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Abstract: Plant functional traits at the community level (plant community traits hereafter) are com-
monly used in trait-based ecology for the study of vegetation–environment relationships. Previous
studies have shown that a variety of plant functional traits at the species or community level can be
successfully retrieved by airborne or spaceborne imaging spectrometer in homogeneous, species-poor
ecosystems. However, findings from these studies may not apply to heterogeneous, species-rich
ecosystems. Here, we aim to determine whether unmanned aerial vehicle (UAV)-based hyperspectral
imaging could adequately estimate plant community traits in a species-rich alpine meadow ecosystem
on the Qinghai–Tibet Plateau. To achieve this, we compared the performance of four non-parametric
regression models, i.e., partial least square regression (PLSR), the generic algorithm integrated with
the PLSR (GA-PLSR), random forest (RF) and extreme gradient boosting (XGBoost) for the retrieval of
10 plant community traits using visible and near-infrared (450–950 nm) UAV hyperspectral imaging.
Our results show that chlorophyll a, chlorophyll b, carotenoid content, starch content, specific leaf
area and leaf thickness were estimated with good accuracies, with the highest R2 values between
0.64 (nRMSE = 0.16) and 0.83 (nRMSE = 0.11). Meanwhile, the estimation accuracies for nitrogen
content, phosphorus content, plant height and leaf dry matter content were relatively low, with the
highest R2 varying from 0.3 (nRMSE = 0.24) to 0.54 (nRMSE = 0.20). Among the four tested algorithms,
the GA-PLSR produced the highest accuracy, followed by PLSR and XGBoost, and RF showed the
poorest performance. Overall, our study demonstrates that UAV-based visible and near-infrared
hyperspectral imaging has the potential to accurately estimate multiple plant community traits for
the natural grassland ecosystem at a fine scale.

Keywords: community weighted means; natural grassland ecosystem; Qinghai–Tibet Plateau;
remote sensing

1. Introduction

Plant functional traits may directly or indirectly affect plant fitness by influencing
individuals’ growth, reproduction and survival [1]. They reflect the morphological, physio-
logical or phenological responses of species to the environment and serve as proxies for life
strategies [2–4]. However, plant species primarily represent and survive as part of a plant
community instead of as separate species or individuals. Therefore, the variation in traits
among species cannot represent the characteristics of plant communities or vegetation, nor
the ecological processes at the ecosystem level [5,6].
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Plant communities are composed of sets of species with various abundances and main-
tain a dynamic balance through interactions between species [7]. Therefore, plant functional
traits at the community level (plant community traits hereafter) include information not
only on plant functional traits but also on species composition. Plant community traits
offer a trait-based approach to address several key questions related to plant community
assembling and productivity regulation [8,9] and will assist in exploring how vegetation
responds to climate change [10].

The community-weighted mean (CWM) trait, which aggregates plant functional traits
at the community level using the weighted-mean approach, is a commonly used indicator
for the study of vegetation–environment relationships [7]. The CWM trait is typically
calculated as the mean of plant functional trait values at the species level weighted by the
relative abundance of taxa [5]. However, measuring CWM traits through field surveys is
time-consuming and labour-intensive, while using trait data from published databases
is hindered by differences in sampling and measurement criteria and usually ignores
intraspecific variation of traits [11]. Moreover, functional traits derived from discrete sites
could hardly reflect the continuous spatial change in vegetation characteristics [12]. Hence,
an alternative approach to collecting trait information at the community level covering
variations within and between species is of great significance [13].

Remote sensing has the potential to provide a spatially continuous representation of
plant functional traits and intraspecific variations [14,15]. Previous studies have shown that
a variety of plant functional traits at the species or community level in forest ecosystems
can be successfully retrieved by airborne or spaceborne imaging spectrometer [16,17]. As
to grassland ecosystems, although a few studies have attempted to quantify trait variations
at the community level, they are either limited to a relatively homogeneous condition with
few co-existing species [18], dependent on a well-managed experimental platform and
observed datasets [19] or focus only on limited plant traits [20]. The conclusions drawn
from these studies may not apply to heterogeneous and species-rich grasslands in natural
conditions [21].

