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Abstract: Recent improvements in earth observation technologies and Geographical Information 

System (GIS) based spatial analysis methods require us to examine the efficiency of the different 

data-driven methods and decision rules for soil salinity monitoring and degradation mapping. The 

main objective of this study was to analyze the environmental impacts of the Lake Urmia drought 

on soil salinity and degradation risk in the plains surrounding the hyper-saline lake. We monitored 

the impacts of the lake drought on soil salinity by applying spatiotemporal indices to time-series 

satellite images (1990–2020) in Google Earth Engine environment. We also computed the soil salin-

ity ratio to validate the results and determine the most efficient soil salinity monitoring techniques. 

We then mapped the soil degradation risk based on GIS spatial decision-making methods. Our re-

sults indicated that the Urmia Lake drought is leading to the formation of extensive salt lands, which 

impact the fertility of the farmlands. The land affected by soil salinity has increased from 2.86% in 

1990 to 16.68% in 2020. The combined spectral response index, with a performance of 0.95, was the 

most efficient image processing method to assess soil salinity. The soil degradation risk map 

showed that 38.45% of the study area has a high or very high risk of degradation, which is a signif-

icant threat to food production. This study presents an integrated geoinformation approach for 

time-series soil salinity monitoring and degradation risk mapping that supports future studies by 

comparing the efficiency of different methods as state of the art. From a practical perspective, the 

results also provide key information for decision-makers, authorities, and local stakeholders in their 

efforts to mitigate the environmental impacts of lake drought and sustain the food production to 

sustain the 7.3 million residents. 

Keywords: Google Earth Engine; environmental impacts assessment; soil salinity monitoring;  

soil degradation mapping; Urmia Lake Basin; Iran 

 

1. Introduction 

The significance of soil for healthy ecosystems and its impact on humanity is widely 

acknowledged. Healthy soil is the foundation for food production, wood, fiber, raw ma-

terials, and physical infrastructure support, as well as regulating flooding, and much 

more [1]. Soil salinization is a major cause of soil degradation, which leads to decreased 

soil fertility and significantly contributes to desertification processes [2]. Soil salinity is 

one of the major environmental challenges threatening global food production and agri-

cultural sustainability, especially in arid and semi-arid climates [2–5]. In arid and semi-

Citation: Feizizadeh, B.; Omarzadeh, 

D.; Mohammadzadeh Alajujeh, K.; 

Blaschke, T.; Makki, M. Impacts of 

the Urmia Lake Drought on Soil  

Salinity and Degradation Risk: An 

Integrated Geoinformatics Analysis 

and Monitoring Approach.  

Remote Sens. 2022, 14, 3407. 

https://doi.org/10.3390/rs14143407 

Academic Editors: Valerio Tramu-

toli, Francesco Marchese, Nicola 

Genzano and Carolina Filizzola 

Received: 3 June 2022 

Accepted: 14 July 2022 

Published: 15 July 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2022, 14, 3407 2 of 26 
 

 

arid areas, the term ‘soil degradation’ refers to the process(es) by which soil quality de-

clines, often due to improper use or poor management, and thus becomes less fit for a 

specific purpose such as crop production [6]. Soil salinization affects the physical, chemi-

cal, and biological soil processes through the salt-induced water deficits, ion toxicity, and 

nutritional imbalances, which ultimately lead to soil degradation [7,8]. Various environ-

mental stressors (e.g., poor land use and management, pesticides, erosion), often impacted 

by the effects of climate change, drought, heavy and harmful metals, soil salinity, and 

flooding, can endanger agricultural lands and food production [9,10]. The impacts of soil 

salinity, and associated environmental challenges for food production, have been ad-

dressed by earlier studies [1–3,9,11–19]. 
Aside from the detrimental environmental effects of soil salinity, it can also lead to 

significant economic losses [20]. It is, therefore, necessary to recognize and monitor re-

gions that are highly susceptible to salinization and degradation. Soil salinity can have 

various causes, some of the most tangible aspects of which include agricultural soil leach-

ing, excessive saline water irrigation, and the extensive use of mineral fertilizers in arid 

and semi-arid regions around the world (characterized by high evapotranspiration, high 

temperatures, and low rainfall) [21]. Monitoring the soil status, and thus the soil fertility, 

is one of the most important principles governing agricultural success [22]. Therefore, an 

efficient decision support system is required to evaluate the regions at risk. The conven-

tional research on soil salinity and degradation assessment has primarily been based on 

field measurements and laboratory analyzes [16]. 

Soil degradation is considered a serious global issue that impacts global food security 

and the environment [23,24]. Climate change significantly contributes to soil degradation. 

Reduced water availability in irrigated agricultural zones, upward movement of salts 

from shallow water tables, reuse of degraded waters, and salt-water intrusion can all con-

tribute to soil salinity development in the root zone [25,26]. One of the most tangible en-

vironmental impacts of climate change and associated issues on soil degradation and, in 

particular, soil salinization can be observed in global dying lake environments [27–29]. 

We can observe the detrimental effects of climate change, including soil salinity and deg-

radation, on the natural environment of the dying, hyper-saline Urmia Lake. The severity 

of the Urmia Lake drought is intensified by other subsidiary influences of climate change, 

such as the rapid depletion of groundwater, decreasing groundwater quality, soil salini-

zation, loss of soil fertility and intensive soil degradation [29,30]. The environmental is-

sues caused by this lake drought are expected to be powerful enough to cause potential 

future migration and human displacement of susceptible rural communities from affected 

areas to other regions of the country [31,32]. Due to its increasingly critical condition, the 

United Nations Environment Program (UNEP) declared Urmia Lake’s status as “worry-

ing” in its Global Environmental Alert Service Bulletin in February 2012. The Urmia Lake 

drought significantly impacts the quality of the area’s soils through extensive soil salini-

zation and degradation. Monitoring the saline areas is essential to controlling the degra-

dation, especially in arid and semi-arid areas, such as Urmia Lake Basin. 

It is critical to determine the extent of saline soil and track changes in salinity to de-

velop appropriate and timely management plans for such soils. The integrated approach 

of remote sensing and GIS (also referred to as geoinformation) is an effective method for 

soil salinity monitoring and degradation mapping (SMDM) and environmental analysis. 

Such an integrated approach of remote sensing and GIS provides a baseline for SMDM 

and developing scenario-based prediction models, especially for fragile environments 

such as dying lakes [33]. It is widely acknowledged that remote sensing is one of the most 

efficient methods for monitoring and mapping soil salinization and degradation by rec-

ognizing the various sizes, shapes, and occurrences of erosional features across large areas 

[33]. In this integrated approach, remote sensing image processing techniques enable us 

to detect and monitor the extent of soil salinization and associated environmental issues. 

