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Abstract: Agricultural management decision-making in salinization-prone environments requires
efficient soil salinity monitoring methods. This is the case in the B-XII irrigation district in SW Spain,
a heavy clay reclaimed marsh area where a shallow saline water table and intensively irrigated
agriculture create a fragile balance between salt accumulation and leaching in the root zone, which
might be disrupted by the introduction of new crops and increasing climate variability. We evaluated
the potential of electromagnetic induction (EMI) tomography for field-scale soil salinity assessment
in this hyper-conductive environment, using EMI and limited analytical soil data measured in
2017 and 2020 under a processing tomato–cotton–sugar beet crop rotation. Salinity effects on crop
development were assessed by comparing Sentinel 2 NDVI imagery with inverted depth-specific
electrical conductivity (EC). Average apparent electrical conductivity (ECa) for the 1-m depth signal
was 20% smaller in 2020 than in 2017, although the spatial ECa pattern was similar for both years.
Inverted depth-specific EC showed a strong correlation (R ≈ 0.90) with saturated paste extract
EC (ECe), [Na+] and sodium absorption ratio (SAR), resulting in linear calibration equations with
R2 ≈ 0.8 for both years and leave-one-out cross validation Nash–Sutcliffe Efficiency Coefficient,
ranging from 0.57 to 0.74. Overall, the chemical parameter estimation improved with depth and
soil wetness (2017), yielding 0.83 < R <0.98 at 0.9 m. The observed spatial EC distributions showed
a steadily increasing inverse correlation with NDVI during the growing season, particularly for
processing tomato and cotton, reaching R values of −0.71 and −0.85, respectively. These results
confirm the potential of EMI tomography for mapping and monitoring soil salinity in the B-XII
irrigation district, while it allows, in combination with NDVI imagery, a detailed spatial assessment
of soil salinity impacts on crop development throughout the growing season. Contrary to the popular
belief among farmers in the area, and despite non-saline topsoil conditions, spatial EC and subsoil
salinity patterns were found to affect crop development negatively in the studied field.

Keywords: apparent electric conductivity; B-XII irrigation district; NDVI; soil salinity; reclaimed
marsh soils

1. Introduction

Soil salinization represents a latent threat to soil quality and agricultural sustainability
in the regions where proper agricultural management in response to specific environmental
conditions has enabled the development of a fragile balance between salt buildup and
removal rates in the soil profile. Potentially changing climate conditions, short-term
fluctuations in irrigation water availability and quality, and the saline water table depth, or
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changes in the soil and water management might disrupt this equilibrium with negative
consequences for crop production and soil functionality [1,2].

To keep track of the soil salinity status in such environments, a growing demand
for efficient field monitoring methods exists. Yet, conventional soil monitoring entails
periodical soil sampling and laboratory analysis [3], which are time-consuming, labor-
intensive and expensive. In addition, the measurements cannot be repeated at the same
locations since the soil sampling procedure is destructive. Alternatively, networks of
permanently installed electromagnetic sensors can be used to measure the soil moisture,
temperature and bulk electrical conductivity at fixed depths [4]. Although such an approach
yields quasi-continuous measurements in time, it provides only limited spatial information
at the locations where the sensors are installed.

Detailed spatial soil information can be obtained through electromagnetic induction
(EMI) sensing, which has become one of the most popular methods for characterizing the
spatial variability of soils and their properties and states at the field scale [5,6], since it is
fast and easy to deploy in the field, mainly due to its non-contact and non-invasive nature
and its large measurement support volumes (~m3). This technique allows the simultaneous
measurement of the integrated apparent electrical conductivity (ECa), measured across
different soil depths. Under non-saline soil conditions, ECa is usually related to clay and
soil water content, among other soil properties, while under saline conditions it is the
contribution of the solute concentration of the soil water that dominates the ECa signal.
When integrated in a mobile measurement platform, these instruments can scan large areas
and take thousands of measurements within a couple of hours. The georeferenced ECa data
are then mapped and related to independent measurements of the relevant soil properties
for calibration [7–9].

Yet, this approach does not provide information on the vertical distribution of the
“true” soil conductivity (EC) and the related soil properties. The recent methodological
advances in hydrogeophysics [10] are unlocking the full potential of EMI through the
joint inversion of multi-receiver data [11,12], by estimating the vertical distribution of EC
across the soil profile, from which the soil salinity profiles can be estimated in 2D and
quasi-3D [13–17].

Once the spatial distribution of the soil salinity is known, its effect on crop develop-
ment can be assessed, using remote sensing imagery. Since ECa is generally an indicator
of soil fertility [5] most of the studies show positive relationships between NDVI [18] and
ECa [19]. However, if ECa is correlated with soil conditions that constrain or affect the crop
development negatively, then inverse relationships can be expected [20].

In this work we evaluate the potential of EMI tomography for mapping and monitoring
soil salinity between 2017 and 2020 in a commercial field in the B-XII irrigation district
in SW Spain. In addition, the use of Sentinel 2 NDVI imagery for assessing the impact of
soil salinity on crop development is evaluated. The specific objectives are: (1) to assess the
spatial variability of ECa and inverted EC in 2017 and 2020; (2) to calibrate the estimated
EC images using minimal soil analysis data and estimate the saturated paste extract
conductivity (ECe) and sodium absorption ratio (SAR); and (3) to evaluate the potential of
the combined use of ECa and NDVI imagery for assessing the impact of soil salinity on
crop development in the B-XII irrigation district.

2. Materials and Methods
2.1. Field Description

This study was conducted in a 4-ha commercial field in the reclaimed saline marsh
soils of the B-XII irrigation district (Lebrija, Spain; Figure 1). The rather homogeneous
heavy clay soil, classified as Gleyic Fluvisol [21], is underlaid by an artificially drained
shallow saline water table [22,23]. The drainage system in the field consisted of 0.3-m long
ceramic sections that form parallel 250-m long pipes, buried at a depth of 1 m and separated
by 10 m. The pipes discharged into a drainage ditch along the northern limit of the field.



Remote Sens. 2022, 14, 3389 3 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 22 
 

 

ceramic sections that form parallel 250-m long pipes, buried at a depth of 1 m and sepa-
rated by 10 m. The pipes discharged into a drainage ditch along the northern limit of the 
field. 