The unmanned aerial vehicle (UAV) platform can be operated flexibly according
to weather and field conditions, so it has become increasingly used in ecological re-
search [22,23]. UAV-based imaging spectroscopy is a relatively new remote sensing tech-
nology with significant benefits for high-resolution remote sensing applications, making
it possible to study trait variations at the community level at a fine scale [24]. Moreover,
UAV-based imaging spectroscopy could offer a link between field investigation and satellite
observation, which may support the estimation of plant functional traits at the community
level on a broader spatial scale [25]. However, despite the potential of UAV-based imaging
spectroscopy, little research has been performed on the estimation of plant community
traits directly from UAV hyperspectral imagery, particularly in heterogeneous natural
grasslands. Thus, in this paper, we aim to determine whether UAV-based hyperspectral
imaging could adequately estimate plant community traits in a species-rich alpine meadow.
Specifically, we set out to assess the performance of four non-parametric regression models
for retrieving 10 plant community traits from visible and near-infrared (450–950 nm) UAV
hyperspectral imagery.

2. Materials and Methods
2.1. Study Area

Our study is within a river basin located in the northeastern Qinghai– Tibet Plateau
in Qinghai Province, China. The basin covers an area of approximately 244.8 km2 with an
average elevation of 3385 m.a.s.l. (Figure 1). This area is characterised by a continental mon-
soon climate with a mean annual temperature of –1.1 ◦C and a mean annual precipitation
of 485 mm. Around 80% of the precipitation falls in the growing season from mid-April
to mid-October. The dominant vegetation communities are alpine meadows and alpine
shrubs. These communities are very rich in plant species, ranging from 30 to 50 per square
meter [26].
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Figure 1. (A) Location of the study area on the Qinghai–Tibet Plateau; (B) photo of the study area;
(C) study area with the location of used UAV flight sites; and (D) sampling design for each site in
which the red boxes denote the three 2 m × 2 m sampling plots, and the green (25 cm × 25 cm),
blue (50 cm × 50 cm) and purple (1 m × 1 m) boxes denote the quadrats for biomass harvesting,
UAV spectra extraction and species survey, respectively, in each plot. Aboveground biomass in the
subplots 1, 2 and 3; 2, 3 and 4; and 1, 3 and 4 for plots 1, 2 and 3, respectively, were harvested after
the spectral measurements.

2.2. Hyperspectral Data Collection and Pre-Processing

In this study, we determined 20 survey sites according to the altitude gradients, with
the altitude ranging from 3040 to 3450 m. Each survey site was 100 m × 60 m in size. UAV
flight campaigns were conducted between 10 and 26 August 2021 during the growing
season of the meadow. At each survey site, we collected the hyperspectral data by a Cubert
UHD185 Firefly spectrometer (UHD185) equipped on a hexacopter UAV (DJI M600 PRO).
DJI M600 PRO was equipped with the A3 Pro flight controller including three Inertial
Measurement Units (IMU) and three Global Navigation Satellite System (GNSS) units. The
UHD185 comprises 125 spectral channels and spans the spectral range from 450 to 950 nm
at a 4-nm sampling interval, and the spectral resolution is 8 nm. One panchromatic band
and 125 hyperspectral bands were simultaneously recorded into the UHD185 during the
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flight. Before each flight, we calibrated the UHD185 spectrometer using a white reference
panel and a black plastic lens cap. Three 1.2 m × 1.2 m standard reference panels (with
approximately 10%, 50% and 80% reflectance, respectively) were set up in the flight area
for the follow-up relative normalisation [27]. To minimize the atmospheric perturbations
and BRDF effects, we conducted all these flight campaigns between 11:00 and 15:00 local
time on clear sunny days. The flight speed was 4.8 m/s at a flight altitude of 40 m above
ground level. The UAV survey was designed to acquire 70% forward overlap and 60% side
overlap. The average size of the UAV stripes was 17 m × 100 m. The spatial resolution
was about 0.02 m for the panchromatic image and about 0.3 m for the hyperspectral image.
The collected hyperspectral images were first fused with the corresponding panchromatic
images using Cube-Pilot software (Cubert GmbH, Ulm, Germany). The entire hyperspectral
image of each site was then mosaicked from the fusing images using Agisoft PhotoScan
(Agisoft, St. Petersburg, Russia). As a result, 14 out of 20 mosaiced UAV hyperspectral
images were retained after eliminating blurring images caused by sudden strong turbulence
over the plateau.