The GIS-based spatial analysis also allows us to determine the criteria impacting soil sa-

linity and degradation, process them, and develop a variety of soil degradation maps (e.g., 
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soil erosion and salinity risk maps). This allows us to observe and monitor the soil salinity 

trend of recent years and identify and predict potential areas facing salinity risk now and 

in the future. 

A review of the research literature indicated that earlier studies applied several meth-

ods for SMDM, such as the geostatistical visible and near-infrared spectroscopy index  [7], 

multiple linear and random forest regression models [7], cubist and partial least square 

regression and electrical conductivity [34], ordinary kriging combined with back-propa-

gation network [35], machine learning and particularly deep techniques [8,35–38], the ge-

ographic weighted regression technique [39], deep neural network regression [38], and 

integrated fuzzy object-based image analysis [22]. In light of the global issues of soil sali-

nization  and soil degradation and under consideration of the recent advancements in 

earth observation technologies, including satellite images with improved spatial, spectral, 

and temporal resolution, and GIS methods (e.g., machine learning and advanced decision 

rules), there is a need to examine the efficiency of the different data-driven methods and 

decision rules for soil studies and, particularly, SMDM. Several methods have been ap-

plied by earlier studies [33–39]. However, the efficiency of different methods has not been 

directly compared, nor a comprehensive, integrated approach proposed for monitoring 

and modeling the soil degradation risk. The main objective of this research was, therefore, 

to monitor the soil salinity using time-series satellite imagery and analyze the degradation 

risk in the areas surrounding the hyper-saline Lake Urmia. In addition, based on the re-

cent progress in earth observation technologies with improved spatial, spectral, and tem-

poral satellite images, together with the well-advanced decision rules of GIS, improved 

methods and techniques for soil studies are now expected. Thus, the second objective was 

to apply a comprehensive, integrated geoinformatics approach to evaluate the time-series 

data to determine past changes and model the potential degradation risk to support future 

studies.  

2. Study Area and Dataset 

2.1. Study Area 

Our study area was the Urmia Lake Basin (ULB) in northwest Iran (Figure 1). Urmia 

Lake is the world’s 20th largest hyper-saline lake. The shallow saline lake is bounded by 

the East and West Azerbaijan provinces. The ULB, with an area of about 51,703.85 km2, is 

renowned for horticulture, agriculture, animal husbandry, handicrafts, mining, apicul-

ture, industry and business, recreational- and tourism activities, and artemia and salt har-

vesting, which constitute the primary sources of revenue in the area. Based on the latest 

Iranian census [40], the ULB, with a population of about 7.3 million, is one of the most 

highly populated areas in Iran and is home to about 9–10% of the country’s entire popu-

lation. The 63 cities and 520 villages in ULB are threatened by the environmental impacts 

of the Urmia Lake drought. The climate in the ULB is extreme and continental, primarily 

influenced by the mountains around the lake. Significant seasonal variations in the air 

temperature are common in this semi-arid area. The mean annual precipitation is 320 mm. 

The region’s temperature extremes can be as low as −23 °C during winter and up to 39 °C 

during summer. Urmia Lake is a vital resource for the region, as it helps to moderate ex-

treme temperatures and makes the climate conducive to fungi and fauna. The circulating 

sea breeze, which reaches inland and even up to the local highlands, impacts the local 

climate and leads to cloud formation at low elevations [32]. Urmia Lake is drying up and 

faces several environmental issues due to the impact of climate change and the intense 

anthropogenic pressure on natural resources. The impacts of climate change on the Urmia 

Lake drought has been addressed by previous studies [5,18,28,32,40]. The effect of the ex-

tensive land use/cover change on the Urmia Lake drought has also been acknowledged in 

our earlier studies [28,32]. Since 2000, Urmia Lake has lost more than 65–85% of its surface 

area, exposing an extensive area of salt flats [41] (Figure 1). 
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Figure 1. ULB location (left), and the Urmia Lake levels (right) in (a) 2000, (b) 2005, (c) 2010, (d) 

2015, and (e) 2020. 

2.2. Data Acquisition 

In this study, we used remote sensing data and a GIS spatial analysis dataset. The 

remote sensing data consists of Landsat satellite images with a spatial resolution of 30 m 

from 1990 to 2020, as presented in Table 1. As we aimed to apply a times series analysis 

based on the satellite image availability, we employed satellite images produced by Land-

sat 5 for the study years of 1990, 1995, 2000, 2005 and 2010. Accordingly, based on the 

availability of satellite image from Landsat 8 from 2013, we employed these data for the 

study years of 2015 and 2020. The selection of study years with an interval of five were 

based on the discussion with experts and authorities for considering the Urmia Lake 

drought and its respective environmental impacts. To delineate areas based on their sus-

ceptibility to soil degradation, we also employed supplementary data (Table 2) on topo-

graphic-, hydrological-, and anthropogenic factors. Geological maps at a scale of 1:25,000 

were also used to derive the geological setting of the study area. The topography map at 

a scale of 1:25,000 was used to generate the digital elevation model (DEM) based on the 

spatial analysis. The DEM was then used to derive the slope, slope length, aspect, distance 

from rivers, drainage density, and curvature maps. 

The DEM was also used to compute the hydrology datasets of stream power index 

(SPI) and topographic wetness index (TWI). The SPI is estimated along the stream net-

work to assess the change in magnitude of stream power between pre- and post-develop-

ment scenarios [42]. Basically, TWI defines the effect of topography on the location and 

size of saturated source areas of runoff generation [43,44]. The parameter TWI has been 

significantly investigated for soil degradation mapping and constitutes one of the most 

commonly used conditioning factors [44]. The soil type, depth, and erodibility were ob-

tained from pedology maps at a scale of 1:50,000. For the rainfall map, initial data were 

obtained from meteorological stations in the ULB, and the final map was computed using 

spatial interpolation techniques. The normalized difference vegetation index (NDVI) was 

derived from the Landsat satellite images. NDVI is known as an efficient index for density 

of vegetation covers. The land use/cover (LULC) map was derived from the Landsat sat-

ellite images obtained as part of our earlier research on monitoring the LULC changes in 

the ULB from 1990–2020 using an integrated approach of object-based image analysis and 

deep learning techniques [31,38,39]. We used 150 ground control data points and their 

respective laboratory analysis to validate the results. These data points and samples were 



Remote Sens. 2022, 14, 3407 5 of 26 
 

 

obtained during fieldwork in 2020 and supplemented with historical soil salinity data 

from the Organization of Agriculture and Natural Resources (OANR, 2020). All data were 

collected in the coordinate system of Universal Transverse Mercator Zone 38 N, World 

Geodetic System 1984. As Table 2 shows these data we obtained from different resources. 