 
Figure 1. Image of the study field with topography and location of the five sampling points along 
the transect (Google Earth, 2022) [24]. 

The climate is typically Mediterranean, with moderate humid winters and hot dry 
summers. The annual rainfall ranges from 350 to 1100 mm, with an average of 550 mm 
(2000–2020). Most of the precipitation falls from November to March. There is practically 
no rainfall during July and August. The average annual reference evapotranspiration is 
about 1000 mm (years 2000–2020) [25]. The study period comprised a complete summer 
crop rotation, from 2017 to 2020, with processing tomato (Solanum lycopersicum), cotton 
(Gossypium hirsutum L.) and sugar beet (Beta vulgaris), respectively. 

2.2. Electromagnetic Induction Sensing of ECa and Inversion 
The ECa was measured in November 2017 and February 2020, using a DualEM-21S 

(Dualem Inc., Milton, ON, Canada). This instrument contains dual-geometry receivers 
(horizontal, HCP/ perpendicular, PRP) at 1 m (HCP1 and PRP1 signals) and 2 m (HCP2 
and PRP2 signals) from the transmitter and allows for simultaneous conductivity sound-
ing down to theoretical depths of exploration near 1.5, 0.5, 3 and 1 m (ECa-1.5, ECa-0.5, 
ECa-3, ECa-1), respectively. The sensor was operated at a height of 0.105 m above the soil 
surface in a customized polyvinyl chloride (PVC) sled towed by an all-terrain vehicle 
(ATV). A real-time kinematic differential global positioning system (Trimble, Sunnyvale, 
CA, USA) was used for georeferencing the ECa measurements. The ECa data and coordi-
nates were logged on a mesa3 field computer (Juniper Systems, Logan, UT, USA). In 2017, 
the measurements were performed in the direction of the drainage pipes and in the per-
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rection, since the field was ridged and not transitable in the perpendicular direction. Due 
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Figure 1. Image of the study field with topography and location of the five sampling points along the
transect (Google Earth, 2022) [24].

The climate is typically Mediterranean, with moderate humid winters and hot dry
summers. The annual rainfall ranges from 350 to 1100 mm, with an average of 550 mm
(2000–2020). Most of the precipitation falls from November to March. There is practically
no rainfall during July and August. The average annual reference evapotranspiration is
about 1000 mm (years 2000–2020) [25]. The study period comprised a complete summer
crop rotation, from 2017 to 2020, with processing tomato (Solanum lycopersicum), cotton
(Gossypium hirsutum L.) and sugar beet (Beta vulgaris), respectively.

2.2. Electromagnetic Induction Sensing of ECa and Inversion

The ECa was measured in November 2017 and February 2020, using a DualEM-21S
(Dualem Inc., Milton, ON, Canada). This instrument contains dual-geometry receivers
(horizontal, HCP/ perpendicular, PRP) at 1 m (HCP1 and PRP1 signals) and 2 m (HCP2
and PRP2 signals) from the transmitter and allows for simultaneous conductivity sounding
down to theoretical depths of exploration near 1.5, 0.5, 3 and 1 m (ECa-1.5, ECa-0.5, ECa-3,
ECa-1), respectively. The sensor was operated at a height of 0.105 m above the soil surface
in a customized polyvinyl chloride (PVC) sled towed by an all-terrain vehicle (ATV). A real-
time kinematic differential global positioning system (Trimble, Sunnyvale, CA, USA) was
used for georeferencing the ECa measurements. The ECa data and coordinates were logged
on a mesa3 field computer (Juniper Systems, Logan, UT, USA). In 2017, the measurements
were performed in the direction of the drainage pipes and in the perpendicular direction.
In 2020, the measurements were only performed in the former direction, since the field was
ridged and not transitable in the perpendicular direction. Due to hardware configuration
problems, only the PRP2 (1 m) and HCP2 (3 m) signals were fully logged during the survey
in 2017. The measurements were made at an average speed of 7 km h−1 with a separation
distance of 4–5 m between the adjacent passes, which provides an approximate spatial data
density of 0.25 points m−2.

Figure 2 shows the antecedent meteorological conditions for each ECa measurement
date. During the 30 days preceding the measurement in 2017, the total rainfall was 85.4
mm, distributed over days 18 and 19. In 2020, the total rainfall was 72.4 mm, distributed
between days 21 and 28, without exceeding 20 mm d−1. Moreover, a decreasing trend in
daily ETo was observed before the measurement in 2017, in contrast to the increasing ETo
trend observed before the ECa measurement in 2020. As a result, wetter soil conditions are
expected in 2017 as compared to 2020.
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Figure 2. Daily rainfall and reference crop evapotranspiration (ETo) during the 30 days preceding the
ECa measurements in 2017 and 2020.

The raw georeferenced ECa measurements were corrected for positional error caused
by delays in the data transmission, reception or logging during the field measurement,
according to the method proposed by [26]. The ECa data were interpolated on a 0.5 × 0.5 m
grid using the inverse distance method, as implemented in Surfer (Golden Software, LLC
Boulder, CO, USA), and the descriptive statistics were calculated from the interpolated
data and compared for both of the surveys.

The interpolated values of the four EMI signals were inverted, using the EM4Soil
software (EMTOMO, Lisbon, Portugal), to estimate the vertical distribution of the electrical
conductivity (EC). The EM4Soil software estimates the bidimensional images of the EC
distribution across the soil profile, conditioned on the neighboring ECa values. Given the
high soil ECa in this area, the full solution was used. According to the imposed smoothness
condition for the estimation of the EC profile, two inversion algorithms were considered
(S1 and S2). Both are variations of the Occam regularization method [11]; the inversion
algorithm, S2, was the one used in this study, since it produced smoother results than the
S1. The 2D inversions were performed along a transect where the soil samples were taken
(Figure 1; see also Section 2.3), while the 3D inversions were performed using all of the ECa
data, from which field-wide depth-specific EC maps were obtained for 0.1, 0.3, 0.5, 0.7 and
0.9 m depths.