We extracted the field spectra of three standard reference panels from each panel’s
centred pixels from the hyperspectral image. In addition, the reference reflectance of
each panel was measured from a laboratory-integrating sphere using the full range of
Analytical Spectral Devices (ASD-FR). Based on the field spectra and reference spectra
of these panels, images of different study sites were calibrated using an empirical line
method [24,27,28]. All images were smoothed by the Savitzky–Golay filter with a factor of
5 to remove high-frequency noise (Figure S1).

We used a 25 × 25 pixel (around 50 cm × 50 cm in size) window at four corners of
the 2 m × 2 m plot to extract spectra from each plot (Figure 1). Image processing was
performed with ENVI 5.3 (Exelis Visual Information Solutions, Boulder, CS, USA).

2.3. Field Data Collection

The field samples were collected on the same day as the UAV flight campaign, i.e., be-
tween 10 and 26 August 2021. At each survey site, we randomly set three 2 m × 2 m plots
in a 100 m × 60 m range (Figure 1). The distance between any two plots was at least 15 m.
We investigated the 1 m × 1 m area in the centre of each plot for species composition and
species-wise coverage. To do so, we divided the 1 m2 quadrat into a grid of 100 squares each
representing 1% cover and then estimate the percentage cover occupied by each species in
the quadrat. We marked each plot in its centre for identification in images. In this research,
we sampled species that accounted for the accumulative coverage of over 80% of the entire
plot in each plot.

We collected 20 fully mature leaves of each sampled species at three vertical canopy
positions along the plant stem: lower (n = 6), middle (n = 6) and upper (n = 8). We mixed
the sampled leaves of each species and divided them into two equal subsamples. One
subsample was quickly stored in liquid nitrogen for physiological trait measurement, and
the other subsample was wrapped in wet tissue and stored in an icebox for structural trait
measurement. For each sampled species, we randomly selected 5–10 mature and healthy
individuals for the plant height measurement and calculated the average. In each plot, four
25 cm × 25 cm subplots at corners were clockwise numbered with the southern corner
ranked 1 (Figure 1). Aboveground biomass in the subplots 1, 2 and 3; 2, 3 and 4; and 1,
3 and 4 of plots 1, 2 and 3, respectively, were harvested after the spectral measurements.
In total, 40 out of 60 investigated plots were considered in this study (Figure 2). The
relative coverage of each species in each plot was calculated based on these sampled
species according to the following formula:

rci = (Ci)/
n

∑
j=1

Cj (1)
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where rci represents the relative coverage of the ith species in a given plot, Ci is the coverage
of the ith species, Cj is that of the jth species in the plot, and n is the total number of all
species in the plot.
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ing to the purple boxes in Figure 1D) in each plot used in this study.

2.4. Foliar Trait Measurements and Plant Community Trait Calculation

In this study, we measured six biochemical traits including chlorophyll a content,
chlorophyll b content, carotenoid content, nitrogen content, phosphorus content and starch
content as well as four structural traits including plant height, leaf thickness, leaf dry matter
content and specific leaf area (Table S1).

