETL and ETM stand for the abbreviation of ETLandsat and ETMODIS, respectively; Wi is the weight of 
ith similar pixel; Vi is the conversion coefficient of the ith similar pixel considering mixed pixel 
decomposition; Tm and Tn are the temporal weight factors of tm and tn, respectively, calculated 
by: 
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The weight factor Wi characterizes the contribution of the ith similar pixel to change 
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prediction of central pixel ET, which is determined by the position of similar pixel and spectral 
similarity of coarse and fine pixels as: 
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where Ri and di represent the spectral similarity and geographic similarity between the ith 
similar and central pixels, respectively; E is the expected value; D is the variance; ETLi and ETMi 
represent the serial pixel ET values of similar pixels (xi, yi) at all reference moments from 
Landsat and MODIS images, respectively. The conversion coefficient Vi is linearly calculated as 
the slope between ETLi and ETMi:  
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More other details about ESTARFM were described in Zhu et al. (2010) [23].  
S2.2 Data fusion procedure 

During each fusion procedure for a definite prediction time of tp (between tm and tn) in the 
ESTARFM algorithm, three groups (and five series) of ET distributions estimated using 
different remote sensing sources were required as input data: first was originated from fine-
resolution Landsat images at two reference times tm and tn, with two ET series named as 
ETLandsat-m and ETLandsat-n, respectively; second was from coarse-resolution MODIS images at the 
same two reference times with two series of ETMODIS-m and ETMODIS-n, respectively; and the last 
was from MODIS images at tp, with just one serial of ETMODIS-p. The fusion process mainly 
included the following three steps: 

Step 1, selection of similar pixels: Firstly, for the ETLandsat map at each reference time (tm or tn), 
the target pixel was determined (according to the one-by-one selection rule for covering all 
pixels of the map) and taken as the center for searching similar pixels, and a search box (with 
the width of w as shown in Eqs. S-7 and S-8) was set for the neighbor pixels to calculate the ET 
difference between each pixel located in the box and the target pixel. Secondly, the similar 
pixels were identified [16] and classified for Eq. (S-8) and calculation of Wi.  

Step 2, Wi calculation of similar pixels: The weight Wi should be known and distributed for 
each selected similar pixel to estimate ET of the target pixel at the prediction time tp. Its 
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calculation procedures were carried out as follows: (1) Calculations of geographic similarity 
and spectral similarity: According to Eqs. (S-12) and (S-13), the geographic similarity (di) and 
the spectral similarity (Ri) between the similar and central pixels at tm or tn were calculated 
respectively; (2) Weight calculation: On the basis of obtaining di and Ri, Wi was further 
calculated using a normalization method according to Eq. (S-10).  

Step 3, ET calculation of target pixel at tp: (1) Conversion coefficient calculation (Vi): Eq. (S-
16) was used to obtain the value of Vi; (2) With known Wi and Vi, the fine-resolution central 
pixel values ETm (xw/2, yw/2, tp) and ETn (xw/2, yw/2, tp) at tp were calculated according to the two 
pairs of images (Landsat and MODIS respectively) at two reference times of tm (ETL (xw/2, yw/2, 
tm) and ETM (xw/2, yw/2, tm)) and tn (ETL (xw/2, yw/2, tn) and ETM (xw/2, yw/2, tn)) using Eq. (S-8); (3) 
Finally, the fused evapotranspiration value (ETESTARFM) of target pixel at tp time ET (xw/2, yw/2, tp) 
was obtained by the weighted combination of the two predicted results (ETm (xw/2, yw/2, tp) and 
ETn (xw/2, yw/2, tp)) through Eq. (S-7). 