2.3. Soil Sampling and Laboratory Analysis

On both of the survey dates, soil samples were taken at five locations (P1, P2, . . . P5)
along a transect parallel to the drainage pipes (Figure 1), with 0.2-m depth increments down
to 1 m, using a 0.05-m diameter Edelman soil auger. The sample depths are denoted as 0.1,
0.3, 0.5, 0.7 and 0.9 m and correspond to the depths at which the EC was estimated (see
Section 2.1). The 25 soil samples obtained on each date were air dried, ground and passed
through a 2 mm sieve. The saturated soil pastes were prepared by adding deionized water
to 200 g of air-dried soil and allowing the sample to reach equilibrium during 24 h [27].
Subsequently, the extracts were collected and the ECe and pH were measured, using a
conductivity/pH meter (Hanna Instruments, HI5521). The extracts were analyzed for Na+,
K+, Mg2+ and Ca2+ concentrations, using an inductively coupled Plasma Optical Emission
Spectrometry (ICP-OES) (Perkin Elmer Avio 200).

The sodium adsorption ratio (SAR) was computed as:

SAR = [Na+]/[([Ca2+] + [Mg2+])/2]0.5 (mmolc1/2 L−3/2), (1)

with cation concentrations in mmolc L−1 [28].
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The chemical soil parameter (pHe, ECe, SAR, [Na+], [Ca2+], [Mg2+] and [K+]) data
sets for 2017 and 2020 were subjected to a principal component analysis (PCAs) to infer
the common patterns of variation [29]. In addition, the profile-averages and depth-specific
spatial averages were compared for each year, using ANOVA and between years using
Student t-tests. Finally, the depth-specific increments of soil properties between 2017 to
2020 (∆) were compared for the different sampling points

2.4. Estimation of Soil Salinity Status

The 2D inversion of the 2017 and 2020 ECa data was performed along the transect
(Figure 1). The estimated EC values were then calibrated against the ECe and SAR, using
linear regression models. The validation of the calibration models was performed using
leave-one-out cross-validation (LOOCV), as implemented in the R “caret” package [30],
using the Root Mean Squared Error (RMSE) as statistical evaluation parameters:

RMSE =

√√√√ N

∑
i=1

(Xe,i − Xm,i)
2/N; (2)

the Mean Absolute Error (MAE):

MAE =
1
N

N

∑
i=1

∣∣∣∣∣Xe,i − Xm,i

∣∣∣∣∣; (3)

and the Nash–Sutcliffe Efficiency Coefficient (NSE),

NSE = 1 − ∑N
i=1 (Xm,i − Xe,i)

2

∑N
i=1 (Xm,i − Xm,i)

2 , (4)

where Xe,i and Xm,i are the estimated and measured values, respectively, and N is the
number of measured and estimated data pairs. The NSE ranges from −∞ to 1 and NSE > 0
indicates that the model is a better estimator than the measured mean [31]. For the interpre-
tation of the NSE we used the criteria proposed by [32]. To produce the depth-specific ECe
and SAR maps for 2017 and 2020, the field-wide depth-specific EC estimates obtained from
the 3D inversion of the ECa data were used with the linear calibration equations obtained
for ECe and SAR from the 2D inversions.

2.5. NDVI Imagery Processing and Analysis

The available Sentinel 2 NDVI imagery for the cropping seasons from 2017 to 2019 was
analyzed using Google Earth Engine [33]. Thirty-six images, corresponding to the spring
and summer periods when the field was cultivated and with less than 1% cloud cover, were
retained for the analysis. Since the western part of the field remained fallow in 2017, an
area of 1.7 ha (171 pixels) in the eastern part of the field was retained for the NDVI analysis
of each cropping season. Before calculating the Pearson correlation coefficient, ECa and
depth-specific EC were first interpolated on a grid with the same spatial resolution as the
NDVI images (10 × 10 m). The spatiotemporal evolution of the NDVI of each crop along
the study transect (Figure 2) was analyzed and the Pearson correlation coefficient with the
depth-specific estimated ECe was calculated for each available NDVI image.

3. Results and Discussion
3.1. Soil Properties in 2017 and 2020

Overall, ECe, [Na+] and SAR were significantly higher in the subsoil (0.5-0.9 m) than
in the topsoil (0.1 and 0.3 m) for both of the survey years (Table 1), being 0.7 m the transition
depth in 2017 for ECe and [Na+] and 0.5 and 0.7 m the transition depth for SAR. In 2020,
the transitions between the top- and subsoil properties were spread over a wider depth
interval, ranging from 0.3 to 0.7 m for ECe and SAR, while the transition depth for [Na+]
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was again 0.7 m. The pHe, [K+], [Mg2+] nor [Ca2+] showed significant differences in depth,
except for [Mg2+] which showed in 2020 a transition at 0.5 and 0.7 m between significantly
lower values in the topsoil as compared to the 0.9 m layer. This vertical distribution pattern
of the soil properties is in accordance with the presence of a shallow saline water table
(EC~ 50 dS m−1), which is generally kept below 1 m by the tile-drain system. However,
salinization of the upper soil layers can occur during the summer growing season when the
water table rises, because of intense irrigation to meet the maximum crop water demands
and capillarity promotes the upward movement of the saline water towards the topsoil,
where it evaporates or transpires under conditions of high atmospheric water demand,
increasing the salt concentration near the soil surface. After the cropping season, the
autumn and winter rainfall displace the salts from the topsoil towards the deeper soil layers
and the water table from where it is exported by the drainage system. The differences
observed in the vertical distributions of the soil parameters between 2017 and 2020 can be
explained by the different antecedent rainfall conditions during both of the years (Figure 2).
The heavy rainfall observed on days 18 and 19 before the survey of 2017 did a better job in
leaching the [Na+] from the topsoil than the light rainfall between days 21 and 28 before the
survey in 2020. Although the average [Na+] across the soil profile was the same for both
of the surveys, [Na+] at 0.1, 0.3 and 0.5 m was 45, 56 and 39% higher, respectively, and 12
and 20% lower at 0.7 and 0.9 m, respectively, in 2020 as compared to 2017. Due to the small
sample size and the large variability across the five sampling locations, these differences
were only significant (p < 0.05) down to 0.5 m (Table 1). Although less prominent, the ECe
was also higher in the deepest layer and lower at 0.3 and 0.5 m in 2017 (only significant at
0.3 m), indicating a better leached soil profile than in 2020. In addition, the [Ca2+] showed
higher (but non-significant) concentrations in 2020 as compared to 2017. The pHe was
higher in 2017 across the entire soil profile, although the differences were only significant
at 0.5 and 0.7 m depth.