Thus, all data preparation (e.g., extraction, editing, reformation, distance computation, 

etc.), and standardization were carried out in Arc GIS environment. 

Table 1. Landsat5/8 bands and their characteristics used to select the relevant soil salinity indices 

based on their spectral characteristics and signatures. 

Satellite Sensor 
Band/Pixel 

Size 

Wavelength 

(nm) 
Description 

Landsat 5 

For the study years of 1990, 

1995, 2000, 2005, 2010 

Thematic 

Mapper 

(TM) 

B1/30 m 0.45–0.52 µm Blue 

B2/30 m 0.52–0.60 µm Green 

B3/30 m 0.63–0.69 µm Red 

B4/30 m 0.76–0.90 µm Near-infrared 

B5/30 m 1.55–1.75 µm Short-wave infrared 1 

B6/30 m 
10.40–12.50 

µm 
Thermal Infrared 1 

B7/30 m 2.08–2.35 µm Short-wave infrared 2 

Landsat 8 for the study years of 

2015 and 2020 

Operational 

Land Im-

ager (OLI) 

B1/30 m 
0.435–0.451 

µm 
Ultra-blue 

B2/30 m 
0.452–0.512 

µm 
Blue 

B3/30 m 
0.533–0.590 

µm 
Green 

B4/30 m 
0.636–0.673 

µm 
Red 

B5/30 m 
0.851–0.879 

µm 
Near-infrared 

B6/30 m 
1.566–1.651 

µm 
Short-wave infrared 1 

B7/30 m 
2.107–2.294 

µm 
Short-wave infrared 2 

B8/15 m 0.20–0.68 µm Panchromatic 

B9/30 m 1.36–1.38 µm Cirrus 

B10/100 m 
10.60–11.19 

µm 
Thermal Infrared 1 

  B11/100 m 
11.50–12.51 

µm 
Thermal Infrared 2 

Table 2. list and details of datasets used for soil salinity monitoring and degradation mapping. 

Main 

Group 
Selected Criteria for SMDM Sources 

Scale and  

Resolution  

Soil salin-

ity dataset 

Spectral indices from satellite 

images 

Time-series Landsat Satellite im-

ages 

Spatial resolution of 

30 m 

Field survey and ground con-

trol sample points 

pedology maps, field survey and 

laboratory analysis 

GPS data and soil 

maps in the scale of 

1/50,000 

In the scale of 

1:25,000 

 Soil erodibility Geology maps 

Topogra-

phy da-

taset 

Elevation (DEM) Topography maps and DEM. These 

datasets were obtained from the 

Spatial Data Infrastructure project 

of lake Urmia 

In the scale of 

1:25,000 

Slope 

Aspect 

Slope/slope length 
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Curvature 

Climatol-

ogy and  

Hydrology 

Rainfall 
Meteorology station datasets from 

SDI 

In the scale of 

1:25,000 

Stream Power Index 
Topography maps and DEM 

In the scale of 

1:25,000 Topographic Wetness Index 

Anthropic 
LULC Time-series Landsat Satellite im-

ages 

Spatial resolution of 

30 m NDVI 

3. Methodology 

We applied an integrated approach of remote sensing image processing and GIS spa-

tial analysis to detect the trends of environmental phenomena, specifically related to soil 

salinity and soil degradation in the study area. The methodology comprises two main 

steps, namely the soil salinity trend assessment using satellite imagery and the soil deg-

radation mapping based on the GIS spatial analysis and multi criteria decision analysis 

(MCDA). We used the eight soil salinity indices including: combined spectral response 

index; normalized differential Salinity index; salinity index (SI 1,2,3); normalized differ-

ential infrared index and vegetation soil salinity index to carry out the soil salinity trend 

assessment. We aimed to determine the degree to which each of the indices influences soil 

salinity based on the ground control point dataset obtained through fieldwork.  

Therefore, the accuracy of each index was assessed using linear regression analysis. 

After determining the most accurate index, we used it to compute the soil salinity trend 

from 1990 to 2020. In the second step, we used the GIS-MCDA method in combination 

with fuzzy logic to identify the areas affected by soil degradation based on the results of 

the soil salinity trend computed in the first step in combination with ancillary data. Figure 

2 shows a flowchart for the main steps of our research methodology.  

 

Figure 2. Flowchart for the main schema of the research methodology. The upper and middle parts 

of this figure show the implementation of the time-series satellite image analysis for soil salinity 

monitoring and validation. The lower section shows the research methodology for a MCDA ap-

proach for soil degradation mapping. 
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3.1. Soil Salinization Monitoring 

Earth observation satellite imagery is integral for soil salinity monitoring. The spec-

tral reflectance characteristics of salt at the soil surface can be used to identify and monitor 

soil salinity [8]. Furthermore, well-organized soil management using the latest remote 

sensing methods and soil salinity monitoring plays an important role, especially in the 

preservation of arable lands [40]. We employed the eight best-known soil salinity indices 

to identify saline regions and compare their efficiency (Table  3). Soil salinity indices de-

rived from the visible and near-infrared (NIR) bands of satellite images have been used in 

several studies to create soil salinity maps [5,8,19,45–48]. However, comparing the effi-

ciency of soil salinity indices remains a field of interest and further studies are required to 

introduce, compare and apply the efficient indices. 
We used Landsat time-series (1990–2020) satellite images with a spatial resolution of 

30 m and seven spectral wavelength ranges [49] to ascertain the areas of bare soil, vegeta-

tion, water bodies, and exposed salt areas resulting from the Urmia Lake drought based 

on their spectral characteristics. We verified these resulting areas using the ground control 

sample points collected in the field operation. We used the spectral range of bands three 

to seven to distinguish between soil and salt and thus recognize soil salinity in the study 

area based on the spectral value of saline flow sources and farmlands, which we obtained 

through field measurements and laboratory analysis. This sampling data and their labor-

atory analysis were used for validation of results as we discussed in the next sections. The 

soil types with low salinity correspond to high vegetation areas that exhibit high NIR val-

ues. The red, green, blue, and short-wave infrared (SWIR) channels show different reflec-

tions for different salinity levels but with less reflectance for the NIR channel. Therefore, 

the NIR channel can be used to estimate salt content. Different salt thresholds may have 

different reflectivity curves based on the physiochemical and environmental characteris-

tics (e.g., texture, climate), which serve as the basis for selecting the most suitable estima-

tion model. We applied eight indices recommended by earlier studies [1,8,17,19,50] and 

correlated the modeled results with the wavelengths obtained from sampling points to 

determine the soil salinity. 