S3. Information of Landsat images used in this study 

Table S1. Specification of Landsat 5, Landsat 7 and Landsat 8 data used in this study 

Date 

(day/month/year) 

Day of 

year 

Overpass 

time 

(UTC) 

Sensor Platform 
Cloud 

cover (%) 
Purpose* 

06/07/2000 188 04:53:42 ETM Landsat 7 0 ET 

24/09/2000 268 04:52:33 ETM Landsat 7 0 ET/LC 

09/07/2001 190 04:53:44 ETM Landsat 7 5 ET 

10/08/2001 222 04:51:03 ETM Landsat 7 2 ET/LC 

14/09/2002 257 04:49:58 ETM Landsat 7 2 ET/LC 

01/11/2002 305 04:49:55 ETM Landsat 7 3 ET 

31/07/2003 212 04:50:33 ETM Landsat 7 1 ET 

03/10/2003 276 04:50:16 ETM Landsat 7 2 ET/LC 

02/08/2004 215 04:50:55 ETM Landsat 7 2 ET 

18/08/2004 231 04:50:54 ETM Landsat 7 3 ET/LC 

18/06/2005 169 04:51:32 ETM Landsat 7 3 ET 

21/08/2005 233 04:51:24 ETM Landsat 7 1 ET/LC 

31/07/2006 212 04:55:21 TM Landsat 5 0 ET 

17/09/2006 260 04:55:55 TM Landsat 5 4 ET/LC 

02/07/2007 183 04:55:53 TM Landsat 5 4 ET 

19/08/2007 231 04:55:25 TM Landsat 5 9 ET 

04/09/2007 247 04:55:15 TM Landsat 5 3 LC 

18/06/2008 170 04:49:42 TM Landsat 5 15 ET 

29/08/2008 242 04:51:09 ETM Landsat 7 0 LC 

10/08/2008 282 04:46:27 TM Landsat 5 0 ET 

23/07/2009 204 04:51:04 TM Landsat 5 3 ET 

08/08/2009 220 04:51:18 TM Landsat 5 0 ET 
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24/08/2009 236 04:51:33 TM Landsat 5 8 LC 

08/06/2010 159 04:52:46 TM Landsat 5 0 ET 

11/08/2010 223 04:52:26 TM Landsat 5 6 ET 

19/08/2010 231 04:54:20 ETM Landsat 7 7 LC 

03/07/2011 194 04:51:15 TM Landsat 5 0 ET 

29/07/2011 210 04:51:06 TM Landsat 5 0 ET 

07/09/2011 250 04:55:26 ETM Landsat 7 0 LC 

24/08/2012 237 04:57:19 ETM Landsat 7 1 ET 

25/09/2012 269 04:57:39 ETM Landsat 7 3 ET/LC 

19/08/2013 231 05:04:08 OLI_TIRS Landsat 8 0.53 ET 

04/09/2013 247 05:04:08 OLI_TIRS Landsat 8 0.06 ET/LC 

21/07/2014 202 05:01:59 OLI_TIRS Landsat 8 2.21 ET 

06/08/2014 218 05:02:07 OLI_TIRS Landsat 8 3.32 ET/LC 

21/05/2015 141 05:01:09 OLI_TIRS Landsat 8 2.21 ET 

10/09/2015 253 05:01:59 OLI_TIRS Landsat 8 3.05 ET/LC 

24/06/2016 176 05:01:53 OLI_TIRS Landsat 8 11.58 ET 

11/08/2016 224 05:02:08 OLI_TIRS Landsat 8 2.71 ET/LC 

13/07/2017 194 05:01:55 OLI_TIRS Landsat 8 2.36 ET 

29/07/2017 210 05:02:03 OLI_TIRS Landsat 8 1.43 ET 

15/09/2017 258 05:02:13 OLI_TIRS Landsat 8 4.68 LC 

14/06/2018 165 05:00:59 OLI_TIRS Landsat 8 3.89 ET 

17/08/2018 229 05:01:33 OLI_TIRS Landsat 8 8.42 ET/LC 

03/07/2019 184 05:02:01 OLI_TIRS Landsat 8 0.11 ET 

21/09/2019 264 05:02:25 OLI_TIRS Landsat 8 0.46 ET/LC 

05/07/2020 187 05:01:55 OLI_TIRS Landsat 8 15.47 ET 

22/08/2020 235 05:02:11 OLI_TIRS Landsat 8 2.02 ET/LC 

Note*: ET and LC in the purpose column refer to the remote sensing data used for evapotranspiration 

estimation and land use classification, respectively. 