Table 1. Mean soil properties by soil depth and sampling point for soil samples taken in 2017 and
2020. Significant differences (ANOVA) are indicated by different letters (p < 0.05). Significance of the
differences between 2017 and 2020 (Student’s t-test) are shown in the lower panel. ECe and SAR are
in dS m−1 and mmolc1/2 L−3/2, respectively, while ion concentrations are in mmolc L−1.

Mean
Depth (m) Sampling Points

0.1 0.3 0.5 0.7 0.9 1 2 3 4 5

2017

ECe 3.62 1.62a 1.61a 2.50a 4.92ab 7.46b 4.82a 3.74a 1.83a 5.73a 1.99a
SAR 24.0 8.3a 10.5a 14.7ab 28.0ab 58.6b 42.7a 19.7a 11.1a 31.8a 14.9a
Na+ 740 236a 287a 462a 1045ab 1662b 975a 706a 373a 1250a 388a
Ca2+ 38.4 37.9a 23.1a 44.3a 48.1a 38.8a 37.7a 38.6a 38.2a 45.6a 32.0a
Mg2+ 30.9 35.1a 22.4a 23.4a 38.7a 34.8a 28.9a 32.3a 35.7a 39.4a 18.1a

K+ 28.4 24.6a 19.7a 20.8a 42.7a 34.1a 24.0a 32.6a 28.6a 39.7a 16.8a
pHe 8.6 8.4a 8.5a 8.9a 8.7a 8.4a 9.0a 8.7a 8.3a 8.4a 8.5a

2020

ECe 3.40 1.37a 2.76ab 2.89ab 4.37ab 5.60b 2.88ab 3.15ab 1.62a 5.92b 3.43ab
SAR 17.6 8.8a 15.5ab 14.7ab 22.7bc 26.4c 15.8a 20.3a 14.4a 20.3a 17.3a
Na+ 735 343a 448a 644a 919ab 1323b 642a 848a 444a 1051a 692a
Ca2+ 57.2 60.0a 46.2a 69.4a 47.5a 62.8a 58.0ab 51.1ab 31.7a 80.4b 64.8ab
Mg2+ 45.5 35.7ab 25.1a 46.5ab 49.9ab 70.5b 47.2a 55.6a 30.7a 56.4a 37.9a

K+ 33.2 28.5a 27.7a 34.2a 37.1a 38.7a 14.5a 25.0ab 44.0b 41.3b 41.5b
pHe 7.8 7.8a 7.7a 7.8a 7.9a 8.0a 7.5a 8.2b 8.6bc 7.4a 7.4a

t-test

ECe 0.203 0.007 0.379 0.629 0.290 0.298 0.256 0.525 0.729 0.043
SAR 0.854 0.228 0.992 0.455 0.256 0.347 0.865 0.118 0.189 0.347
Na+ 0.025 0.010 0.032 0.533 0.450 0.439 0.076 0.088 0.309 0.005
Ca2+ 0.270 0.357 0.355 0.973 0.184 0.359 0.580 0.492 0.155 0.163
Mg2+ 0.957 0.778 0.121 0.489 0.098 0.367 0.157 0.636 0.364 0.038

K+ 0.709 0.291 0.130 0.678 0.490 0.194 0.413 0.148 0.742 0.004
pHe 0.237 0.056 0.028 0.029 0.389 2.0E-04 0.079 0.287 0.005 0.006

The comparison of the profile-averages of the soil properties between the different
sampling points in 2017 yielded substantially higher (but non-significant) ECe and [Na+]
at P4, P1 and P2 (in order of decreasing magnitude), as compared to P3 and P5. A similar
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spatial pattern was observed in 2020, although in this case significant differences were only
observed between P3 and P4 for ECe. In addition, the [Ca2+] showed a significantly higher
concentration (150%) in P4 as compared to P3, while the pHe was significantly higher
(pHe > 8) at P2 and P3 as compared to P1, P4 and P5 (pHe ≈ 7.4). The profile-averaged
pHe was also higher in 2017 than in 2020, although only significantly at P1, P4 and P5. Only
ECe, [K+], [Na+] and [Mg2+] were significantly higher in 2020 than in 2017 at P5.

3.2. Depth-Specific Increments of Soil Properties between 2017 and 2020

The effects of the less effective leaching in 2020 were also evident from the depth-
specific increment patterns for ECe, [Na+] and SAR between 2017 and 2020 for the five
sampling points (Figure 3). The ∆ECe profiles (Figure 3a) showed overall positive incre-
ments for the top 0.5 m, indicating a higher ECe in 2020, while a tendency towards negative
∆ECe was observed for the deepest soil layers. The point with the largest ECe for both of
the surveys (P4) showed a maximum ∆ECe at 0.5 m, while the maximum for the remaining
points occurred at 0.3 m. P5, which was located farthest from the tile-drain outlets, showed
positive ∆ECe across the entire soil profile. A similar trend with depth was observed for
SAR (Figure 3b) and [Na+] (Figure 3c), evidencing the dominant effect of [Na+] on ECe and
SAR. P1 showed the largest reduction in ECe, [Na+] and SAR at 0.7 and 0.9 m. This point is
located near the tile-drain outlets near the northern limit of the field where the altitude was
lowest and might have accumulated the [Na+] that was leached from the topsoil in 2017.
During the subsequent seasons, this [Na+] was further leached and exported through the
drainage system, resulting in substantially smaller values of ECe, [Na+] and SAR in 2020.

The pHe profiles (Figure 3g) showed a general decrease in pHe from 2017 to 2020 at
all of the depths, with the largest drop between 0.3 and 0.7 m, except for the point with the
smallest ECe and [Na+] (P3), where the pHe increased at 0.1 and 0.9 m and remained the
same at the intermediate depths. The ∆K+, ∆Mg2+ and ∆Ca2+ profiles showed different
patterns as compared to the salinity-related soil properties. P5, located farthest away from
the tile-drainage outlets, showed positive increments across the entire soil profile for all
of the cations. The ∆K+ increased between 2017 and 2020 across most of the soil profiles
in P5 and P3, the points with the smallest ECe and [Na+]. For the ∆Mg2+ and ∆Ca2+ no
clear common patterns with depth or across the different sampling points could be devised,
except for P2 and P4 below 0.3 m. The point- and depth-specific differences in the mobility
of these cations, possibly modulated by pHe variations, might explain this behavior.