Table 3. The soil salinity indices and their respective equations used in this study. 

Index Main Equation Reference 

Combined Spectral Response 

Index (CSRI) 
(B + G)/(R + NIR) × NDVI [51] 

Normalized Differential Salin-

ity Index (NDSI) 
(R − NIR)/(R + NIR) [52] 

Salinity index (SI-T) (R/NIR) × 100 [53] 

Salinity Index (SI-1) NIR/SWIR [54] 

Salinity Index (SI-2) (B − R)/(B + R) [55] 

Salinity Index (SI-3) (B × R)/G [55] 

Normalized Differential Infra-

red Index (NDII) 
(NIR − SWIR1)/(NIR + SWIR1) [56] 

Vegetation Soil Salinity Index 

(VSSI) 
2 × G − 5 × (R + NIR) [56] 

3.1.1. Combined Spectral Response Index (CSRI) 

This index uses the green, blue, red, and NIR bands. The CSRI can only be computed 

with the NDVI value, as per Equation (1) [50]: 

CSRI =
���

�����
× NDVI   (1)

where B is the blue band, G is the green band, R is the red band with a wavelength, and 

NIR is the near-infrared band with a wavelength of 0.76 to 0.90 micrometers. The NDVI 

can also be calculated using the following Equation (2):  
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NDVI =
NIR − Red

NIR + Red
 (2)

According to Fernandez-Buces et al. [50], to calculate the CSRI, the combination of 

bands one to four and the NDVI achieve the highest accuracy. The resulting integrated 

algorithm is called the Combined Spectral Response Index (COSRI) and reflects the com-

bination of spectral responses of bare soil and vegetation. We used Landsat-5 bands 1–4 

to map the soil salinity for 2000, 2005 and 2010, and Landsat-8 bands 2–5 to map the soil 

salinity for 2015 and 2020, as presented in Table 2.  

3.1.2. Normalized Differential Salinity Index (NDSI) 

The NDSI index is one of the most well-known indicators in soil studies using remote 

sensing and has been widely applied by earlier researchers [19,21,52]. The NDSI is based 

on the red and infrared spectral ranges. The general form of this index is defined by Equa-

tion (3). We computed this index based on the Landsat-8/OLI bands four and five. 

NDSI =
Red − NIR

Red + NIR
 (3)

3.1.3. Salinity Index (SI-T) 

This index was introduced by Tripathi et al. [53], in the early days of remote sensing 

and satellite image processing. The salinity index is based on the difference between the 

red (R) and near-infrared (NIR) bands multiplied by 100, as per Equation (4): 

(R/NIR) × 100 (4)

3.1.4. Salinity Index (SI-1) 

This index was proposed by Bannari et al. [54] and uses bands nine and ten of the 

advanced land imaging (EO-1) sensor. In this study, we used Landsat bands five and six 

to calculate the soil salinity. This index is based on the fraction between the NIR and SWIR 

bands, as per Equation (5), where NIR is the near-infrared band, and SWIR is the short-

wave infrared band.  

SI-1 =
���

����
 (5)

3.1.5. Salinity Index (SI-2) and Salinity Index (SI-3) 

The salinity indexes (SI-2 and 3) are also effective for soil salinity assessment. Accord-

ing to Abbas and Khan [55] the visible range of spectral wavelengths is more useful for 

detecting soil salinity. The following Equations (6) and (7) represent how SI 2–3 are im-

plemented, whereby R, G and B represent the red, green and the blue bands, respectively. 

These indexes were developed using the equivalents to bands two and four in Landsat-

8/OLI, and bands one and three in Landsat-5/TM, respectively. 

SI-2 =
���

���
 (6)

SI-3 =
� ×�

�
 (7)

3.2. Normalized Differential Infrared Index (NDII) 

The NDII index represents the normalized difference between the  NIR and  SWIR of 

the electromagnetic spectrum. The NIR band and the SWIR band,  which correspond to 

bands five and six in Landsat five and eight were used to calculate this index as per Equa-

tion (8):  
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NDII =
NIR − SWIR 1

NIR + SWIR 1
 (8)

3.2.1. Vegetation Soil Salinity Index (VSSI) 

The VSSI is applied to discriminate between soil and vegetation stress, which has 

been addressed by several earlier studies [56–58]. The index is based on the R, G and NIR 

bands as per Equation (9): 

VSSI = (2 × G) − 5(R − NIR) (9)

3.2.2. Google Earth Engine  

With the recent advances in earth observation technologies, the increasing availabil-

ity of data from more and more different satellite sensors, as well as  progress in semi-

automated and automated classification techniques, enable the (semi-) automated remote 

monitoring and analysis of large areas. Online platforms such as Google Earth Engine 

(GEE) bring data-driven techniques to the desktops of researchers while changing work-

flows and making excessive data downloads redundant [47]. The  GEE  provides free ac-

cess to a wide range of global satellite images and efficient data-driven machine learning 

tools, making it a powerful resource for various remote sensing applications [38].  The GEE 

is an ideal platform for large-scale monitoring and modeling of earth’s  features as a result 

of its various geospatial datasets, rich reusable library, and easy to  use process [35]. It has 

been used in numerous studies for remote sensing processes using a wide range of images 

and spatial information such as LULC mapping, agricultural crop monitoring, natural 

hazard, soil salinization and among others [12,59,60]. Based on the soil salinity indexes, 

we used the GEE environment to compute and monitor the soil salinity ratio for 1990 to 

2020. 

3.2.3. Accuracy Assessment of Soil Salinity Monitoring Indices 

Numerous researchers have evaluated soil salinity monitoring results using sam-

pling points and their spectral characteristics, such as electrical conductivity [26,61–63]. 

