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Abstract: Change detection determines and evaluates changes by comparing bi-temporal images,
which is a challenging task in the remote-sensing field. To better exploit the high-level features,
deep-learning-based change-detection methods have attracted researchers’ attention. Most deep-
learning-based methods only explore the spatial–spectral features simultaneously. However, we
assume the key spatial-change areas should be more important, and attention should be paid to the
specific bands which can best reflect the changes. To achieve this goal, we propose the spatial–spectral
joint attention network (SJAN). Compared with traditional methods, SJAN introduces the spatial–
spectral attention mechanism to better explore the key changed areas and the key separable bands. To
be more specific, a novel spatial-attention module is designed to extract the spatially key regions first.
Secondly, the spectral-attention module is developed to adaptively focus on the separable bands of
land-cover materials. Finally, a novel objective function is proposed to help the model to measure the
similarity of learned spatial–spectral features from both spectrum amplitude and angle perspectives.
The proposed SJAN is validated on three benchmark datasets. Comprehensive experiments have
been conducted to demonstrate the effectiveness of the proposed SJAN.

Keywords: change detection; attention mechanism; spatial–spectral features; multispectral imagery

1. Introduction

Different images of the same location acquired at two or more different times are
referred to as multi-temporal images. The variations between multi-temporal remote-
sensing images can be identified by change detection. Change-detection method determines
if each pixel in a scene has changed by extracting changed areas from multi-temporal
images. Multispectral images have numerous bands, ranging from visible to infrared
light, and their extensive spectral information allows for reliable object identification. As a
result, multispectral change detection has found widespread application in the fields of
environmental monitoring [1–4], resource inquiry [5–7], urban planning [8–10], and natural
catastrophe assessment [11–13].

The two primary categories of change-detection methods are traditional and deep-
learning-based methods. For low-resolution images, the earliest change-detection methods
mostly used pixels as the monitoring unit and carried out pixel-by-pixel difference anal-
ysis. With the development of machine-learning algorithms and the increase in spectral
resolution, the unit of change detection shifted from pixels to objects. Prior to 2010, the
majority of these technologies were traditional change-detection methods, which consist
of algebra-based, image-transform-based, classification-based methods, and so on [14].
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Change detection based on algebraic and image transforms detects changes in images by ap-
plying transformations and operations to image pixels. While the post-classification method
classifies two temporal-phase remote-sensing images that have been aligned separately in
advance, and then compares the classification results to obtain change-detection maps.

Although the above traditional methods have made important contributions to the
development of multispectral change detection, most of them still use manual features and
rely on professional visual observers for manual discrimination. Deep learning can automat-
ically extract abstract features and obtain spatial–spectral feature representation, which can
effectively improve the accuracy of change-detection tasks. Therefore, deep-learning-based
change-detection methods have become a popular research direction. With the continuous
improvement of satellite-remote-sensing image resolution, the change-detection methods
based on deep learning have also made a qualitative leap in the extraction of multispec-
tral image features. There are various network structures that have been applied in the
field of change detection, such as deep-belief networks (DBN) [15], stacked auto-encoders
(SAE) [16], convolutional auto-encoders (CAE) [17], PCANet [18].

Some methods aim at extracting spatial–spectral features to obtain a better perfor-
mance concerning the change detection. Zhan et al. [19] proposed a three-way spectral–
spatial convolutional neural network (TDSSC), which used convolution to extract spectral
features from the spectral direction and spectral–spatial features from the spatial direction
to fully extract HSI discriminative features, improving the accuracy of change detection.
Zhang et al. [20] proposed a novel unsupervised change-detection method based on spec-
tral transformation and joint spectral–spatial feature learning (STCD). It overcame the
challenge of the same object image with different spectra in multiple spatial–temporal peri-
ods and improved the robustness of the change-detection method. Liu et al. [21] introduced
a dual-attention module (DAM) to exploit the interdependencies between channels and
spatial positions. The method could obtain more discriminative features and the authors
conducted experiments on the WHU architectural dataset. By simultaneously evaluating
the spatial–spectral-change information, Zhan et al. [22] constructed an unsupervised
scale-driven change-detection framework for VHR images. The system generated a robust
binary change map with high detection precision by fusing deep feature learning and
multiscale decision fusion. To address the problem of “the same object with different
spectra”, Liu et al. [23] presented an unsupervised spatial–spectral feature learning (FL)
method, which extracted hybrid spectral–spatial change characteristics through a 3D con-
volutional neural network with spatial and channel attention. For change detection in
very-high-resolution (VHR) images, Lei et al. [24] proposed a network based on difference
enhancement and spatial–spectral nonlocal (DESSN). To enhance the object’s edge integrity
and internal tightness, a spatial–spectral nonlocal (SSN) module in DESSN was proposed
to depict large-scale object fluctuations throughout change detection by incorporating mul-
tiscale spatial global features. The above-mentioned methods try to extract spatial–spectral
features. However, they pay little attention to the subtle features of changed areas.