3.3. PCA of Soil Properties in 2017 and 2020

For 2017 and 2020, the first and second PC explained 46.2 and 29.7% and 52.4 and
20.4% of the total variance, respectively (Figure 4). For both of the years, the PC1 appeared
to be related to soil salinity, while PC2 was linked to pHe. The strongest correlations
between ECe and [Na+] (R=0.99) and [Ca2+] and [Mg2+] (R = 0.65) were found in 2017,
possibly because of the stronger leaching of the soil profile due to the rainfall before this
survey (Figure 2). A clear antagonism was also observed in 2017 between the pHe and
the cations [Ca2+], [Mg2+], and [K+], with this relationship being less evident in 2020. For
both of the years, most of the soil samples taken from 0.1 to 0.5 m depth grouped along the
positive side of the PC1 axis, in accordance with the less saline conditions as compared to
the deeper soil layers (≥0.7 m). In 2020 (Figure 4b), all of the considered variables, except
[Ca2+] and pHe, projected closely to the PC1 axis and showed stronger correlations, as
compared to 2017, while the antagonism between [Ca2+] and pHe along PC2 was conserved.
This indicates that the variations in ECe in 2017 were mainly attributable to the variations
in [Na+], while in 2020 [Mg2+] and [K+] also contributed to the variation in ECe.
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Figure 3. Distributions of (a) ECe; (b) SAR; (c) [Na+]; (d) [Ca2+]; (e) [Mg2+]; (f) [K+]; and (g) pHe and
increments (∆) between 2017 and 2020, across the soil profile at the five sampling points. ECe is in
dS m−1; concentration of cations in mmolc L−1.
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Figure 4. Biplot with results of the PCA for the considered soil properties (pHe, ECe, SAR, [Na+],
[Ca2+], [Mg2+] and [K+]) in (a) 2017 and (b) 2020. Individual soil samples are represented by point
numbers (1–5, Figure 1) and depth.

Overall, the differences in the association between the considered soil properties
between 2017 and 2020 were a result of the different antecedent rainfall conditions, leading
to waterlogging and intense [Na+] leaching of the soil profile in 2017, as compared to less
intense rainfall and leaching in 2020. The contrasting behavior of the different sampling
points (e.g., P4) can be attributed to differences in the soil matrix composition and structure,
originating from the original terrain characteristics of the marshes that consisted of a
network of lower, often water-logged, areas (lucios) in-between the elevated areas where
the reduction conditions were less frequently met.

3.4. ECa in 2017 and 2020

The average ECa-1 and ECa-3 signals were 26 and 17% higher in 2017 than in 2020,
respectively, indicating more conductive conditions overall in 2017 (Table 2). In 2017 and
2020, the ECa-1/ECa-3 ratios were 0.84 and 0.78, respectively, indicating a slightly less
homogeneous conductivity across the soil profile in 2020. The spatial variability (CV)
was higher in 2020 for both of the signals, which points towards a more homogeneous
conductivity across the field in 2017. For both of the surveys, the CV was smaller for the
deep signal (ECa-3) than for the shallow signal (ECa-1), indicating a more homogenous
conductivity distribution in the deeper soil layers than in the shallower ones.

Table 2. Descriptive statistics of interpolated ECa-1 and ECa-3 (mS m−1) in 2017 and 2020.

ECa-1 ECa-3

2017 2020 2017 2020

m* 474.0 376.0 566.8 484.2
min 204.9 96.1 337.1 266.3
max 831.0 753.1 790.0 780.7
med 477.5 376.3 574.4 491.1

s 118.7 109.3 98.3 100.0
CV 0.25 0.29 0.17 0.21

kurtosis −0.826 −0.779 −0.885 −0.866
skewness 0.019 0.128 −0.185 −0.121

m*: mean; med: median; s: standard deviation; CV: coefficient of variation.

The changes in the ECa between 2017 and 2020 were evaluated for the top 1 m,
approximately down to the drainage tiles, using the ECa-1 signal. Figure 5a,b shows the
spatial distribution of the ECa-1 measured in 2017 and 2020, respectively. Both of the maps
show similar ECa patterns, with a high ECa near the adjacent road which impedes lateral
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soil water flow. In addition, towards the SW limit of the field, along part of the irrigation
service road, large ECa values were observed. The ECa was generally smaller towards the
northern limit, where the tile outlets discharge in the drainage ditch. The transect with the
five sampling points crossed an area of low ECa, intersected by the fringes of high ECa. P3
and P5 were in the former, while P4 was in the latter. Note that, in accordance with the large
ECa, P4 showed the highest ECe and cation concentrations for both of the years (Table 1).
Figure 5c shows the increment of ECa-1 from 2017 to 2020 (∆ECa). The smallest increments
(near zero) were observed in the areas with the smallest ECa values. The histogram and
cumulative distribution of ∆ECa-1 m (Figure 5d) shows that ECa-1 decreased from 2017 to
2020 in most of the field. About 50% of the field area showed ∆ECa-1 < −100 mS m−1.
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3.5. 2D inversion of EMI Datasets: EC Variations along a Transect and Calibration

Figure 6a,b shows the EC images of the soil profile along the transect and EC curves for
the five sampling points (Figure 1) for 2017 and 2020, respectively. The largest differences
between both surveys were observed in the top 0.5 m of the soil profile, with a deeper
penetration of zones with a small EC in 2020. Yet, the strongest absolute increments
occurred below 0.5 m. (Figure 6c). P3 and P5 were in areas of a small EC, unlike P4 and
P2. This contrast was also observed in the analysis of ECe and [Na+] from P3 and P5 with
respect to P4 (Table 1). Overall, the EC decreased from 2017 to 2020 across the entire soil
profile, except for P1 where ∆EC was positive for all of the depths (Figure 6c). This contrasts
with the observed increments for ECe in Figure 3b. Despite similar depth-specific ECe and
EC patterns in 2017 (see also Table 1), P1 showed the largest EC in 2020 (Figure 6b), while
ECe was largest in P4 (Table 1). The wetter soil conditions during the ECa survey in 2017
resulted in better EC–ECe relationships, as a higher proportion of the present ions entered
in dissolution in the wet soil, approximating better saturated paste conditions under which
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the ECe is measured, as compared to the drier soil in 2020. In addition, the position of P1
near the tile-drain outlets and the drainage ditch might have led to locally wetter soil near
P1 in 2020, resulting in higher EC as compared to the other four points.
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EC between 2017 and 2020 (∆EC).