As our aim was to compare the efficiency of eight soil salinity indices, we validated the 

results based on 150 ground control sample points collected during field work in 2020 and 

their physiochemical laboratory analysis. We also used the 300 control points from the 

historical soil salinity datasets collected annually in the field by the Organization of Agri-

culture and Natural Resources (OANR)  to evaluate the accuracy of the soil salinity maps 

computed for 1990, 1995, 2000, 2005, 2010 and 2015. We then used 450 ground control 

sample points (including 150 from 2020 and 300 historical data points from 1990, 1995, 

2000, 2005, 2010, and 2015) and the computed physiochemical soil characteristics, includ-

ing electrical conductivity (EC), exchangeable sodium percentage, and pH, to validate the 

accuracy of our results. It has to be indicated that the EC is a common soil index used to 

express the soil salinity and its impacts on the fertility of the land and is, thus, an indicator 

of the suitability of the soil for growing crops [64]. Table 4 shows the physical and chem-

ical properties measured in the ground control sample points, namely the soil texture 

(percentage of sand, silt, and clay particles) determined using the hydrometer method 

[65], the particle density [66], the percentage of organic matter [67], the calcium carbonate 

(CaCO3) content, the pH, and the EC in a 1:5 soil to distilled water suspension, and the 

sodium adsorption ratio (SAR) in saturated paste extract. We used the linear regression 

analysis for the accuracy assessment and to analyze the efficiency of the soil salinity indi-

ces. We used the standardization of the data obtained from the indices to compare the 

values obtained from the indices and the field observation data. Thus, an appropriate co-

efficient was determined for each index. After computing the soil salinity trend using each 

index and comparing the efficiency of all indices, we validated the results using the 

ground control sample data. We then calculated the correlation rate using linear 
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regression. Earlier studies reported the linear regression to be an efficient correlation as-

sessment method for soil studies [16,19]. The linear regression is calculated based on equa-

tion 10, where ‘y’ is modeled as beta1 (b1) times x, plus a constant beta0 (b0), plus an error 

term e. 

y = b0 + b1 × x + e (10)

Table 4. Physiochemical laboratory analysis for saline soil sampling/ground control points for the 

accuracy assessment of the soil salinity maps produced by the various indices, as explained in Table 

3. 

Variable Min Mean Max 
Standard  

Deviation (σ) 

Coefficient of 

Variation 

(CV) 

Sand (%) 7.7 42.3 90.0 26.9 0.64 

Silt (%) 1.3 31.8 58.7 16.2 0.51 

Clay (%) 5.6 25.7 51.2 14.2 0.55 

Organic com-

pounds (%) 
0.0 1.4 4.3 1.5 1.09 

Specific Gravity 

(g/cm3) 
2.1 2.3 2.4 0.08 0.04 

CaCO3 (%) 5.2 16.4 30.2 6.27 0.38 

pH 7.7 8.0 8.6 0.29 0.04 

ECe (dS/m) 0.8 2.5 4.8 1.4 0.58 

Sodium absorp-

tion ratio (SAR) 
1.9 14.7 44.4 13.9 0.95 

Exchangeable So-

dium Percentage 

(ESP1) 

17.17 27.16 50.32 13.9 0.51 

ESP2 15.37 31.89 40.81 13.9 0.44 

3.2.4. Soil Degradation Mapping 

Criteria Selection and Standardization 

The soil degradation mapping is a multi-step approach that requires us to consider 

the interaction of the respective indicators, including climate, land use, and topography, 

to name a few. GIS-based MCDA can be applied to evaluate the interaction of soil degra-

dation impacting criteria. GIS-MCDA methods support meaningful spatial decisions by 

integrating multiple criteria from various spatial data sources [68–72]. Leveraging this ca-

pability, we employed 14 criteria in four major groups to analyze soil salinity and develop 

a soil degradation risk map (Figure 3). The  relevant criteria were selected based on previ-

ous international studies on soil degradation mapping [48,72–76] as well as earlier local 

soil research studies [16,19]. We selected criteria that represent the soil characteristics and 

relevant factors that impact the soil degradation in ULB. The initial list of criteria were 

discussed with local experts in the Department of Soil Science at the University of Tabriz 

and experts in the Organization of Agriculture and Natural Resources to take the physical 

properties of the study area into account and select the relevant criteria accordingly. The 

efficiency of the selected criteria was evaluated during fieldwork, which also supported 

our sensitivity analysis to determine the efficiency of the selected criteria. Table 5 shows 

the list of selected criteria for soil degradation mapping. After identifying the relevant 

criteria, the required geometric and topological editing was carried out to develop the 

criteria into a spatial dataset. In GIS-MCDA, standardization is critical due to the variety 

of data sources and the different measurement scales. Thus, the criteria were standardized 

using the pairwise comparison method [77–80], which is commonly used for rating and 

standardizing ordinal values. The standardization technique was also applied to scale the 
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data for criterion weighting, sensitivity analysis, and aggregation. This was accomplished 

using fuzzy standardization functions. In contrast to a standard binary set, where each 

element must have a membership degree of either zero or one, a fuzzy set’s members can 

have membership degrees ranging from zero to one [81]. 

Table 5. Selected criteria, initial data sources, and mathematical representation of methods used for 

soil degradation mapping. 

Criteria Groups Criteria Data Sources 

Topography 

Elevation DEM obtained from topography maps 

Slope DEM products 

Slope length DEM products 

Aspect DEM products 

Geology 

Soil depth Pedology maps 

Curvature DEM products 

Soil erodibility Soil erodibility maps 

Drainage Density DEM products 

Hydrology 

Distance from River DEM products—drainage analysis 

Rainfall Synoptic climate stations 

Stream Power In-

dex 
SPI = a × tanβ 

Topographic Wet-

ness Index 

TWI = ln
a

Tan β + C
 

C = 0.001 

Anthropic 

Land use 
Landsat −8/OLI 

Object-based image analysis 

NDVI 

Landsat-8/OLI 

NDVI =
R − NIR

R + NIR
 

R = Band 4 

NIR = Band 5 
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Figure 3. Selected criteria including: (a) elevation; (b) slope degree; (c) slope aspect; (d) curvature; 

(e) soil depth; (f) soil texture; (g) vegetation density; (h) distance from river; (i) Stream Power Index; 

(j) annual precipitation; (k) drainage density; (l) slope length; (m) topographic wetness index; and 

(n) LULC. 
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Criteria Weighting and Sensitivity Analysis 