With the widespread use of attentional mechanisms, change-detection methods based
on attentional modules have been proposed. To alleviate the problem of ineffective
detection of small change areas and poor robustness of the simple network structure,
Wang et al. [25] proposed an attention-mechanism-based deep-supervision network (ADS-
Net) to obtain the relationships and differences between the features of bi-temporal images.
To overcome the problem of insufficient resistance of current methods to pseudo-changes,
Chen et al. [26] proposed dual attentive fully convolutional Siamese networks (DAS-
Net) to capture long-distance dependencies in order to obtain more discriminant features.
Chen et al. [27] presented a spatial–temporal attention-based change-detection method
(STA), which simulates the spatial–temporal relationship by the self-attention module.
Chen et al. [28] proposed a novel network that paid more attention to the regions with
significant changes and improved the model’s anti-noise capability. Ma et al. [29] presented
a dual-branch interactive spatial-channel collaborative attention enhancement network
(SCCA-net) for multi-resolution classification. In this network, a local-spatial-attention
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module (LSA module) was developed for PAN data to emphasize the advantages of spatial
resolution, and a global-channel-attention module (GCA module) was developed for MS
data to improve the multi-channel representation. Chen et al. [30] proposed a dynamic
receptive temporal attention module by exploring the effect of temporal attention depen-
dence range size on change-detection performance, and introduced Concurrent Horizontal
and Vertical Attention (CHVA) to improve the accuracy of strip entities.

The above deep-learning-based change-detection methods achieve good results, and
some methods also extract spatial–spectral features. However, they do not pay attention
to key changed areas in the spatial dimension and the separable bands of land-cover
materials in the spectral dimension when extracting spatial–spectral features. When the
scene is complex, the efficiency of derived spatial–spectral features is influenced by the
key changed areas and the separable bands of land-cover materials. Moreover, the above-
mentioned deep-learning-based change-detection methods just measure the similarity
of learned spatial–spectral features from the spectral amplitude and do not consider the
influence of the spectral angle. Spectral angle is an important index to evaluate the spectral
similarity. To address the above-mentioned problems, we propose the spatial–spectral joint
attention network (SJAN). The SJAN contains the spatial-attention module to focus on the
key changed area and the spectral-attention module to explore the separable bands when
extracting spatial–spectral features. In order to better measure the similarity of learned
spatial–spectral features, we measure it not only from the spectral amplitude perspective,
but also from the spectral angle perspective. As a result, the proposed SJAN can achieve
better performance.

The main contributions of our proposed SJAN method are as follows:

(1) A spatial–spectral attention network is proposed to extract more discriminative spatial–
spectral features, which can capture the spatial key changed areas by the spatial-
attention module and explore the separable bands of materials through the spectral-
attention module.

(2) A novel objective function is developed to better distinguish the differences of the
learned spatial–spectral features, which simultaneously calculate the similarity of
learned spatial–spectral features from the spectrum amplitude and angle perspectives.

(3) Comprehensive experiments in three benchmark datasets indicate that the proposed
SJAN can achieve superior performance compared to other state-of-the-art change-
detection methods.

2. Materials and Methods
2.1. Literature Review
2.1.1. Change Detection

Change detection is the process of quantitatively analyzing and characterizing surface
changes from remote-sensing data of different time periods. Remote-sensing change
detection (CD) is the process of identifying “significant differences” between multi-temporal
remote-sensing images. Most current change-detection methods can be classified into two
main categories: traditional methods and deep-learning-based methods.

Traditional change-detection methods include algebra-based change-detection meth-
ods, image-transform-based change-detection methods, and classification-based change-
detection methods [14]. Algebraic-based change-detection methods include change vector
analysis (CVA) [31], image differencing, image comparison, and image grayscale differenc-
ing methods that perform mathematical operations (e.g., differencing, comparing, etc.) on
each image to obtain the changed map. CVA measures the amount of change by performing
a different operation on the data from each band of different images. However, with the
number of bands increasing, it becomes more and more difficult to determine the change
types and select the change threshold.

Change detection based on image transformation uses the transformation of image
pixels to detect changes in images, including principal component analysis (PCA) [32],
independent component analysis method (ICA), and multivariate alteration detection
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(MAD) [33]. Detecting changed regions with the PCA algorithm can detect changed
information and can clearly point out the change region, but it is susceptible to noise
and requires data preprocessing. The MAD method can effectively remove correlation,
but noise has a significant impact on the results and the threshold needs to be adjusted
manually. Morton [34] proposed the IR-MAD algorithm in combination with the EM to
alleviate these occurrences; it can automatically obtain the change threshold.

Classification-based change-detection algorithms involve post-classification compar-
isons, unsupervised change-detection methods, and artificial-neural-network-based meth-
ods. The main advantage of these methods is that they provide accurate information on
changes independent of external factors such as atmospheric disturbances. Radhika and
Varadarajan proposed a classification detection method using neural networks that pro-
vides better accuracy but can only be applied to small images [35]. Another unsupervised
novel SVD that traces the function clustering algorithm, which performs well in land-cover
classification, was proposed by Vignesh et al. The algorithm grouped images and used
these images as a training set for the ensemble minimization learning algorithm (EML) [36].