Strong correlations were observed between the EC and ECe, [Na+] and SAR for 2017
and 2020 (Table 3), unlike [Ca2+], [Mg2+] and [K+] for which correlations with the EC
were smaller and less consistent between both years. This indicates that the EC showed
a strong potential for estimating depth-specific ECe, [Na+] and SAR. Yet, the shallowest
signal provided by the used EMI sensor has a theoretical depth of exploration near 0.5 m,
resulting in less detailed and reliable estimates of the EC near the soil surface (0.1 m depth).
To check this further, the depth-specific Pearson correlation coefficient was calculated, as
shown in Table 3. The strongest correlations of ECe and SAR with EC were found for
the deeper soil layers, and for the wettest year (2017). In the topsoil (0.1 and 0.3 m) no
correlation was found between EC and ECe or SAR, except at 0.3 m in 2017. In the wetter
soil, in 2017, the cations were possibly better dissolved, leading to a more conductive soil
solution as compared to 2020.

The relationships between the EC, ECe and SAR for 2017 and 2020 (Figure 7) showed
that, although the EC values were higher in 2017 than in 2020, particularly in the deepest
soil layers (Figure 7a), the ECe and SAR showed a different tendency, with higher ECe and
SAR at intermediate depths in 2020 at certain sampling points. These apparently different
relationships for the EC with respect to the ECe and SAR might be the result of differences
in the water content across the soil profile.
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Table 3. Pearson correlation coefficient (R) between depth-specific EC and soil chemical properties
measured in 2017 and 2020, and correlations by depths.

Depth (m)

0–0.9 0.1 0.3 0.5 0.7 0.9

2017

ECe 0.91 0.05 0.91 0.96 0.99 0.98
SAR 0.88 0.33 0.72 0.96 0.93 0.97
Na+ 0.91 0.22 0.94 0.94 0.98 0.99
Ca2+ 0.46 −0.51 −0.09 −0.74 0.98 0.24
Mg2+ 0.46 −0.58 0.71 0.33 0.99 −0.06

K+ 0.63 −0.55 0.91 0.93 0.66 0.82
pHe −0.19 0.35 −0.50 0.67 −0.25 −0.17

2020

ECe 0.89 0.12 0.27 0.92 0.73 0.91
SAR 0.88 0.04 −0.22 0.55 0.81 0.94
Na+ 0.95 −0.18 0.06 0.86 0.82 0.99
Ca2+ 0.36 −0.14 0.19 0.97 0.76 0.85
Mg2+ 0.73 −0.22 −0.05 0.75 0.84 0.99

K+ 0.35 −0.74 −0.91 −0.55 0.00 0.35
pHe −0.18 −0.45 −0.45 −0.53 −0.52 −0.51
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Figure 7. Relationships between (a) EC; (b) ECe; and (c) SAR for 2017 and 2020.

Due to the anomalous behavior of P1 (Figure 6c), this sampling point was excluded
for calibration purposes. This point is located at the headland near the service track and
the drainage ditch (Figure 1), where during winter, a surface drainage pipe is provisionally
installed to evacuate the surface water from the field and alleviate the ponding, causing
contrasting hydrological conditions with respect to the remainder of the field. The linear
calibration equations for ECe against EC (Figure 8a,b) were closer to the 1:1 line in 2017 than
in 2020, when a steeper slope was obtained. The calibration equations near the 1:1 line can
be associated with field measurement conditions similar to those for which the saturated
paste extract was obtained in the laboratory. Under such conditions, a similar proportion
of the ions enter in dissolution in the field soil water as in the laboratory saturated paste,
leading in theory to similar ECe and EC. As the soil dries, the ions precipitate and their
concentration in the soil solution decreases and so does the field-measured EC, resulting in
a steeper slope for the 2020 ECa–EC calibration equation as compared to 2017. This also
supports the hypothesis of wetter soil conditions and a more conductive soil in 2017 as
compared to 2020 (see also Figure 2). The largest R2 was obtained for the linear equations,
ranging from 0.77 to 0.83 for ECe and SAR (Figure 8c,d).

The validation (LOOCV) of the regression models yielded better results for the ECe
than the SAR (Table 4). The NSE indicated overall “acceptable” results for ECe in both
of the years, while the results for SAR were only “acceptable” in 2020. The same results
were obtained when considering only the subsoil (0.5–0.9 m layers), while “unsatisfactory”
validation results were obtained for the topsoil (0.1 and 0.3 m layers) in all of the cases. The
overall better performance obtained for ECe is possibly a result of the strong relationship
between ECe and Na+, and the common pattern of both variables with depth (Table 1
and Figure 4), according to the increasing EC with depth (Figure 6). In contrast, the SAR
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also depends on the other cations (Ca2+, Mg2+) that lacked a clear pattern with depth and
therefore showed weaker correlations with the EC. Therefore, it might be beneficial to
estimate first the Na+, Ca2+, Mg2+ from the EC and then calculate the SAR.
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Figure 8. Relationships between (a) EC and saturated paste extract EC (ECe) for 2017 and (b) 2020
and between (c) EC and sodium absorption ratio (SAR) for 2017 and (d) 2020.

Table 4. Leave-one-out cross validation parameters for the estimation of ECe and SAR in 2017 and
2020, distinguishing between top- (0.1 and 0.3 m layers) and subsoil (0.5–0.9 m layers).