Criteria weighting is necessary to determine the significance of each indicator in de-

cision-making [82]. We used the fuzzy analytical network process (FANP) for criteria 

weighting. Previous studies have confirmed the efficiency of the FANP for criteria 

weighting [61]. The FANP method is one of the most frequently used methods for com-

puting the criteria’s intrinsic weights [83–87]. To apply the FANP, we used the initial cri-

teria ranking obtained in the pairwise comparison matrix based on expert opinions. There-

fore, 30 experts from the Organization of Agriculture and Natural Resources, the Depart-

ment of Soil Research, and the University of Tabriz’s Department of Soil Sciences were 

asked to rank the criteria from one to nine. Then, the pairwise comparisons were carried 

out using Super Decision software, and the weight of each criterion was obtained, as 

shown in Table 6. A consistency ratio (CR) was used to determine the reliability of the 

computed weights as part of the FANP implementation. According to Saaty [83], the op-

timal CR should be >0.1, which implies that the matrix has an acceptable level of con-

sistency and that the weighting can be used in the data aggregation. In this research, we 

computed the CR to be 0.04, which indicates a very acceptable level of CR. 
We applied the fuzzy membership command in GIS to standardize the layers. There-

fore, the linear function was used to convert the classified raster layers to fuzzy standard 

layers, in which the pixel values ranged between zero and one. The FANP approach is a 

popular assessment method that combines the analytical network process method with 

the fuzzy level evaluation method [84,85]. Furthermore, the fuzzification allows us to 

quantitatively evaluate the qualitative criteria through fuzzy mathematics membership 

theory in complex decision-making [86]. The results of this step included 14 standardized 

raster maps, whereby the values of each map ranged between zero and one. Figure 4 

shows the spatial distribution of the selected and standardized criteria. The ranking was 

determined based on the impact of each class of layers on soil degradation. 
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Figure 4. Standardized soil degradation map showing: (a) elevation; (b) slope degree; (c) slope as-

pect; (d) curvature; (e) soil depth; (f) soil texture; (g) vegetation density; (h) distance from river; (i) 

Stream Power Index; (j) annual precipitation; (k) drainage density; (l) slope length; (m) topographic 

wetness index; and (n) LULC. 

The sensitivity analysis was applied to compute the sensitivity of the weights ob-

tained through the FANP. Technically, uncertainty in GIS-MCDA is inevitable due to the 

heterogeneous data sources, expert knowledge for criterion ranking, and modeling flaws 

[82]. In this case, the criteria weighting contributes significantly to the MCDA frame-

work’s ambiguity. According to previous studies, such ambiguity might even lead to er-

roneous outcomes. To reduce the risk of error in our GIS-MCDA-based decision model, 

we used a sensitivity analysis to determine the uncertainty associated with the FANP’s 

weights for spatial modeling. To compute the uncertainty of the criteria weights, we 
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employed an integrated approach of Monte Carlo simulation (MCS) and a global sensitiv-

ity analysis (GSA) [87].  

The original FANP weights can also be used as input weights for MCS and sensitivity 

analysis based on the GSA approach. Thus, in our study, the implementation of MCS-GSA 

consists of the following four main steps: (a) obtaining training data from field work that 

is uniformly distributed throughout the high soil degradation areas, as discussed above; 

(b) using the FANP’s weights as reference weights; (c) running the MCS-based simulation 

10,000 times; and (d) computing the spatial distribution of ranks (minimum, maximum, 

average and standard deviation) results using inverse weighted distance spatial interpo-

lation techniques (Figure 5). Table 6 shows the considered criteria, the obtained FANP 

weights as references weights, and the results of the GSA for sensitivity analysis. The dif-

ference of S and St is not very significant, which indicates that the obtained FANP weights 

can be used in the data aggregation. The GSA method also allows us to compute the two 

critical indexes of S (first-order) and St (total effect). Technically, the S and St represent 

the FANP’s weights indicated in a semantic manner. In this context, any difference be-

tween the value and order of the S and St indexes and the reference weights (e.g., FANP’s 

weights) can be considered as the uncertainty associated with the criteria weights. A sig-

nificant difference in the S and St indicates the level of uncertainty in the reference weights 

(e.g., FANP) and may result in inaccurate results. 

 

Figure 5. Results of MCS-based criteria weight sensitivity analysis, including: (a) computed maxi-

mum rank, (b) average rank, and (c) standard deviation. These maps are based on the MCS sensi-

tivity analysis of the computed criteria weights. 
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Table 6. The computed criteria weights from the FANP method for soil degradation mapping. 

Criteria Groups Criteria FANP’s Weights S St 

Topography 

Elevation 0.027 0.031 0.044 

Slope degree 0.035 0.071 0.071 

Slope length 0.013 0.008 0.004 

Aspect 0.016 0.008 0.028 

Curvature 0.056 0.126 0.218 

Soil characteristics 
Soil depth 0.033 0.010 0.072 

Soil texture 0.191 0.188 0.296 

Hydrology 

Distance from river 0.101 0.182 0.198 

Drainage density 0.102 0. 152 0.148 

Annual precipitation 0.077 0.015 0.161 

Stream Power Index 0.048 0.068 0.166 

Topographic Wetness In-

dex 
0.147 0.189 0.249 

Anthropic 
Land use 0.063 0.115 0.165 

Vegetation density 0.083 0.071 0.074 

Spatial Aggregation and Validation 

The final maps were developed using the spatial data aggregation of the specified 

criteria based on the computed weights. The geographical criterion from one map layer 

are combined with the attribute (numerical) properties of the other criterion in this nu-

merical technique. The soil degradation mapping was carried out based on the ordered 

weighted average (OWA). The OWA is a prominent spatial aggregation approach in GIS 

and has been validated by numerous previous studies [47,78–81]. OWA employs fuzzy 

decision rules to model the linguistically as effective spatial aggregation. OWA provides 

a parameterized class of multi-criteria aggregating operators between the minimum and 

maximum. Technically, the OWA employs fuzzy decision rules for modeling the linguis-

tically as effective spatial aggregation. In our study, the computed FANP’s weights were 

used as reference weights of OWA to produce the soil degradation map for the ULB. We 

then validated the results. Therefore, we used the relationship between the soil salinity 

ratio of 150 sampling ground control points from 2020 and their physiochemical labora-

tory analysis results, as represented in Table 4. 

