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Abstract: Homogenization is an important and crucial step to improve the usage of observational
data for climate analysis. This work is motivated by the analysis of long series of GNSS Integrated
Water Vapour (IWV) data, which have not yet been used in this context. This paper proposes a novel
segmentation method called segfunc that integrates a periodic bias and a heterogeneous, monthly
varying, variance. The method consists in estimating first the variance using a robust estimator
and then estimating the segmentation and periodic bias iteratively. This strategy allows for the use
of the dynamic programming algorithm, which is the most efficient exact algorithm to estimate
the change point positions. The performance of the method is assessed through numerical simulation
experiments. It is implemented in the R package GNSSseg, which is available on the CRAN. This
paper presents the application of the method to a real data set from a global network of 120 GNSS
stations. A hit rate of 32% is achieved with respect to available metadata. The final segmentation is
made in a semi-automatic way, where the change points detected by three different penalty criteria
are manually selected. In this case, the hit rate reaches 60% with respect to the metadata.

Keywords: change point detection; dynamic programming; homogenization climate series; GNSS
IWV series

1. Introduction

Long records of observational data are essential to monitoring climate change and
understanding the underlying climate processes [1]. Among the key climate variables,
water vapor is of paramount importance because of its strong positive feedback effect,
increasing the sensitivity of global warming by a factor of nearly three [2]. However,
water vapor is highly variable, both spatially and temporally, which makes its observation
especially challenging. The ground-based network of Global Navigation Satellite Systems
(GNSS) is an efficient remote sensing technique for this purpose as it operates continuously,
in all weather conditions, with high accuracy and stability [3,4]. However, small discon-
tinuities have been reported in GNSS series, which are mainly due to instrumental and
processing changes [4–6].

Detecting and correcting inhomogeneities in GNSS IWV series is currently an active
field of research [7–9]. Inhomogeneities most often take the form of abrupt changes, which
can be due to changes in instrumentation, in station location, in observation and processing
methods, and/or in the measurement conditions around the station. Climate analysts have
been facing this kind of problem for a long time [10–12]. This community has developed
various homogenization methods over the past two or three decades for detecting and
correcting inhomogeneities, mainly with application to temperature and precipitation
series [13–18]. The methods are based on statistical change point detection or segmentation
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methods, which constitute a natural framework for this inhomogeneity detection purpose.
They can be broadly classified into two main types: (1) global detection (the change points
are detected simultaneously) using regression or maximum likelihood methods and (2) se-
quential detection using tests. While tests are easier to implement and use, they necessarily
lead to sub-optimal solutions when the series contain more than one change point. With re-
gression methods, the main challenge is to set up exact algorithms. For example, the widely
used minimum description length (MDL) [19] is an approximate optimization algorithm
which leads to sub-optimal solutions. On the other hand, the Dynamic Programming (DP)
algorithm is an exact algorithm which leads to optimal solutions [13]. In both types of meth-
ods, it has also been a traditional approach to compare the test series with a well-correlated
reference series, where the reference series is typically assembled from nearby stations
that are observing the same climate signal. Subtracting the climate signal helps to reveal
the inhomogeneities in the test series. One limitation arises, however, when GNSS data
are processed in difference mode, whereby the errors of nearby stations might be highly
correlated. Another approach also widely used is to include a parametric representation
of the climate signal in the segmentation model for the test series, e.g., a periodic variation
in the mean accounting for seasonal variations in monthly data [20]. A number of methods,
including tests and optimal and sub-optimal optimization methods, have been assessed
for homogenizing GNSS IWV series in a benchmark exercise conducted in the framework
of COST Action GNSS for severe weather and climate change (GNSS4SWEC) [21]. The re-
sults were published by [9], who concluded on the superior performance of the maximum
likelihood methods, including the segmentation method that we propose in this paper.
Our method actually yielded the best change point detection performance for different
sets of synthetic data (e.g., the most complex synthetic data included IID Gaussian noise,
autocorrelation, and linear trends).

The first specific characteristic of our method, hereafter called segfunc, is heteroscedas-
ticity of the noise component. It is well known in the segmentation framework that het-
eroscedasticity is a severe limitation in existing procedures that do not account for variations
in the noise variance [22]. In a previous work, we proposed a preliminary version of this seg-
mentation method, hereafter called segonly, designed to detect abrupt changes in the mean
in the presence of heterogeneous variance that is assumed to vary on a monthly basis [8].