EC
ECe SAR

RMSE MAE NSE RMSE MAE NSE

2017 1.44 1.08 0.74 14.67 9.16 0.57
Topsoil 0.61 0.47 −2.05 4.33 3.03 −1.30
Subsoil 1.4 1.23 0.71 11.6 8.26 0.51

2020 1.35 1.09 0.74 6.85 5.75 0.70
Topsoil 0.86 0.7 0.06 7.16 5.75 −0.12
Subsoil 1.59 1.35 0.69 4.78 3.89 0.67

Despite the limited availability of analytical soil data, these validation results illustrate
the potential of EMI tomography for soil salinity monitoring in hyper-conductive envi-
ronments, such as the B-XII irrigation district. The poor performance in the topsoil can be
partly attributed to the small lateral variation of the shallow soil properties (small range of
data values), as compared to the vertical variation across the soil profile. Further research
should involve EMI instruments that provide more detail near the soil surface, which can
be achieved by multi-frequency or multi-coil instruments with smaller theoretical depths
of exploration.

The depth-specific ECe and SAR were estimated for 2017 and 2020 using the 3D
inversion results and the relationships shown in Figure 8. (Figure 9). Considering the entire
field, the ECe increased in 2020 as compared to 2017, while the SAR overall showed an
opposite trend. The largest changes occurred along the eastern limit of the field, along the
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road which constrained the lateral water and solute flow out of this area. In the SW corner
of the field, a higher ECe was also estimated in 2020. As expected, the ECe increased with
depth for both surveys. As a result of the differences in the antecedent leaching conditions
between the surveys of 2017 and 2020, the SAR was substantially lower in 2020, at a 0.7
and 0.9 m depth (Figure 9d,e), while similar values were obtained in both of the years at
0.5 m (Figure 9d). These patterns and variations can be explained in terms of the [Na+]
leaching dynamics across the field between 2017 and 2020 (see also Table 1). The maps in
Figure 9 allow a detailed assessment of the evolution of the depth-specific salinity status
across the field and are relevant for informing site-specific soil and water management
decisions during the growing season.
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3.6. Correlation between Depth-Specific EC and NDVI

The correlations between the four ECa signals and NDVI were similar for both survey
years. The correlations between the depth-specific EC and NDVI were also similar to those
obtained for ECa. In tomato, on the day of the maximum NDVI, the correlations with the
four ECa signals from 2017 ranged from −0.65 to −0.63, while the correlations with the
depth-specific EC ranged from −0.66 to −0.64. In cotton, these correlations ranged from
−0.83 to −0.81 and from −0.86 to −0.77, and in sugar beet from −0.69 to −0.66 and from
−0.73 to −0.64, respectively. In general, the correlation between the depth-specific EC and
NDVI increased slightly with the soil depth.

The negative correlations between the NDVI and depth-specific EC were obtained
throughout the different cropping seasons for both of the survey years (Figure 10). The
correlations were only strong (R <−0.5) during the second half of the tomato-growing
period (2017), during the entire cotton-growing period (2018) and occasionally in the spring
during the sugar beet-growing period (2019). The negative correlations indicate that the
crop development, as measured by NDVI, was limited where the EC was largest, particu-
larly during the warmest periods of the cropping season, when the evapotranspiration and
irrigation rates were highest. This supports the hypothesis that the spatial salinity pattern
in the topsoil, which is expected to affect the crop development and control the spatial
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NDVI pattern, originates from the deeper soil layers, because of the capillary effects during
the periods of strong atmospheric water demand. The weaker correlations observed for
sugar beet could be a consequence of the different growing season as compared to tomato
and cotton. The sugar beet was grown in spring and harvested in early July, with irrigation
being cut-off several weeks before the harvest. As a result, the environmental conditions
were less favorable for the capillary rise of saline soil water towards the topsoil than in the
other crops.
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depth-specific EC at 0.9 m depth, measured in 2017 and 2020.

Figure 11 shows the NDVI images on the day of maximum NDVI and the correspond-
ing inverse relationships between NDVI and EC at 0.9 m for the three crops. The cotton and
sugar beet showed a concave type of relationship (R2 = 0.75 and 0.53, respectively), while a
convex power law type of relationship could be fitted for processing tomato, despite the
large data dispersion (R2 = 0.50), which indicates the existence of other effects on the NDVI
besides the EC. The NDVI ranged from 0.55 to 0.85 for EC < 700 mS m−1, while the NDVI
was limited to 0.75 in areas with EC > 700 mS m−1. In cotton and sugar beet, the negative
effects of the EC on the NDVI were mainly appreciable in areas with EC > 700 mS m−1

(Figure 11b,c).
Table 5 shows the correlations between the depth-specific EC and NDVI, measured

along the transect, for each crop from seedling emergence/transplanting until reaching the
maximum NDVI. The negative correlations became progressively stronger as the growing
season evolved, possibly because of the plant roots growing deeper into more saline soil
horizons. This evolution was also observed for sugar beet, despite the limited availability
of NDVI imagery in the spring of 2019, due to cloudy weather conditions.

The strongest correlations with depth-specific EC ranged from −0.90 to −0.85 in
cotton, from −0.73 to −0.71 in processing tomato and from −0.57 to −0.53 in sugar beet,
corresponding roughly with the findings reported earlier on for the entire field.
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The NDVI was generally smaller (indicating that plant development lagged behind)
along the sections of the transect with the largest ECe, as compared to those with the
smallest ECe at 0.9 m depth (Figure 12). As compared to cotton and sugar beet, processing
tomato showed the strongest dependence on ECe from day 25 on (Figure 12a). The cotton
showed a strong dependence on ECe throughout the entire period, even in the early crop
growth stages (e.g., days 10–20), as also shown by the evolution of R (Figure 12b). The
sugar beet developed more homogeneously along the transect, as compared to tomato and
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cotton, and appeared to be less dependent on ECe (Figure 12c), which is also apparent from
the weak R. Apart from the differences in the physiological response of these crops to soil
salinity [34], a plausible explanation for these results is that sugar beet is grown during
spring and harvested in early summer, while tomato and cotton are grown throughout the
summer, when the largest amounts of water are applied to satisfy the maximum crop water
requirements. The intense and persistent irrigation during this period decreases the depth
of the saline water table, allowing brackish water to reach the root zone from where the
water is transpired and evaporated, leaving behind the salts it contained. The conductivity
hotspots detected for both years in Figure 6 represent the zones with salinization-prone
topsoil due to differences in the soil water transport and retention characteristics, as
compared to the surrounding areas of lower EC. As a result, the homogeneous irrigation
along the transect might cause a local lifting of the water table or promote the occurrence
of local perched water tables, which enhance the risk of topsoil salinization with possible
negative effects for crop development [35].