We measured chlorophyll a and b and carotenoid contents, as well as all structural
traits, with the community weighted means approach. We determined chlorophyll a
and b and carotenoid contents with a UV/VIS Spectrophotometer (UV-1800PC, Shanghai
Mapada Instruments Co., Ltd., Shanghai, China). Except for the plant height, which was
measured during the investigation, the other structural traits, such as leaf thickness, leaf
dry matter content and specific leaf area, were measured on the same day of sampling. Leaf
thickness was measured by a micrometre, and fresh weight was measured by an analytical
balance. After leaf thickness measurement, we scanned leaves for the fresh leaf area with
a flatbed scanner and then oven-dried those leaves at 65 ◦C for 72 h to a constant weight
to determine the specific leaf area (fresh area/dried weight) and leaf dry matter content
(dried weight/fresh weight).

We calculated the CWM values of chlorophyll a and b and carotenoid contents, plant
height, leaf thickness, leaf dry matter content and specific leaf area according to the follow-
ing formula:

t =

(
d

∑
i=1

ti × Ci

)
/

n

∑
i=1

Ci (2)

where t represents a community-level functional trait, ti denotes the functional trait of ith
species, Ci is the coverage of ith species, d represents the total number of sampled species
in a given plot and n is the total number of all species in a given plot.

In addition, we measured plant community nitrogen, phosphorus and starch contents
using mixed samples. We shredded the harvested biomass, which was oven-dried at 65 ◦C
for at least 72 h and homogenised it to mixed samples. The nitrogen content was analysed
using an elemental analyser (Vario MACRO Cube, Frankfurt, Germany). The phosphorus
content was measured by the molybdate–ascorbic acid method after H2SO4–H2O2 diges-
tion [29]. Moreover, the starch content was measured by the anthrone colorimetric method
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using a UV/VIS Spectrophotometer (UV-1800PC, Shanghai Mapada Instruments Co., Ltd.,
Shanghai, China). Chlorophyll a, chlorophyll b and nitrogen contents were quantified in an
area-based approach [30,31]. Area-based traits (mg/cm2) were calculated according to the
following formula:

traitarea = traitmass/SLA (3)

2.5. Mapping Plant Community Traits

Here we tested four non-parametric models’ capability for the retrieval of various
community-level traits (Figure 3). The two linear models are partial least square regression
(PLSR) and the generic algorithm integrated with the PLSR (GA-PLSR). PLSR is a widely
used algorithm in hyperspectral vegetation parameters retrieval [32,33]. As a model
designed to incorporate multicollinearity problems, PLSR derives a smaller number of
latent variables from the original data [34]. In this way, PLSR can eliminate the less
informative variables but concentrate most explanatory variables on a few latent variables.
However, the “large p-small n” problem (a large number of variables but a few samples)
can still spoil the PLSR result [35]. In this condition, a variable selection pre-processing is
known to improve PLSR performance [36]. Here, we adopted GA-PLSR which allows a
band selection procedure in PLSR [37]. There are numerous studies showing GA-PLSR to
be useful in promoting PLSR model performance [38,39]. It obeys the rule of biological
evolution and natural selection to select informative features. Important features are able
to survive after multiple iterations of model fitting and feature selection procedures. We
selected random forest (RF) and extreme gradient boost (XGBoost) to evaluate nonlinear
model performance in traits estimation. The RF model is one of the popular techniques of
foliar trait prediction [40] and has been applied to map vegetation parameters at various
scales [41,42]. XGBoost is an emerging machine learning algorithm showing satisfactory
model performance in recent research [43].
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Figure 3. Overview of the study workflow.