With the booming development of deep-learning techniques, many deep-learning-
based change-detection algorithms have been proposed. For example, Liu et al. [37]
proposed a deep convolutional coupling network (SCCN). The input image was connected
to each side of the network and transformed into a feature space. The distances of the
feature pairs were calculated to generate the different map. Zhan et al. [38] proposed a deep
concatenated full convolutional network (FCN), which contains two identical networks
sharing the same weights and each network independently generates feature maps for each
spatial–temporal image. It exploited more spatial relationships between pixels and achieved
better results. Mou et al. [39] proposed a novel recurrent convolutional neural network
(RCNN) architecture, which combines CNN and RNN to form an end-to-end network
that can be trained to learn joint spectral–spatial–temporal feature representations in a
unified framework for multispectral image-change detection. Zhang et al. [40] presented
a spectral–spatial joint learning network (SSJLN), which jointly learned spectral–spatial
representations and deeply explored the implicit information of the fused features. The
direction of change detection is still well worth investigating.

2.1.2. Attention Mechanism

The attention mechanism aims to simulate the attention behavior of humans in reading,
listening, and hearing. The attentional mechanism has been proved helpful for computer-
vision tasks [41,42]. The performance of computer-vision tasks is effectively improved by
combining the attention mechanism and deep networks; therefore, the attention mechanism
has been widely used in computer-vision fields, such as image classification and semantic
segmentation in recent years [43–46]. At first, the attention mechanism was usually ap-
plied to convolutional neural networks. Fu et al. [47] proposed a CNN-based attention
mechanism, which recursively learned discriminative region attention and region-based
feature representation at multiple scales in a mutually reinforcing manner, and proved its
effectiveness in fine-grained problems. Hu et al. [48] proposed the Squeeze-and-Excitation
(SE) module that enabled the network to focus on the relationship between channels, using
the network automatically to learn the importance of different channel features, improving
the accuracy of image classification. Woo et al. [49] proposed the Convolutional Block
Attention Module (CBAM), which introduced a spatial-attention mechanism to focus on the
spatial features of the image on the basis of the network and the essential channel features,
enhancing network stability and image-classification accuracy. Misra et al. [50] proposed
a triplet attention mechanism to establish inter-dimensional dependencies, which can be
embedded into standard CNNs for different computer-vision challenges.
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2.2. Method
2.2.1. Network Architecture

The Siamese network has two branching networks, and both branches have the same
architecture and weights [51]. The Siamese network uses pairwise patches or images as
input, extracts features through a series of layers, and calculates the similarity of the learned
features as output. Hence, the Siamese network is a mainstream network in the field of
change detection. As a result, our proposed SJAN is based on a Siamese network.

SJAN contains four parts: initial feature-extraction module, spectral-attention module,
spatial-attention module, and discrimination module, as shown in Figure 1. The initial
feature-extraction module uses the simplest CNN network. The network structure and
relevant parameters of the initial feature-extraction module are shown in Table 1. The
spatial-attention module and the spectral-attention module aim to optimize the learned
initial features so that they can focus on the spatially critical changed regions and separabil-
ity bands of the spectrum, which will be described in detail in the following section. The
discrimination module first fuses the extracted spatial–spectral features, then explores the
implicit information of the obtained features, and finally gives the change-detection result
with the sigmoid function. Its network structure and relevant parameters are shown in
Table 1.

Table 1. Parameter setting for each layer.

Module Layer Names Input Dim. Output Dim. KS S

inital feature
extraction
(CNN)

conv1 11× 11× 4 11× 11× 32 3× 3 1
conv2 11× 11× 32 11× 11× 64 3× 3 1
pool1 11× 11× 64 5× 5× 64 2× 2 1
conv3 5× 5× 64 5× 5× 128 3× 3 2
conv4 5× 5× 128 5× 5× 128 3× 3 1
pool2 5× 5× 128 2× 2× 128 2× 2 2

spectral attention spectral-attention 2× 2× 128 2× 2× 128 - -
spatial attention spatial-attention 2× 2× 128 2× 2× 128 - -

flatten 2× 2× 128 512 - -

discrimination
dense1 512 256 - -
dense2 256 128 - -
dense3 128 1 - -

Spatial-spectral Joint Attention Network

spectral attention module spatial attention module

spatial attention module

CNN

CNN

2 x 2 x C

2 x 2 x C

spectral attention module

.

.

.

.

.

.

.

.

.

.

prediction

changed

unchanged

FC  Net

fc1
fc2

fc3

sigmoid

spatial-spectral
feature

spatial-spectral
feature

image before change

image after change

Figure 1. Spatial–spectral joint attention network.

First, the spatial–spectral features are extracted from the pairwise blocks at the moment
T1 and T2 after a series of convolution and pooling operations, denoted as F1

H×W×C

and F2
H×W×C, where H, W, and C represent the height, width, and number of channels,

respectively. Second, the learned features F1
H×W×C and F2

H×W×C are fed to the spectral-
attention module, respectively, to obtain the features based on spectral attention, denoted
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as F1
spectral−att and F2

spectral−att, which are obtained by multiplying the feature maps with the

spectral-attention weights. Third, the features based on spectral attention F1
spectral−att and

F2
spectral−att are fed to the spatial-attention module to obtain the spatial–spectral features,

denoted as F1
spatital−spectral and F2

spatital−spectral . Finally, the differential information of the

spatial–spectral features F1
spatital−spectral and F2

spatital−spectral is fed to the fully connected
layers for classification to get the change-detection results.