The second feature introduced in segfunc is a functional part that is required to model
the presence of a periodic bias in the IWV difference data. This bias originates from the fact
that the reference series used to subtract the climate signal does not perfectly represent
the seasonal signal contained in the observed GNSS IWV data. In this work, as well as in
the benchmark study of [9], the reference IWV data are taken from the European Center
for Medium Range Forecasts (ECMWF) ERA-Interim reanalysis [23]. Using a reanalysis is
a convenient solution when the station network is too sparse to form differences between
stations. A drawback is that the GNSS point observations and the reanalysis grid cells
show representativeness differences, mainly in coastal and mountainous regions, which
often have a significant seasonal periodic component [24].

Figure 1 shows an example of a daily IWV difference series and the segmentation
results with the segonly method of Bock et al. [8]. This is a typical case of time series
where both characteristics, heteroscedasticity and periodic bias, are strong. It is clear that
in the presence of a marked seasonal signal, the segmentation method tends to detect
change points when the signal goes up and down. In this example, the segonly method
detects 12 change points, none of which is closer than 40 days to the 16 known GNSS
equipment changes from the GNSS station history metadata. Detecting too many and
wrongly located change points is detrimental to estimating IWV trends later, which is one
of the main applications [6,7].
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Figure 1. Segmentation results with the segonly method for GNSS station POL2. The IWV difference
series (GPS-ERAI) is shown in light gray, the detected change points are marked as dotted red
vertical lines, and the estimated means between change points are plotted as a solid red line. Known
equipment changes are represented as green dashed lines. The line in cyan at the bottom of the
plot represents the square root of the estimated monthly variance (unit kg m−2), the zero baseline
of which is the black horizontal line at −5 kg m−2.

The segfunc method proposed in this paper is intended to counter these limitations.
To infer the parameters of the model, a penalized maximum likelihood procedure is
used. In this framework, it is well known that segmentation methods have to deal with
two difficulties: (i) an efficient algorithm for estimating the change point locations and
(ii) an appropriate choice of the penalty term which controls the number of change points.
The algorithmic difficulty results from the discrete nature of the change point parameters,
which requires searching over the whole segmentation space. Considering that our time
series have typically several thousands of points, the search space is enormous. An exhaus-
tive search is thus prohibitive in terms of computational time. The Dynamic Programming
(DP) algorithm [25], and its recent pruned versions [26–28], are the only algorithms that
retrieve the exact solution in a fast way. However, a necessary condition for using DP is that
the quantity to be optimized is additive with respect to the segments [13,29,30]. Because
of the presence of the monthly variance and the functional part, this condition is not verified.
To circumvent this issue in a similar kind of problem, Li and Lund [31] and Lu et al. [19]
proposed to use a genetic algorithm. However, this algorithm leads to a sub-optimal
solution. Our choice here is to stay with the DP algorithm to achieve an optimal solution.
To enable this in the inference procedure, we propose to estimate first the variances using
a robust (to the change points) estimator based on the one proposed by Rousseeuw and
Croux [32], which was previously used in the segonly method, and to estimate iteratively
the segmentation parameters and the functional, as also proposed by Bertin et al. [33] for a
similar kind of problem. Several penalty methods are available [13,19,34–36], from which
the user can choose depending on the data properties.

The article is organized as follows. Section 2 presents the model, the inference pro-
cedure, and the conclusions of a simulation study, for which the results are presented
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in the Supplemental Material. In Section 3, the method is applied on real data from a set
of 120 global GNSS stations. Section 4 discusses the results and concludes.

2. Materials and Methods
2.1. Model

We consider the model proposed by Bock et al. [8], in which we add a functional part
in order to take into account the periodic bias. Let y = {yt}1,...,n be the observed series
with length n that is modeled by a Gaussian independent random process Y = {Yt}t=1,...,n
such that

Yt ∼ N (µk + ft, σ2
month) if t ∈ Imean

k ∩ Ivar
month, for k = 1, . . . , K, (1)

where Imean
k = Jtk−1 + 1, tkK with length nk = tk − tk−1, where the t′ks are the change point

instants (with the convention t0 = 0 and tK = n), and Ivar
month = {t; date(t) ∈ month} with

length nmonth, where date(t) stands for the date at the time t. The intervals {Imean
k }k are

unknown, contrary to the intervals {Ivar
month}month.

The parameters to be estimated are the number of segments K, the K− 1 change points
t = {tk}k, and the distribution parameters, which are the means µ = {µk}k, the variances
σ2 = {σ2

month}month, and the function f .