S4. Results and discussion about land use identification and classification 

S4.1 Accuracy evaluation of identification and classification 
Comparison results showed that the classification accuracy of each year was very similar to 

each other in the 21 years. For simplicity, 1386 classification samples in 2018 and 2019, 
comprising of 1000 crop field samples obtained from regional investigation and 386 other 
feature samples from visual interpretation, were representatively used to demonstrate the 
accuracy evaluation of identification and classification. Based on the RF model, two Landsat 
remote sensing images on August 17, 2018 and September 21, 2019 were selected to carry out 
surface feature identification and classification for the oasis in MRB. By comparing with visual 
interpretation results, the land use classification confusion matrix was formulated (Figure S1), 
wherein the diagonal elements were the producer’s accuracies. The overall accuracy, Kappa 
coefficient and user’s accuracies of various land cover classes calculated by confusion matrix 
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were demonstrated in Table S2. Correspondingly, the accuracy evaluation indices showed that 
the land use classification and identification had OA greater than 0.88, and Kappa coefficient 
not less than 0.86. 

As for the identification of cotton fields, the cotton validation samples were rarely 
misclassified into other features with PA above 0.93 (Figure S1). The proportion of other 
features mistakenly divided into cotton was slightly higher with UA of about 0.86 (Table S2), 
due to the growth differences of cotton in the whole basin. Compared with other land features, 
grape vineyard, pepper and maize are most likely to be confused with cotton in classification 
(Figure S1), mainly due to their similar growth period and spectral characteristics. Nevertheless, 
from the results of UA and PA, the misclassification ratio between them was acceptable. 
Therefore, the recognition results of cotton fields can be further applied. 

 

Figure S1. Confusion matrix of surface feature classification in (a) 2018 and (b) 2019. Note: Each 
column represents the real category of the instance, and each row represents the predicted 
category of the instance; The main diagonal value is producer’s accuracy) 

Table S2. Classification accuracy statistics in 2018 and 2019. 

  Index 

Year 

UA 

OA Kappa 
COT MAZ WHT GRP PEP WAT CL BL 

2018 0.86 0.93 0.84 0.9 0.98 0.95 0.71 0.85 0.88 0.86 

2019 0.87 0.97 0.92 0.94 0.92 0.99 0.71 0.81 0.89 0.87 

Note: COT, cotton; MAZ, maize; WHT, wheat; GRP, grape vineyard; PEP, pepper; WAT, water; CL, 

construction land; WL, wasteland. UA, user’s accuracy; OA, overall accuracy; Kappa, Kappa coefficient. 

S4.2 Distribution and evolution of CFFMDI 
 In the oasis farmlands of MRB, the central cultivated crop is cotton, while other crops such 

as wheat, corn and pepper are also sporadically distributed (Figure S1 and Table S2). 
Considering that this study mainly focused on cotton fields (under FMDI), for the sake of 
simplicity, we divided the surface features in MRB into three groups of cotton fields, non-cotton 
agricultural fields and non-farmland.  

Based on the results of remote sensing inversion for surface feature identification and 
classification, the spatial distribution of cotton fields, non-cotton agricultural fields and non-
farmland in MRB over the period of 2000-2020 were statistically analyzed. Presented are 
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representative data from 2000, 2005, 2010, 2015 and 2020 (Figure S2). Over the past 21 years, the 
area and distribution of cotton fields has continuously changed. At the beginning of this 
century, the area of cotton fields in MRB was 2,431.5 km2, accounting for 82% of the farmland 
area and 21% of the oasis area (Figure S3). They were mainly distributed in the north of 
upstream, the middle of downstream, and the area other than the central part of midstream 
sections (Figure S2). Since then, although slight fluctuations were observed in a few of the years, 
the overall area of farmland and cotton fields tended to constantly increase, while the 
proportion of non-farmland decreased significantly. By 2020, the area of farmland and cotton 
fields increased to 5,324.9 km2 (48% of the total oasis area) and 4,931.2 km2 (44.5%), respectively. 
Meanwhile, the proportion of non-farmland (wasteland) decreased from 73.4% to 52.0%. With 
a very low proportion in the oasis of MRB, the area of non-cotton agricultural fields remained 
relatively stable with a proportion basically between 2.3% and 5.1% for the last 21 years.  