In total, 40 plots were used as input for the four tested models. We used the leave-
one-out-cross-validation (LOOCV) approach for model training and validation. Based
on the pls package in R [44], we determined the number of latent factors used in PLSR
for each community-level trait dataset by the predicted residual sum of squares (PRESS)
statistic [45]. The feature selection of GA-PLSR was performed by the plsVarSel package
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in R [39]. After that, the standard PLSR routine was performed to determine the latent
factors. As for the nonlinear models, we conducted a hyper-parameter optimisation process
for each trait dataset (Table S2). RF models were performed with a randomforest package
in R [46]. The number of trees (ntree, 100–1000 with the interval of 100) and the number
of variables randomly sampled as candidates at each split (mtry, 1–125) were tuned, and
each combination was replicated for 10 times to obtain the optimal parameters with the
highest correlation coefficient. The XGBoost models were performed with the xgboost
package in R [47], and the learning rate (eta, 0.1–1), maximum depth of a tree (max_depth,
0.1–1) and iteration rounds (nrounds, 1–100) were tuned to search for the best parameter in
combination with the highest correlation coefficient.

We selected the model with the best performance for plant community trait mapping
to visually represent plant community traits in space. Here we assessed the best model as
a model with the highest R2 among all tested traits. To test whether the selected model
could be adequately applied in a species-rich meadow, we further analysed the relationship
between the predicted residuals of all plant community traits and the number of dominant
species in each plot. To display spatial patterns of traits, we chose one image covering an
area composed of a fenced meadow and a highly disturbed meadow. The location of this
image was indicated in Figure 1. Thanks to the precise spatial resolution, we excluded
non-vegetation pixels by supervised classification. The image was resampled into 50-cm
spatial resolution by the nearest-neighbour algorithm (Figure S2). The relative uncertainty
(standard deviation/mean) was calculated based on the 40 models generated from LOOCV.
Data analysis was performed with R 4.1.0 [48].

3. Results

Among the biochemical traits, chlorophyll a and b, carotenoid and starch contents,
showed good predictive accuracy, with the highest R2 value of four models ranging from
0.64~0.83. Phosphorus and nitrogen showed R2 values lower than 0.60 (Figure 4). As for the
structural traits, specific leaf area (highest R2 = 0.70) and leaf thickness (highest R2 = 0.68)
were both estimated well (Figure 4), while the estimates of plant height (R2 = 0.44) and leaf
dry matter content (R2 = 0.30) were relatively poor.
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Figure 4. Predicted versus observed chlorophyll a (chl_a), chlorophyll b (chl_b), carotenoid (carot),
specific leaf area (SLA), leaf thickness (LT), plant height (height), phosphorus content (P), starch
content (starch), leaf dry matter content (LDMC) and nitrogen content (N) from PLSR, GA-PLSR, RF
and XGBoost; the blue line denotes the 1:1 line, and the red areas denote the 95% confidence interval.

Among four estimation models, GA-PLSR proved more accurate, as it produced
the highest R2 value and the lowest nRMSE in most of the 10 plant community traits
(Table 1). However, the other models displayed various performances in different traits.
PLSR showed good performance in most traits, such as the biochemical traits related
to photosynthesis (chlorophyll a and b and carotenoid contents) and specific leaf area.
XGBoost owned model performance comparable with GA-PLSR for carotenoid content and
plant height. However, it showed relatively low R2 values for nitrogen and starch contents.
RF presented the worst predictive accuracy in most traits. Moreover, GA-PLSR had nRMSE
values all below 0.4, while the other three models produced higher nRMSE values for most
structural traits. Among the 10 traits, the model performance for leaf thickness, nitrogen
content and starch content illustrated significant differences. The R2 values of different
models varied from 0.68 to 0.04.
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Table 1. Model evaluation and comparison of the coefficient of determination (R-squared) and
normalised root mean-square error (nRMSE) on 10 plant community traits.