Table 5. Pearson correlation coefficient (R) between NDVI and depth-specific EC, measured along
the transect, from emergence/transplanting until reaching the maximum NDVI.

R 2017

Days since
Emergence/Transplanting EC 0.1 EC 0.3 EC 0.5 EC 0.7 EC 0.9

Tomato
2017

10 −0.14 −0.16 −0.15 −0.16 −0.17
20 −0.38 −0.39 −0.38 −0.38 −0.40
30 −0.54 −0.55 −0.55 −0.54 −0.56
40 −0.60 −0.61 −0.60 −0.60 −0.61
50 −0.66 −0.68 −0.67 −0.67 −0.68
60 −0.71 −0.73 −0.72 −0.72 −0.73

Cotton
2018

5 −0.39 −0.40 −0.41 −0.42 −0.43
20 −0.47 −0.49 −0.49 −0.50 −0.51
25 −0.67 −0.69 −0.69 −0.70 −0.71
30 −0.59 −0.62 −0.62 −0.62 −0.65
35 −0.70 −0.73 −0.73 −0.74 −0.76
40 −0.79 −0.79 −0.79 −0.79 −0.80
45 −0.79 −0.84 −0.84 −0.85 −0.87
55 −0.53 −0.59 −0.59 −0.60 −0.63
60 −0.85 −0.88 −0.88 −0.88 −0.90

Sugar beet
2019

5 0.11 0.12 0.11 0.11 0.11
30 0.07 0.06 0.06 0.05 0.03
60 −0.35 −0.42 −0.41 −0.43 −0.46
70 −0.57 −0.55 −0.55 −0.55 −0.53

The observed link between NDVI and EC opens an avenue for future research on
salinity assessment in this hypersaline environment. According to our findings, the EMI-
inferred EC patterns appear to be time stable and have to be measured only once. The
correlation of EC with the freely available NDVI imagery can then be calculated throughout
preceding or subsequent growing seasons and can be used as an indicator to compare,
monitor and assess the evolution of soil salinity and its effects on crop development
throughout or across different growing seasons and crops. In addition, the availability of
yield monitoring data could further unlock the potential of this methodology and allow the
EC–NDVI correlation to be ultimately related to crop productivity.



Remote Sens. 2022, 14, 3389 18 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 12. Evolution of NDVI along the transect for (a) processing tomato; (b) cotton; and (c) sugar 
beet from the day of seedling emergence/transplanting to the day with maximum NDVI. The white 
and red lines represent estimated ECe at 0.9 m depth in 2017 and its correlation (R) with NDVI, 
respectively. 

The observed link between NDVI and EC opens an avenue for future research on 
salinity assessment in this hypersaline environment. According to our findings, the EMI-
inferred EC patterns appear to be time stable and have to be measured only once. The 
correlation of EC with the freely available NDVI imagery can then be calculated through-
out preceding or subsequent growing seasons and can be used as an indicator to compare, 
monitor and assess the evolution of soil salinity and its effects on crop development 
throughout or across different growing seasons and crops. In addition, the availability of 
yield monitoring data could further unlock the potential of this methodology and allow 
the EC–NDVI correlation to be ultimately related to crop productivity. 

4. Conclusions 
The EMI surveys performed in 2017 and 2020 in the study field showed similar spa-

tial ECa patterns, with the largest average ECa in 2017, which was attributed to wetter soil 

Figure 12. Evolution of NDVI along the transect for (a) processing tomato; (b) cotton; and (c) sugar
beet from the day of seedling emergence/transplanting to the day with maximum NDVI. The white
and red lines represent estimated ECe at 0.9 m depth in 2017 and its correlation (R) with NDVI,
respectively.

4. Conclusions

The EMI surveys performed in 2017 and 2020 in the study field showed similar spatial
ECa patterns, with the largest average ECa in 2017, which was attributed to wetter soil
conditions in 2017, as a result of differing antecedent weather conditions. The temporal
persistence of the spatial ECa patterns indicates that the implemented soil and water man-
agement when cropping cotton and sugar beet did not affect the spatial ECa distribution;
therefore, this is attributable to the underlying soil variability resulting from the original
marsh terrain characteristics before land reclamation or the presence of infrastructures that
limit lateral water and solute movement near the limits of the field (e.g., roads). Partial
clogging of tile drains, particularly in the SW part of the field, might also explain the
presence of areas with high ECa.

The soil chemical analysis in 2017 and 2020 showed different vertical distributions of
Na+-related salinity indicators ([Na+], ECe and SAR) in the topsoil (<0.4 m) in both years,
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with a better leached topsoil in 2017. The profile-averaged salinity indicators reproduced
the observed ECa pattern at the five sampling points, indicating that EMI is successful
in estimating the spatial salinity patterns in this hyper-conductive soil. In accordance
with this, the depth-specific EC estimates obtained by inversion of the ECa measurements
showed the strongest correlations with the salinity indicators for the deepest soil layers
(>0.3 m), particularly for the wettest year (2017), while for the topsoil no clear relationships
could be devised, possibly as a result of the small data ranges of the topsoil properties and
the relatively large depth of exploration of the shallowest available EMI signal (~0.5 m),
providing only limited vertical resolution in the EC estimates near the soil surface. In spite
of these limitations, calibration relationships could be built that allowed the estimation of
ECe and SAR from the inverted EC images, with R2 near 0.80 and 0.77, respectively. EMI
instruments that provide more detail near the soil surface and under wet soil conditions
are expected to improve the performance of this method, allowing more accurate salinity
estimation near the soil surface.

Although the estimated salinity levels in the rootzone were moderate and presumably
harmless for crop development, an inverse relationship was observed between EC and
Sentinel 2 NDVI imagery obtained during the growing seasons of processing tomato,
cotton and sugar beet, indicating that the underlying ECa and depth-specific EC patterns
affected crop development progressively, as the growing season evolved. The strongest
relationships were found on the days when the average NDVI reached a maximum. This
opens an avenue for future research by using the inverse relationship between the depth-
specific EC and NDVI as an indicator for mapping and monitoring soil salinity effects on
crop development across fields, growing seasons and crops, in environments such as the
B-XII irrigation district.
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