2.2.2. Spatial-Attention Module

The spatial-attention module consists of two arithmetic operations and one convolu-
tional layer. It aims to obtain spatial-attention features of each channel. The structure of
the spatial-attention module is shown in Figure 2. First, the mean and maximum values
for the featured dimensions of the pairwise blocks are obtained to create two 2× 2 vectors,
then the vectors are reduced to a 2× 2× 1 vector. Second, the maximum value and the
mean value will be dotted. The maximum and mean values of the feature dimensions are
calculated to define the changed areas from different aspects, respectively. We perform a
point multiplication operation which can obtain an attention matrix with higher weight
differences than the concatenation operation, allowing us to better integrate the acquired
data. Third, the data are normalized using the 7× 7 convolution and sigmoid function to
obtain the spatial attention weights. Finally, the spatial attention weights and the input fea-
tures are multiplied to obtain the spatial-attention features. The features obtained from the
spatial-attention module are more discriminative because it focuses more on key changed
regions in the spatial dimension.

Avg

sigmoid

2×2×C
2×2×C

2×2×1

Max

Figure 2. Spatial-Attention Module.

2.2.3. Spectral-Attention Module

The spectral-feature-extraction network under the attention mechanism can automati-
cally determine the importance of different bands of pairwise blocks in complex scenes,
which is useful for multispectral change-detection tasks. The spectral-attention module
consists of two pooling layers and a shared MLP. It aims to explore which band is more
effective for detecting the target. Figure 3 depicts the network architecture of the spectral-
attention module. First, the features of the pairwise blocks are downscaled using global
maximum pooling and global average pooling to create a 1× 1× C vector (C is the number
of channels). Second, they are fed into a shared MLP with two 1× 1 convolutions to ensure
that the detailed information of pairwise blocks are acquired. Third, these learned features
are dotted. Maximum pooling and average pooling focus on different aspects of the spectral
information of the pairwise blocks, respectively, so that we perform a point multiplication
operation instead of element-wise summation to make the gap between separability bands
for different features as wide as possible. Then the sigmoid function is used to normalize
the result, and the result after normalization is the spectral-attention-weight matrix based
on the spectral-attention model. Finally, the channel-spectral-attention weights and the
input features are multiplied to obtain the spectral-attention features. The features acquired
from the spectral-attention module are more discriminative because it focuses more on the
separability bands in the spectral dimension.
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AvgPool

MaxPool

Shared MLP

sigmoid

2×2×C
2×2×C1×1×C

Figure 3. Spectral Attention Module.

2.3. Loss Function

Spectral angle is a critical criterion for determining if two spectral vectors are similar,
and most existing deep-learning-based change-detection methods do not take the spectral
angle into consideration when calculating the similarity. Therefore, the loss function in this
thesis is defined from both spectral magnitude and angle perspectives. The loss function of
the proposed SJAN includes two terms: spectral amplitude terms and spectral angle term.
The total loss function L is defined as follows:

L = Lamplitude + λ1Langle, (1)

where Lamplitude represents the loss of spectral amplitude. Langle is the loss of the spectral
angle of multispectral images.

Lamplitude contains two parts: L1 and L2, and is defined as follows:

Lamplitude = λ2L1 + λ3L2, (2)

where the parameters λ1, λ2, and λ3 are the penalty parameters of the loss functions Langle,
L1, and L2. The optimal values of three parameters are discussed in the Section 4.1.

L1 is calculated from the contrast loss function. This loss function is a common measure
of the similarity of multispectral images. It considers the similarity of multispectral images
from the spectral amplitude, constraining the distance of similar image block pairs and
expanding the space of dissimilar image block pairs. It is defined as follows:

L1 =
1
2
(1− l)d2 +

1
2

lmax(m− d, 0)2, (3)

where the value of l represents the label information of the input pairwise patch. l = 1
indicates that the patch pair is dissimilar, while l = 0 means that the patch pair is similar.
m represents the margin for dissimilar pairs. In our experiment, m is set to 0.5. What is
more, d represents the distance of two input patches. It can be seen that the distance of
the dissimilar pairs between 0 and m is only considered. If l = 1 and d is greater than the
margin, the L1 loss is regarded as 0.

L2 is calculated by cross-entropy loss. The cross-entropy loss function for the extracted
spatial–spectral features aims to make the model predictions closer to the labeled values. It
is defined as follows:

L2 = − 1
n

n

∑
i=1

[yilog−→yi + (1− yi)log(1−−→yi )], (4)

where the value of yi is 0 or 1, which means the label of information of input pair. yi equals
1 means that the input image block pair is changed. −→yi represents the probability that the
input image is a changed sample pair.
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Langle is a more comprehensive similarity metric that multiplies the spectral cosine
and the Euclidean distance directly. To make the spectral cosine have the same principle
as the Euclidean distance, we use the formula (1− cosine) so that a smaller value of the
formula represents a closer proximity of similar image blocks. Langle is defined as follows:

Langle = (1−

n
∑

i=1
Ai × Bi√

n
∑

i=1
Ai

2 ×
√

n
∑

i=1
Bi

2

)×
√

n

∑
i=1

(Ai − Bi)
2, (5)

where Ai, Bi represent the spectral values of the ith band.