Trait
PLSR GA-PLSR RF XGBoost

R2 nRMSE R2 nRMSE R2 nRMSE R2 nRMSE

chlorophyll a 0.58 20.3% 0.79 10.7% 0.28 38.7% 0.51 22.0%
chlorophyll b 0.60 18.5% 0.83 10.7% 0.25 37.9% 0.39 32.0%

carotenoid 0.51 22.2% 0.64 16.0% 0.25 40.7% 0.62 15.8%
specific leaf area 0.52 15.1% 0.70 12.8% 0.26 41.3% 0.34 25.6%

leaf thickness 0.34 24.5% 0.68 13.5% 0.07 55.3% 0.20 50.0%
plant height 0.20 31.4% 0.44 25.3% 0.32 39.3% 0.40 95.7%

phosphorus content 0.31 20.7% 0.54 19.5% 0.20 40.3% 0.29 28.7%
nitrogen content 0.03 62.0% 0.50 22.3% 0.06 47.3% 0.14 44.1%

starch content 0.47 18.4% 0.68 13.5% 0.04 51.9% 0.07 37.6%
leaf dry matter content 0.05 59.8% 0.30 24.2% 0.07 74.4% 0.09 44.9%

As for linear models, the model performance of PLSR increased significantly with
band selection (GA-PLSR). In addition, GA-PLSR conquered the weakness of PLSR in some
traits’ retrieval, such as nitrogen content, and yielded more satisfactory results than the two
nonlinear models. For the two nonlinear models, XGBoost showed an obvious advantage
over RF in all traits. However, the four tested models’ prediction of leaf dry matter content
all below 0.4 made it the worst prediction among all 10 traits.

In addition, we analyzed the relationships between the predicted residuals of plant
community traits and the number of dominant species in each plot. It showed that there
was no statistically significant relationship (p > 0.05) between the predicted residuals of
traits and the number of species (Figure 5).
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Figure 5. Relationships between the predicted residuals of plant community traits and the number
of dominant species in each plot. Dotted lines denote non-significant relationships (p > 0.05): chl_a,
chlorophyll a; chl_b, chlorophyll b; carot, carotenoid; SLA, specific leaf area; LT, leaf thickness; height,
plant height; P, phosphorus content; N, nitrogen content; starch, starch content; LDMC, leaf dry
matter content.

Based on these results, we mapped spatial patterns of all tested traits, applying the GA-
PLSR, as it exhibited stability and outperformed all models, to map traits (Figure 6). Our
results showed that biochemical traits displayed more homogeneous distributions while
structural traits, especially for plant height, had obvious spatial patterns. We calculated
uncertainties from the predicted maps (Figure S3). For all traits, most uncertainty values
were near zero.
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Figure 6. Spatial patterns of plant community traits mapped using GA-PLSR and the frequency
distribution of pixel values. The location of this image was indicated in Figure 1. This image covers
plot 32, plot 33 and plot 34 in Figure 2.
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4. Discussion

In this study, we predicted 10 significant plant community traits from the near-ground
UAV-based hyperspectral image in a highly heterogeneous grassland with high species
richness, with 9 traits producing moderate to good accuracies. Among all tested traits,
chlorophyll a and b contents, carotenoid content, specific leaf area, leaf thickness and starch
content could generate a predictive accuracy comparable to that of previous studies with
R2 values greater than 0.60 [19].

The retrieval of plant height, phosphorus content and nitrogen content produced mod-
erate predictive accuracy with R2 values varying from 0.44 to 0.54. This may be because
the nonpigmented compounds of foliage and structure correlation intervals were mostly
at longer wavelengths, while the detectable weak correlation could even be influenced by
strong absorption of water content in fresh leaves [49,50]. Nevertheless, the R2 values of
nitrogen and phosphorus content are comparable to other research in grasslands [18,19,51].
Similarly, all our tested models of leaf dry matter content produced poor predictive accu-
racies in this study, probably because leaf dry matter content reflected leaf water content.
The distinct effect of foliar liquid water was at 1450 and 1950 nm, which was out of the
available spectra range in this study [50]. This result suggested the relatively limited
capacity of visible and near-infrared spectra in the retrieval of certain traits, which should
be considered in future studies.

In this study, we tested four non-parametric models, including two linear models
and two nonlinear models, in the direct retrieval of multiple traits. The results suggested
that the predictive accuracy of some traits might be influenced to some extent by the
choice of models. For example, an obvious increase of R2 was observed in starch content
and leaf thickness when the linear model was applied. In contrast, a few traits yielded
relatively consistent predictive accuracies across four models, such as plant height and
carotenoid content.