4. Results  

4.1. Soil Salinity Monitoring  

The soil salinity monitoring results based on the satellite images of 2020 and the re-

mote sensing indexes are represented in Figure 6. Due to the large number of figures gen-

erated in this study, we only include the results of 2020 in this paper, but the results ob-

tained for the early study years (1990–2015) were used for the soil salinity monitoring and 

trend assessment. As Figure 6 shows, different results might be obtained by applying dif-

ferent soil salinity indices. We applied the accuracy assessment based on the soil salinity 

ratio of 450 ground control sample points collected during field work and their physio-

chemical analysis (Table 4) to determine the accuracy of the results. Figure 7 shows the 

results of the correlation between the ground control sample points and the soil salinity 

indices. The results revealed that the CSRI index, with a correlation of 0.95, and the SI-1 

index, with a correlation of 0.83, yielded the best results of the examined soil salinity in-

dices. It should be noted that other indices also performed adequately in soil salinity de-

tection, as represented in Figure 8. However, as one of the main objectives of this research 

was to investigate the most efficient soil salinity index, the next step was to use the time-

series satellite images from 1990–2020 to derive the soil salinity map for the ULB. 

Figure 8 shows the results of the time-series soil salinity monitoring in the ULB. Based 

on these results, there is a significant correlation between the lake drought and the expan-

sion of soil salinity in the vicinity of the lake. The results also revealed that the soil salinity 
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and expansion of salty lands were limited to the areas adjacent to the lake. As shown in 

Figure 8, the soil salinity started becoming noticeable from 2000 and increased slightly 

between 2000 and 2005. Then, there was a considerable increase from 2005 to 2010. Figure 

8f shows that there was intensive soil salinity in the vicinity of the lake when Urmia Lake 

experienced a severe drought in 2015. As a result of the increase in annual precipitation 

from 2018 to 2020 and restoration efforts in some parts of the lake, the soil salinity has also 

reduced accordingly. Using the CSRI index, we were able to identify the trend of soil sa-

linity changes in the ULB. According to the results of the CSRI index, the soil salinity 

changes reflected an increase of 2.86% in 1990, 2.38% in 1995, 11.18% in 2000, 13.18% in 

2005, 10.73% in 2010, 17.41% in 2015, and 16.68% in 2020. To examine the accuracy of the 

CSRI index results, we also employed the computed soil salinity ratio of ground control 

sample data for 2020 as well as the historical ground control soil salinity dataset, as dis-

cussed in the accuracy assessment section. Figure 9 depicts the results of the validation of 

the CSRI index from 1990–2020. 

 

Figure 6. The soil salinity monitoring indices applied to the satellite images of 2020 using the differ-

ent soil salinity indexes of (a) CSRI, (b) NDSI, (c) VSSI, (d) SI-T, (e) SI-1, (f) SI-2, (g) SI-3, and (h) 

NDII, whereby red indicates areas with high soil salinity. Due to the large number of maps gener-

ated in this research, we only show the results of soil salinity indices for 2020. 
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Figure 7. Validation results of the correlation between the soil salinity indices (see Figure 6) and the 

soil salinity data obtained in the laboratory for the ground control points (see Table 4). The com-

puted correlations show the results for soil salinity indices: (a) VSSI; (b) SI_T; (c) SI_5; (d) SI_3; (e) 

SI_2; (f) SI_1; (g) NDSI; (h) CSRI; and (I) comparing the accuracy of all indices. The CSRI achieved 

the highest accuracy. 

 

Figure 8. Soil salinity based on the CSRI index in: (a) 1990; (b) 1995; (c) 2000; (d) 2005; (e) 2010; (f) 

2015; and (g) 2020. As can be seen on the maps, the soil salinity (red areas) has increased significantly 

from 1990 to 2020. 
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Figure 9. Validation results of CSRI index (see Figure 8) based on the ground control sample points 

obtained during field work and based on the historical soil salinity dataset (see Table 4). The charts 

indicate that valid soil salinity maps have been developed for: (a) 1990, (b) 1995, (c) 2000, (d) 2005, 

(e) 2010, (f) 2015, and (g) 2020. 

4.2. Soil Degradation Mapping  

We applied a GIS spatial analysis to develop the soil degradation map. We used the 

soil salinity index proposed by Szabolcs [86], to classify the results into soil degradation 

risk categories. According to this index, electrical conductivity (EC) < 4 represents no sa-

linity, 4–8 indicates low salinity, 8–16 medium salinity, 16–32 high salinity, and 32 < stands 

for very high salinity. Thus, the land degradation risk map is classified into five categories 

from no risk to very high risk using the GIS analysis, as represented in Figure 10. Accord-

ing to the resulting map, 12.49% of the area has a very high risk, 25.96% has a high risk, 

and the rest of the study area has a moderate and lower than moderate risk of soil degra-

dation (Table 7). We validated the results to  confirm their accuracy using the ground con-

trol sample points obtained in 2020 (Table 4).  Table 8 gives the results of the validation 

matrix, which is based on the computed EC of ground control sample points. The results 

of the validation show that the overall accuracy of the calculations is 94.44%, and the 

kappa coefficient is 91.69%. This accuracy indicates the reliability of the results. To clearly 

understand which areas are affected by soil degradation risk, magnified views of its main 

centers are shown in Figure 11.  

Table 7. Percentage of soil degradation areas in ULB computed from the soil degradation risk map 

presented in Figure 10. 

Risk Class Area (ha) Area at Risk (Percentage) 

Very high risk 6462.87  12.49% 

High risk 13,425.70  25.96% 

Moderate risk 12,654.32 24.47% 

Low risk 7145.74 13.82% 

Very low risk 8501.09  6.79% 
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Without risk 3514.12 16.44% 

Table 8. Field observation data matrix (soil electrical conductivity) based on the ground control 

sample points and computed EC. 

Class EC < 4 4 < EC < 8 8 < EC < 16 16 < EC < 32 EC > 32 SUM 

EC < 4 12 0 0 2 0 14 

4 < EC < 8 0 15 0 0 0 15 

8 < EC < 12 0 0 13 4 0 17 

12 < EC < 16 0 0 3 35 0 39 

16 < EC < 32 0 3 2 4 52 65 

SUM 12 18 18 45 52 150 

 

Figure 10. Soil degradation risk map of the ULB, showing the spatial variation of degradation risk, 

developed based on the aggregation of the selected criteria using the computed weights (see Figure 

4 and Table 5). 