2.4. Training Process

As shown in Figure 1, SJAN is trained in a supervised manner. The data will be
pre-processed and then trained in batches. The difference after fully connected layers
characterizes the input of cross-entropy loss; the contrast loss function and spectral angle
similarity are characterized by the two-stream network after the attention mechanism
module. Back propagation is used to update the network weights. Moreover, the weight
updating strategy uses the Adam optimization algorithm. Through multiple types of
training, the optimal model is obtained. Finally, the test data are fed directly to the obtained
optimal model to achieve the change-detection map.

The complete end-to-end steps of the proposed SJAN are described in Algorithm 1.

Algorithm 1 Framework of SJAN.

Input:
(1) a series of 11× 11 pairwise blocks of two multispectral images in the same region

at different time and corresponding labels.
(2) the number of dataset.
Step 1: randomly divide the dataset into the training data and validation data in the

ratio of 7 : 3.
Step 2: a series of 11× 11 pairwise blocks in the training set feed to the initial feature

extraction module to obtain the initial features F1
H×W×C and F2

H×W×C of the
pairwise blocks at moments T1 and T2.

Step 3: F1
H×W×C and F2

H×W×C are fed into the spectral-attention module to acquire
spectral

features F1
spectral−att and F2

spectral−att of pairwise blocks with discriminative information.

Step 4: F1
spectral−att and F2

spectral−att are fed into the spatial-attention module to obtain the

spatial–spectral features F1
spatital−spectral and F2

spatital−spectral of the pairwise blocks.

Step 5: the difference between F1
spatital−spectral and F2

spatital−spectral is fed into the fully
connected layers for classification.

Step 6: Optimizing the network using the Adam optimizer to obtain the optimal model.
Step 7: The test data is fed directly into the trained model to get the change-detection

results.
Output:
(1) Changed map
(2) OA, Kappa, AUC

3. Results
3.1. Datasets

The effectiveness of the proposed SJAN is validated on three datasets, and the three
multispectral datasets are described in detail as follows.

We used the Minfeng, Hongqi Canal, and Weihe river datasets acquired by the GF-1
satellite sensor as our dataset. Each dataset contains two multispectral images with a
spatial resolution of 2 m. The two multispectral images have different times and each image
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contains four bands: red, green, blue, and near-infrared bands. Figure 4 shows the images
of the Hongqi Cancal dataset. The Hongqi Cancal dataset with the image size of 543× 539,
located in West Kowloon Village, Kenli County, Dongying City, Shandong Province, was
acquired with the GF-1 satellite on 9 December 2013 and 16 October 2015. Figure 5 shows
the image of the Minfeng dataset with the image size of 651× 461, taken in Kenli County,
Dongying City, Shandong Province. The acquisition time is the same as Hongqi Cancal.
Figure 6 shows the Weihe river dataset with an image size of 378× 301, located in Madong
Village, Xi’an City, Shaanxi Province, acquired on 19 August 2013 and 29 August 2015,
respectively.

��� ��� ���

Figure 4. Multispectral images and reference image of Hongqi Cancal dataset. (a) Image acquired on
9 December 2013. (b) Image acquired on 16 October 2015. (c) Reference image.

��� ��� ���

Figure 5. Multispectral images and reference image of Minfeng dataset. (a) Image acquired on 9
December 2013. (b) Image acquired on 16 October 2015. (c) Reference image.

��� ��� ���

Figure 6. Multispectral images and reference image of Weihe river dataset. (a) Image acquired on 19
August 2013. (b) Image acquired on 29 August 2015. (c) Reference image.

3.2. Evaluation Criteria

The proposed SJAN is quantitatively analyzed to demonstrate its robustness and
effectiveness. Three evaluation metrics are used to analyze it, overall accuracy (OA),
Kappa coefficient, and AUC (area under the ROC zone line) value.

Firstly, the overall accuracy is used for evaluation, and the value of OA is within (0, 1),
closer to 1 means better detection performance.
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OA =
(TP + TN)

(TP + TN + FP + FN)
, (6)

where TP refers to true position, TN stands for true negative, FP stands for false positive
and FN represents false negative.

Secondly, the accuracy of the classification is measured using the kappa coefficient,
which is within (−1, 1) and is usually within (0, 1), with closer to 1 meaning a better
performance. The formula for calculating the kappa coefficient based on the confusion
matrix is defined as follows:

Kappa =
OA− Pe

1− Pe
, (7)

Pe =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)2 , (8)

Finally, the numerical accuracy measure is provided using the AUC. The larger the
value of the AUC, the better the classification effect of the classifier. With FPR as the
horizontal axis and TPR as the vertical axis, the ROC curve is plotted and the area under
the curve is the AUC value, where TPR represents the true positive rate and FPR represents
the false positive rate, both of which are calculated as follows:

TPR =
TP

TP + FN
, (9)

FPR =
FP

FP + TN
, (10)

3.3. Competitors

The proposed SJAN is compared with the following methods:
The main contributions of our proposed SJAN method are as follows:

(1) CVA [31] is a typically unsupervised change-detection method. Difference operations
are performed on the images from two temporal images to identify the changed areas.

(2) IRMAD [34] assigns larger weights to the pixels that have not changed, and after several
iterations, the weights of the pixel points are compared with the threshold value to
determine whether they have changed. IR-MAD is better than MAD in identifying
significant changes, and this method is widely used in multivariate change detection.