As to the linear models, PLSR produced comparative average performance among all
models but failed in some traits, such as nitrogen and leaf dry matter content. The better
performance of GA-PLSR was consistent with some previous studies which confirmed the
effects of feature selection in PLSR [52]. On the one hand, these significant improvements
in model performance may because of the “large p–small n” problem. Since PLSR will
make better use of all given features than nonlinear models, redundant variables may
obscure truly usable bands [39]. As a result, PLSR with relatively limited training samples
cannot handle hundreds of correlated bands well [53]. On the other hand, environmental
and instrumental noise was inevitably mixed with spectral data, which may weaken the
predictive accuracy.

We found that the performance of GA-PLSR was not sensitive to species richness,
indicating its robustness in extracting information of functional traits based on the UAV
hyperspectral imaging in a fine resolution. Therefore, GA-PLSR model could adequately
estimate various plant community traits in species-rich alpine meadows.

Between two nonlinear models, XGBoost reported considerable advantages in predic-
tive accuracy over RF. This result was consistent with recently published studies [43,54].
As XGBoost is effective in high-dimension data analysis, it is becoming a reliable method in
vegetation parameter modelling using UAV-based hyperspectral data [52]. This may also
provide a new option when conducting similar research facing nonlinear model selection.

Overall, GA-PLSR, the PLSR model using the GA feature selection approach, outper-
formed the other candidates for all tested traits in this research. The trade-off between
complexity reduction and information preservation is a great challenge in hyperspectral
data analysis. GA-PLSR can deal with estimations of various traits from canopy spectra
with relatively satisfactory predictive accuracies. Maps generated from GA-PLSR depicted
various patterns at the local level that could not be achieved only by site investigation.
Meanwhile, the PLSR model combined with feature selection could serve as an option for
researchers facing the “large p–small n” problem.
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5. Conclusions

In this study, we investigated whether UAV-based hyperspectral imaging could be
used to estimate 10 different plant functional traits at the community level in a species-rich
alpine meadow ecosystem on the Qinghai–Tibet Plateau. In addition, we compared the per-
formance of four non-parametric regression models, i.e., PLSR, GA-PLSR, RF and XGBoost.
Based on the result, we conclude that the UAV-based hyperspectral image can be used to
adequately estimate plant community traits in a species-rich alpine meadow with moderate
to high accuracy. Specifically, we show that chlorophyll a, chlorophyll b, carotenoid content,
starch content, specific leaf area and leaf thickness were estimated with good accuracies,
with the highest R2 values between 0.64 (nRMSE = 0.16) and 0.83 (nRMSE = 0.11). While
the estimation accuracies for nitrogen content, phosphorus content, plant height and leaf
dry matter content were relatively low, with the highest R2 varying from 0.3 (nRMSE = 0.24)
to 0.54 (nRMSE = 0.20). Among the four tested algorithms, the GA-PLSR produced the
highest accuracy, followed by PLSR and XGBoost, and RF showed the poorest performance.
Our study demonstrates the potential of UAV-based visible and near-infrared hyperspec-
tral imagery to directly estimate various plant community traits in a natural grassland
ecosystem at a fine scale.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs14143399/s1, Figure S1: Examples of corrected spec-
tra of alpine meadow from five different flight sites. Figure S2: The UAV hyperspectral image used
for mapping plant community traits. The upper one is the raw image and the lower one is the
corrected image shown in true colour composites. This image covers plot 32, plot 33 and plot 34 in
Figure 2. The white arrows indicate the location of the three reference panels. Figure S3: Frequency
distribution of relative uncertainty of the 10 plant community trait maps produced by the GA_PLSR
model. Table S1: Summary statistics of the 10 plant functional traits for sampled plots (n = 40).
Table S2: An overview of optimal hyper-parameters of two machine learning models for 10 plant
community traits.
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