 

Figure 11. Enlarged views of regions affected by soil degradation risk to show details of the spatial 

variation of the soil degradation risk in the study area (A,B,D,G,J) are located around Urmia Lake 

and are severely affected by Urmia Lake salts).  
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5. Discussion 

The results of the time-series analysis for soil salinity monitoring indicated that the 

lake drought and associated exposed salt lands significantly affected the soil salinization 

in the plains in the vicinity of the lake. According to the results, the lake drought has sig-

nificantly impacted soil salinization, with saline areas having increased from 2.86% in 

1990 to 17.41% in 2015. Such intensive soil salinity has significant impacts on the environ-

ment and the productivity of the farmlands. One of the primary tangible aspects of this 

salinization can be observed in the increase in the EC of soils in farmlands. Soils with an 

EC of more than 4 ds/m can be considered saline soils that might threaten the productivity 

of the farmlands. Table 9 shows the effect of increasing EC values on the fertility and 

productivity of soils based on the Szabolcs scale [86]. According to the results of the time-

series soil salinity monitoring, the EC of farmlands in ULB has been increasing signifi-

cantly, which is causing challenges for agriculture as it affects the productivity and fertil-

ity of this area and can lead to food production shortages. 

Table 9. Classification of soils based on their salinity [86]. 

EC 
Limitations Caused by  

Salinity 
The Reaction of the Plants 

EC < 4 
No limitation or low limi-

tation 
Most plants can grow 

4 < EC < 8 Relatively high limitation sensitive plants are affected 

8 < EC < 12 High limitation most plants affected 

12 < EC < 16 Very high limitation 
Only plants that are resistant to salinity have 

normal growth 

16 < EC < 32 Significant limitation 
Most of the halophytes have reduced crops 

in this salinity 

The increasing availability of a wide range of earth observation products with im-

proved spatial and spectral information demands the development of new and efficient 

methods for soil salinity monitoring. Due to the extensive costs and limitations associated 

with field-based soil salinity assessments, most studies, both at regional and global scales, 

rely on soil degradation data from risk maps, expert opinions and estimations, and com-

putations obtained from empirical models [87,88]. Thus, researchers began optimizing soil 

salinity indices and improving their accuracy. In this context, Xiaoyan et al. [4] applied 

several soil salinity indices (such as the principal component regression, multiple linear 

regression, and partial least squares regression) and compared their efficiency. Zhang et 

al. [74] employed the vegetation index (NDVI) and soil salinity index based on the original 

band of Landsat 7 satellite images to improve the effectiveness of salt monitoring tech-

niques. Allbed et al. [11] reported NDSI and SI_T as the best indices for soil salinity as-

sessments. According to our results, some inherent uncertainty remains in every soil sa-

linity index, which must be overcome to obtain accurate results. However, in the context 

of soil salinity monitoring indices from remote sensing images, we must consider that the 

soil characteristics are related to multiple indicators (parent material, vegetation, and 

moisture) that must be taken into account when mapping soil salinity, which is also 

acknowledged in earlier studies [4,19,22]  
In this study, we examined eight soil salinity indices to identify the most efficient 

method. Based on our results, the CSRI index, with a correlation of 0.95, was the most 

efficient soil salinity detection method. The SI-1 index, with a correlation of 0.83, was the 

second-most effective technique, while the SI-5 and SI-2, with correlation values of 0.65 

and 0.61, yielded lower accuracies. Technically, soil salinity influences not only the reflec-

tance of the soil but also the degree of surface looseness, water quality, and aboveground 

plant growth. As a result, the quantitative inversion of the salt content may be obtained 

in soil salinity studies by integrating the vegetation index, water index, and soil index 
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[89,90]. Thus, any efficient soil salinity assessment methods should be optimized based on 

the local soil characteristics. In addition, in most cases, the developed indices must be 

optimized and customized based on the local characteristics, as pointed out in earlier stud-

ies [21,45]. 
As indicated above, various criteria impact the soil characteristics and must be con-

sidered when modeling the soil properties. The results of this research indicated that GIS-

MCDA can be used to analyze the various criteria impacting the soil degradation risk in 

ULB, and can thus be used for soil degradation risk analysis. According to the results of 

various investigations, soil salinity is one of the manifestations of soil degradation that 

directly reduces agricultural productivity and causes other environmental irregularities. 

Therefore, we examined the criteria affecting land degradation using 14 criteria in four 

categories, as presented in Table 5. The detailed results revealed that 38.46% of the study 

area has a very high or high risk of degradation. This means that these affected areas in 

the province are unfavorable for agriculture production. Based on the decreasing lake 

level of Urmia Lake and the emergence of salt diffusion centers, it is expected that the 

percentage of soil salinity will continue to increase in the future.  

6. Conclusions 

In this research, we identified areas affected by soil salinity using remote sensing 

indices and satellite images.  Then, we applied the soil degradation risk analysis using the 

GIS-MCDA spatial modelling. Based on the results, we propose the regular monitoring of 

areas affected by soil salinization and degradation, the development of new methods, and 

their implementation in the online platforms and advanced cloud computing technologies 

such as GEE, to support decision-makers and authorities with up-to-date and near real-

time monitoring of the soil salinity in the region. Applying several soil salinity indices 

indicated that selecting a beneficial technique might be challenging due to the similarity 

of methods. However, results might be different and accurate data is required for accuracy 

assessment. The use of state-of-the-art methods and technologies is the key to obtaining 

highly accurate results using remote sensing. Therefore, the development of suitable al-

gorithms, together with the right indices and high-resolution satellite images, is critical to 

detect salinity centers with high accuracy.  

Our results show that the Urmia Lake drought and the associated occurrence of salt 

diffusion centers and extensive soil salinity indirectly impact agriculture activities. The 

ULB, with about 360,000 hectares of croplands and 140,000 hectares of orchards, makes 

up about 8.5% of Iran’s farmlands and significantly contributes to food production. The 

ULB is also home to 7.3 million people living in 63 cities and 520 villages, all of which are 

threatened by the intensive environmental impacts of the hyper-saline lake drought. The 

UNEP recognized Urmia Lake as a worrying case, which clearly shows the need for im-

mediate restoration initiatives. Therefore, the results of this research shall be used by au-

thorities and environmental planners to identify potential constraints and prevent soil 

misuse and vegetation destruction. These results will lead to the observation of soil sali-

nization and degradation, thus helping to reduce the rural exodus to the cities located in 

the ULB, which is causing further challenges for these cities. Our results will also provide 

key information for decision-makers and support them in the sustainable development of 

northwest Iran. Due to the lack of suitable environmental management and agricultural 

practices, the drying rate of Urmia Lake has increased. The subsequent soil salinization 

has expanded, which is threatening the fertility of the soils in the vicinity of the lake. This 

has become a critical concern in northwest Iran and neighboring countries such as Turkey, 

Azerbaijan, Iraq, and Armani as this phenomenon impacts all hyper-saline lakes.  
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