(3) SCCN [37] is a symmetric network, which includes a convolutional layer and several
coupling layers. The input images are connected to each side of the network and are
transformed into a feature space. The distances of the feature pairs are calculated to
generate the difference map.

(4) SSJLN [40] considers both spectral and spatial information and deeply explores the
implicit information of the fused features. SSJLN is very good at improving change-
detection performance.

(5) STA [27] designs a new CD based on the self-attention module to simulate a spatial–
temporal relationship. The self-attention module can calculate the attention weights
between any two pixels at different times and locations, which can generate more
discriminative features.

(6) DSAMNet [52] includes a CBAM-integrated metric module that learns a change map
directly through the feature extractor and an auxiliary deep-supervision module that
generates change maps with more spatial information.

3.4. Performance Analysis

First, we conduct a comparison of the training time and the number of parameters of
the SJAN method with other deep-learning-based methods to measure the performance
of the proposed network. Due to the addition of the attention module, the proposed
SJAN method has a higher number of parameters and training time compared to SCCN
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and SSJLN, as shown in Table 2. Compared with STA and DSAMNet methods based
on the attention mechanism, our proposed SJAN method has fewer parameters and less
training time.

Table 2. Comparison of training time and number of parameters.

Method Number of
Parameters

Cost Time/s

Hongqi Minfeng Weihe

SCCN 7736 37 35 36

SSJLN 71,042 54 31 59

STA 277,828 545 461 500

DSAMNet 16,955,200 3000 2505 1533

SJAN 276,892 483 403 491

Second, we compare the experimental results of SJAN with other existing change-
detection methods from both qualitative and quantitative aspects.

The qualitative performances of comparative change-detection methods on the Hongqi
Canal, Minfeng, and Weihe river datasets are visually shown in Figures 7–9, respectively.
We can clearly see that the CVA method has a large false-alarm rate, detecting changes in
almost the entire image, which is not the case in reality. IRMAD detects many changed
pixels as unchanged pixels by mistake and has a high omission rate. Traditional change-
detection methods rely on manual features that are costly in terms of time and need
be designed by professionals. Deep learning can extract more abstract and hierarchical
features. Hence, deep-learning-based change-detection methods are attracting more and
more attention.

��� ���

��� �� � ��� ���

������

Figure 7. Binary change maps of Hongqi Canal dataset. (a) CVA. (b) IRMAD. (c) SCCN. (d) SSJLN.
(e) STA. (f) DSAMNet. (g) SJAN. (h) Ground truth. The unchanged samples are black and changed
samples are white.
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Figure 8. Binary change maps of Minfeng dataset. (a) CVA. (b) IRMAD. (c) SCCN. (d) SSJLN. (e) STA.
(f) DSAMNet. (g) SJAN. (h) Ground truth. The unchanged samples are black and changed samples
are white.

��� ��� ������

��� �� � ��� ���

Figure 9. Binary change maps of Weihe River dataset. (a) CVA. (b) IRMAD. (c) SCCN. (d) SSJLN.
(e) STA. (f) DSAMNet. (g) SJAN. (h) Ground truth. The unchanged samples are black and changed
samples are white.

SCCN is an unsupervised deep-learning-based change-detection technique that does
not consider the label information. Moreover, SCCN does not take the detection of subtle
changes and the joint distribution of changed and unchanged pixels into account. Therefore,
we can see that the detection results of SCCN include many white-noise spots. SSJLN learns
the semantic difference between changed pixels and unchanged pixels by extracting spatial–
spectral joint features. From (c) and (d) of Figures 7–9, it is clear to see that the number of
unchanged pixels incorrectly detected by SSJLN as changed pixels is significantly reduced.

The STA method proposed in the last two years applies the attention module to the
change detection, and it can be found that the attention module has a positive effect on
the change-detection task. However, when extracting spatial–spectral features, the STA
method does not take the spectral angle loss into account. SJAN performs the similarity
measures from both the spectral angle and the spectral magnitude, which can exploit more
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discriminative information. Moreover, SJAN uses a fusion strategy of point multiplication
to obtain attention weights. It can be observed that SJAN achieves the best results.

The DSAMNet method employs a deep supervised network and an attention mecha-
nism to extract more discriminative features. However, it can be seen from Figures 7–9 that
the detection performance of DSAMNet on the Hongqi, Mingfeng, and Weihe datasets is
not very good. Many changed pixels on the Weihe dataset are misclassified as unchanged
pixels, as shown in Figure 9. In contrast, many unchanged pixels on the Minfeng dataset
are detected as changed pixels by mistake, as shown in Figure 8. DSAMNet is more suitable
for very high-resolution images such as 0.5 m aerial images that contain more spatial
information. The spatial resolution of Hongqi, Mingfeng and Weihe datasets is 2 m. It can
be concluded that SJAN is more suitable than DSAMNet for the change-detection task on
the GF-1 dataset.