2.2. Inference

To estimate all the parameters, we consider here a penalized maximum likelihood
approach. The log-likelihood of model (1) is given by

log p(y; K, t, µ, σ2, f ) = −n
2

log (2π)− ∑
month

nmonth
2

log (σ2
month)

−1
2

K

∑
k=1

∑
month

∑
t∈Imean

k ∩Ivar
month

(yt − µk − ft)2

σ2
month

(2)

As usual in segmentation frameworks, we proceed in two steps (e.g., Truong et al. [37]).
First, we fix the number of segments K and estimate all the other parameters, and then
we choose K. It is well known that the DP algorithm allows one to retrieve the maximum
likelihood segmentation in an efficient way (we obtain the exact solution in a reasonable
computational time). However, DP can be applied if and only if the quantity to be optimized
is additive with respect to the segments. Here, with the presence of both σ2

month and f ,
the required condition is not satisfied. In order to stay with this exact algorithm, we follow
the same strategy as in Bock et al. [8], which consists in estimating first the variances and
then performing a classical segmentation with ’known’ variances. The additional difficulty
that we have here is to deal with the common function f . To solve it, we propose to estimate
f and the segmentation parameters (i.e., the change points and the means) iteratively,
as in [33,38]. The resulting inference procedure results in three steps:

Step 1 Estimation of σ2. The classical sample variance estimator cannot be used here
because of the presence of change points in the series. Following Bock et al. [8],
we use instead the Qn estimator proposed by Rousseeuw and Croux [32], applied
to the differentiated series Yt − Yt−1. The differentiation acts to center the series,
except at the change point positions, which can be seen as outliers. Because the Qn
estimator is not sensitive to outliers, the resulting variance estimator has low bias
and high efficiency. The estimated variance is denoted σ̂2

month. We propose to
estimate the variance parameters before we start the iterative procedure (Step 2).
This choice was made after testing the alternative version in which the variance
parameters are updated at each iteration of the iterative procedure. In the alterna-
tive version, the variance estimates were slightly more accurate but at the severe
cost of slowing down the convergence, with no significant benefit in the segmenta-
tion results. Thus, we opted for the estimation of the variance parameters before
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the iterative procedure. Note that the presence of the function f in our model has
little impact on the resulting variance estimation because it is a smoothly varying
function (see below).

Step 2 Estimation of f , t, and µ. These parameters are estimated iteratively for a given
K, where the variances σ̂2 are estimated in Step 1. The estimates are obtained
by maximizing the log-likelihood given by Equation (2), which is equivalent to
minimizing the following squared sum of residuals, SSR, in a least-squares sense:

SSRK(t, µ, σ̂2, f ) =
K

∑
k=1

∑
month

∑
t∈Imean

k ∩Ivar
month

(yt − ft − µk)
2

σ̂2
month

(3)

At iteration [h + 1]:

(a) The estimator of f results in a weighted least-squares estimator with weights

1/σ̂2
month on {yt − µ

[h]
k }t. For our application, we follow [39] and represent

f as a Fourier series of order 4, which accounts for annual, semi-annual,
ter-annual, and quarter-annual periodicities in the signal:

ft =
4

∑
i=1

ai cos(wit) + bi sin(wit),

where wi = 2π i
L is the angular frequency of period L/i and L is the mean

length of the year (L = 365.25 days when time t is expressed in days). The es-
timated function is denoted f [h+1].

(b) The segmentation parameters are estimated based on {yt− f [h+1]
t }t. We obtain

µ
[h+1]
k =

∑month ∑t∈Imean
k ∩Ivar

month

(yt− f [h+1]
t )

σ̂2
month

∑month ∑t∈Imean
k ∩Ivar

month

1
σ̂2

month

,

and

t[h+1] = argmin
t∈MK,n

K

∑
k=1

∑
month

∑
t∈Imean

k ∩Ivar
month

(yt − f [h+1]
t − µ

[h+1]
k )2

σ̂2
month

,

whereMK,n = {(t1, . . . , tK−1) ∈ NK−1, 0 = t0 < t1 < . . . , tK−1 < tK = n} is
the set of all the possible partitions of the grid J1, nK in K segments. This turns
into a classical segmentation problem for which DP applies.

The final estimators are denoted f̂ , t̂, and µ̂.

Step 3 Choice of K. This is the most delicate and difficult problem. We use three penalized
least-squares-based criteria since the segmentation is conducted with ’known’
variances. The model selection strategy consists in selecting K as follows:

K̂ = argmin
K

SSRK(t̂, µ̂, σ̂2, f̂ ) + pen(K)

where SSRK is defined by (3). We recall the three considered criteria:

Lav proposed by [35] with the penalty pen(K) = βK, where β is a penalty con-
stant chosen using an adaptive heuristic. This heuristic involves a threshold
S, which is fixed to S = 0.75, as suggested by Lavielle [35].