 
Figure S2. Dynamic spatial distribution of cotton fields, non-cotton agricultural fields and non-
farmland in Manas River Basin (a. 2000; b. 2005; c. 2010; d. 2015; e. 2020). 
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Figure S3. Changing process of the area for cotton fields, non-cotton agricultural fields and 
non-farmland in Manas River Basin from 2000 to 2020. 

The increased area of cotton fields originated mainly from wasteland (Figure S3). The area 
increased by some 119 km2 yr-1, with an annual increasing rate of 4.9%. Most of the expanded 
cotton fields were located in the midstream and downstream sections of the MRB (Figure S2), 
in close relation to local natural (hydrological, geological and geomorphic) conditions. 
Historically, those places were mainly saline wastelands, and only a small area that had been 
less saline-affected was converted to planted cropland (Figure S2a). Since the end of the last 
century, local agricultural production has been tremendously influenced by various 
agricultural scientific and technological advances such as the development of FMDI technology, 
breeding of salt-tolerant and drought-resistant varieties, adjustment of agricultural planting 
methodologies, improvement of supporting facilities for water conservancy projects, and 
advances in agricultural mechanization. Further, the area’s dynamics were influenced by 
implementation of a national policy to stabilize the area under grain production and increase 
that under cotton. The FMDI technology, with its potential in saving water, increasing yield, 
and most importantly, in leaching root-zone salt to deeper soil layers by way of high frequency 
drip-irrigation [5], had particular importance promoting the gradual increase in potential 
cotton growing area in mildly, moderately or even severely salinized soils. Consequently, due 
to the application of FMDI, large areas of salt-affected wasteland and abandoned land were 
gradually reclaimed as farmland mainly for cotton fields in the MRB [32]. This has resulted in 
significantly increased area of CFFMDI with a concentrated and contiguous trend in the 
midstream and downstream areas of the basin that have gradually expanded to the desert area 
(Figures S2 and S3).  

The area of planted cotton is affected by many complex factors in addition to those indicated 
in this study, such as market regulation, climate change, and even the global financial crisis. 
These factors are expected to lead to feedback mechanisms that cause fluctuations in cotton 
area in the MRB. For example, a regional drought occurring in 2002 resulted in a reduction in 
cotton planting area and yield. In the next year of 2003, strong market demand and rising prices 
stimulated rapid increase of cotton planting and a consequential surplus cotton supply. By 2004, 
the fallen price of cotton frustrated farmers’ enthusiasm for its planting, thus leading to the 
reduction in area of cotton fields once again, which was not recovered until 2006. Further 
fluctuations of local cotton field area from 2008 to 2009 were mainly a result of the global 
financial crisis (Fig. S3).  

Non-cotton agricultural fields in the basin are mainly distributed in the southern part of the 
upstream zone (Figure S2). This is likely because the upstream area is relatively unsuitable for 
cotton growth due to its higher altitude, lower temperature and relatively high gravel 
composition of root zone soils. This area is mostly inhabited by Kazakhs engaging mainly in 
animal husbandry production, whose preference is to cultivate food crops like corn and wheat. 
The non-cotton agricultural fields occupy a relatively small area in the mid and downstream 
areas, where they are mostly intercropped with cotton fields (Figure S2), due to advantages of 
intercropping in enhancing crop yield, improving cotton quality and reducing the risk of 
disease and insect pests [33]. 