As shown in Table 3, we calculated OA, kappa, and AUC values to quantitatively
analyze the effect of the SJAN method. The OA, Kappa, and AUC values for the Hongqi
dataset are 97.72, 87.75, and 97.70, respectively. The OA, Kappa, and AUC values for the
Minfeng dataset are 95.96, 77.15, and 97.41, respectively. The OA, Kappa, and AUC values
for the Weihe dataset are 98.89, 97.08, and 98.45, respectively. It can be clearly seen that
SJAN has the best detection accuracy among these methods, which is consistent with the
results of the qualitative analysis based on the changed detection maps. Therefore, it can be
concluded that the proposed SJAN method has better performance than other comparison
methods.

Table 3. OA, Kappa, and AUC values of different change-detection algorithms on different datasets.

Data Metric CVA IRMAD SCCN SSJLN STA DSAMNet Ours

hongqi
OA 0.8239 0.9419 0.9569 0.9746 0.9670 0.9602 0.9772

Kappa 0.3928 0.6902 0.7609 0.8490 0.8318 0.7737 0.8775
AUC 0.8089 0.8627 0.8893 0.9889 0.9763 0.9243 0.9770

minfeng
OA 0.6961 0.8376 0.9435 0.9494 0.9379 0.9002 0.9596

Kappa 0.1698 0.5221 0.6093 0.6506 0.6826 0.5048 0.7715
AUC 0.6434 0.7411 0.7856 0.9705 0.9644 0.8787 0.9741

weihe
OA 0.7953 0.9603 0.8260 0.9854 0.9772 0.9194 0.9889

Kappa 0.5318 0.8790 0.6149 0.9618 0.9411 0.7690 0.9708
AUC 0.7474 0.8438 0.8502 0.9821 0.9803 0.8959 0.9845

4. Discussion
4.1. Parameter Settings

This subsection describes the settings of the relevant parameters of the network model,
including the convolution, the kernel size for pooling, and the activation function used.

First, the parameters of SJAN are shown in Table 1. Specifically, the Siamese network
structure includes two convolutional layers (conv1 and conv2), one layer of maximum
pooling (pool1) and two layers of convolution (conv3 and conv4), one layer of maximum
pooling (pool2) to ensure that the essential features of the images can be fully extracted.
The kernel size of the convolution is 3× 3 and the kernel size of pooling is 2× 2. The
network structure of spectral- and spatial-attention modules has been described in detail
and will not be repeated. The fully connected net is designed as two layers, each with
dimensions 256, 128, and finally the fully connected layer with output dimension 1 is
classified using the sigmoid function. What is more, the input and output dimensions are
height× width× depth. BN is the number of bands, where the number of bands is 4 for
GF-1.

Second, the patch size can have an effect on the test results, so we discuss it in details.
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Effect of Patch

Image blocks contain not only the spectral information of the pixel to be detected, but
also the spectral information of its neighboring pixels. Therefore, we use image blocks
as the basic processing unit. The size of the image block n greatly affects the accuracy of
change detection. The larger the image block, the more detailed the spectral information it
contains. However, at the same time, the image block size is chosen as too large, its local
key information will be more disturbed. The exponential increase in data volume will also
put very high pressure on the training. In our experiments, we set the image block size to
5, 7, 9, and 11, respectively. The experimental results are shown in Figure 10, where blue,
orange, gray, and yellow represent image block sizes of 11, 9, 7, and 5, respectively.

OA Kappa AUC

Hongqi

0.9

0.95

1

OA Kappa AUC

Minfeng

0.9

0.95

1

OA Kappa AUC

Weihe

0.9

0.95

1

11×11

9×9

7×7

5×5

Figure 10. Comparison of the effect of different input patch sizes on OA, Kappa, and AUC values.

It is obvious from Figure 10 that the detection accuracy is worst when n is 5, and the
values of OA, Kappa, and AUC are the best when n is 11. What is more, when n is larger
than 11, the training data is very large and the training time cost increases exponentially.
Therefore, we select the patch size as 11.

Third, the other relevant experimental parameters such as training-data division, batch
size, and learning rate will be introduced.

We select 70 percent of the changed samples and an equal number of unchanged
samples to construct the training set. The training and validation data in the training set are
further divided into 7:3. In the training phase, a batching strategy is used and the number of
samples for each batch is 32. The initial learning rate is set to 10−4 using the Adam optimizer
optimization algorithm. During the experiment, the learning rate is continuously decreased
according to the strategy, and after 20 iterations, the respective optimal experimental results
are obtained on different datasets. The results on the validation set are shown in Table 4.
We can see the results of the validation set are a bit better than those on the testing dataset
shown in Table 3. This is because the data distribution of the validated set is more similar
to that of the training set than that of the testing set.

Table 4. Results for the validation set.

Results
Datasets

Hongqi Minfeng Weihe

OA 0.9879 0.9788 0.9915

Kappa 0.9756 0.9577 0.9830

AUC 0.9963 0.9917 0.9987

Moreover, we test the effect of the penalty parameters of the loss function on the
change-detection performance. As shown in Figure 11, some of the parameter combinations
are listed. Status-a represents that λ1, λ2, and λ3 are set to 1, 1, and 1. Status-b represents
those three penalty parameters are set to 0.5, 0.5, and 0.75, and the proposed SJAN achieves
the best detection on Weihe and Minfeng datasets with these parameter settings. Status-c
represents those three penalty parameters are set to 0.25, 0.25, and 0.5. Status-d represents
those three penalty parameters are set to 0.25, 0.25, and 1, and the Hongqi dataset has better
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performance results with these parameter settings. In our experiment, the parameters of
λ1, λ2 and λ3 are set to 0.25, 0.25, and 0.5 on the Hongqi dataset, and 0.5, 0.5, and 0.75 on
Minfeng and Weihe River datasets.
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status-c
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Figure 11. Different penalty parameter λ1, λ2, λ3 combinations on OA, Kappa, and AUC values.

4.2. Comparison with CBAM

In this section, we will discuss the difference between the point multiplication opera-
tion in the proposed spatial–spectral-attention module and the element-wise summation
and concatenation operations of the original CBAM.

As shown in Figure 12, blue indicates the result of using point multiplication oper-
ations in both the spectral-attention module and the spatial-attention module, denoted
as dots. Orange indicates the result of using a point-multiplication operation between
MLP outputs instead of an element-wise-summation operation in the spectral-attention
module, denoted as spatial-concat. Gray indicates the result of using a point multiplication
operation between Maxpooling and Avgpooling instead of the concatenation operation in
the spatial-attention module, denoted as spectral-sum. Yellow represents the results of the
original CBAM method. It can be seen that using point multiplication instead of element-
wise summation in the spectral-attention module achieves better detection performance
on the Hongqi dataset, and using point multiplication instead of concatenation in the
spatial-attention module can gain better detection accuracy on the Minfeng dataset. What
is more, using the point multiplication operation on the Weihe dataset yields better results
in both the spectral and spatial-attention modules. As a result, the point multiplication
operation is chosen in the spectral and spatial modules to explore more similar information.

dot

spatial-concat

spectral-sum
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1
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0.9

0.95

1

CBAM

Figure 12. Comparison of different operations on OA, Kappa, and AUC values.

4.3. Ablation Experiment

• Effect of the spectral- and spatial-attention modules

The proposed SJAN includes the spatial-attention module and a spectral-attention
module. When extracting spatial–spectral features, the spatial-attention module focuses on
feature extraction of spatially key regions and the spectral-attention module can identify
separable bands of different land covers. This section conducts comparative experiments to
verify the impact of the spectral- and spatial-attention modules on the detection accuracy.
Figure 13 shows the ablation experiment of the spectral-attention module and the spatial-
attention module in detail. Blue indicates the feature-extraction method based on SJAN, and
yellow indicates the feature-extraction method with spatial- and spectral-attention modules
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removed, denoted as base network. Orange indicates the feature-extraction method with
the spectral-attention module only, denoted as base + spectral. Gray indicates the feature-
extraction method with the spatial-attention module only, denoted as base + spatial. Both
the base + spectral method and the base + spatial method achieve better detection accuracy
than the base method, which proves the effectiveness of the spatial- and spectral-attention
modules. What is more, it can be seen that Hongqi Cancal, Minfeng, and Weihe River
datasets based on SJAN have higher values of OA and Kappa than those of other methods,
and the AUC values of SJAN are not significantly different from other comparison methods.
The results of the ablation experiment show that the spectral-attention module focusing on
separable bands in the spectral dimension and the spatial-attention module focusing on
key change regions have some beneficial effects on the change-detection task.
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Figure 13. Comparison of different feature-extraction methods on OA, Kappa, and AUC values.

• Effect of Langle

This section experimentally verifies the effect of the loss function with the spectral
angular cosine-Euclidean distance on the detection accuracy of different datasets.

The proposed loss function not only considers the similarity measure of spectral
magnitude, but also considers the similarity measure of spectral angle. The contrast loss
function and cross-entropy loss are used from the magnitude dimension. The spectral
angular cosine-Euclidean distance is used to explore the spectral angular features of the
images from the spectral angle dimension. The OA, Kappa, and AUC values of the de-
tection results on different datasets are shown in Figure 14. Blue indicates the results of
the change detection using L2 loss function, denoted as L2. Orange indicates the results of
Lamplitude loss function that includes both L1 and L2, denoted as L_amplitude. Gray indicates
the effect of the total loss function Lall that includes Lamplitude and Lanlge on the detection
results, denoted as L_all . It can be clearly seen that Langle, which has accurate detection
results for the more intricate details, has a positive effect on the change-detection task.
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Figure 14. Comparison of the effect of different loss functions on OA, Kappa, and AUC values.

5. Conclusions

A multispectral-image-change-detection method based on the spatial–spectral joint
attention network is proposed. The spatial-attention module and spectral-attention module
are simultaneously incorporated into the Siamese network to extract more effective and
discriminative spatial–spectral features. The spectral-attention module is used to explore
the separability bands and the spatial-attention module is used to capture spatially critical
regions of variation. In addition, a new loss function is proposed to consider the loss
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of spatial–spectral features from the spectrum amplitude and angle perspectives. The
proposed SJAN method in this paper is validated on three real datasets to verify its ef-
fectiveness. The experimental results show that SJAN has better detection performance
compared with other existing methods.

However, our proposed joint spatial–spectral attention network does not consider the
correlation between images at different moments when extracting features. The correlation
between images at different moments has an impact on the change-detection performance.
In the future, we will improve the attention module using the cross-attention mechanism
to obtain the correlation of remote-sensing images at different moments. In addition, we
will further address the issue of sample imbalance in future work.
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