BM proposed by [34,40] with the penalty pen(K) = αK
(
5 + 2 log

( n
K
))

, where
the penalty constant α is calibrated using the ’slope’ heuristics proposed by [41].
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Here, we consider two heuristics, the ’dimension jump’ and the ’data-driven
slope estimation’, which are referred to as BM1 and BM2, respectively, hereafter.

mBIC the modified version of the classical BIC criterion derived in the segmenta-
tion framework by [36], which is a BIC-based criterion with the integration
of a penalty term depending on the segment lengths.

The estimation procedure is summarized in Figure 2.

Figure 2. Description of the segfunc method proposed in this paper.
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2.3. Procedure Settings and R Packages
2.3.1. Maximal Number of Segments, Kmax

In practice, Step 2 is performed for K = 1, . . . , Kmax, where Kmax should be 2 or 3 times
larger than the expected number of change points. For both the simulations and the appli-
cations, we used Kmax = 30.

2.3.2. Iterative Procedure of Step 2

Any iterative procedure needs a proper initialization procedure and a stopping rule.
For the initialization, we estimate first the function f using a unweighted regression,
while in the main loop, we use a weighted regression as formulated in Step 2 above.
For the stopping rule, the change in ft and µk between two successive iterations is checked
against a fixed threshold. The convergence of the iterative procedure is accelerated fol-
lowing the scheme proposed by [42]. We tested two other options: (i) estimating f using
a weighted regression both in the initialization and in the main loop, and (ii) estimating
first the segmentation. Both options degraded slightly the results due to the confusion
between the means and the functional. For this reason, the final version of the algorithm
estimates first the functional part and then the segmentation parameters.

2.3.3. Time Complexity

The segmentation (Step 2) is obtained using the DP algorithm, which reduces the algo-
rithmic complexity from O(nK), as would be the case with a naive search, to O(Kn2).
The complexity of the choice of K (Step 3) is O(n), such that the complexity of the
global method including both steps of the iterative algorithm is limited by the segmenta-
tion, i.e., O(Kn2).

2.3.4. R Packages

The method was initially implemented in an R package named GNSSseg, which is avail-
able on the CRAN. A more recent and faster version named GNSSfast is now also available
from the Git repository https://github.com/arq16/GNSSfast.git (accessed on 12 June 2022).
GNSSfast integrates a faster version of the DP algorithm, based on R package gfpop,
proposed by Hocking et al. [43], with an algorithmic complexity in O(Kn log n) for the seg-
mentation step. We evaluated empirically the time improvement of GNSSfast on an excerpt
of ten series from the application data set used in Section 3 with length varying between
5000 and 6000 points. The mean time over the ten series of the procedure is 41 min (2463 s)
with GNSSseg against 1.32 min (79 s) with GNSSfast on a standard PC workstation with
a Ubuntu 18.04.2 LTS operating system.

2.4. Simulation Study

The performance of the new segmentation method, segfunc, was assessed by means
of simulations, presented in the Supplemental Material. It is shown that the monthly
variance parameters estimated in Step 1 (i.e., outside of the iterative procedure) are suffi-
ciently accurate to allow for good performance of the subsequent segmentation. Estimating
the variance terms outside of the iterative procedure also accelerates the convergence com-
pared to the case where they are estimated inside the loop. The accuracy of the number and
position of detected change points is shown to depend on the SNR, as expected, with some
differences between the criteria. In situations of large noise, BM1, BM2, and mBIC tend to
underestimate the number of change points, but with reasonable dispersion, compared to
Lav, which has a smaller bias but larger dispersion. The performance of segfunc is also
shown to be similar to that of segonly when no functional is simulated, and superior when
a functional is simulated. As expected, in the presence of a periodic bias, segonly has
a tendency to over-segment the time series in order to fit the bias with changes in the mean.
This deficiency is clearly overcome with the new method.
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3. Results
3.1. Data, Metadata, Outlier Detection, and Validation Procedures

The data set consists of daily IWV differences (GNSS minus ERA-Interim reanalysis),
for 120 global GNSS stations, for the period from 1 January 1995 to 31 December 2010 [24,44].
A map of the station network can be found in [24]. The metadata include equipment changes
and processing changes (the latter are specific to the particular reprocessed data set used
in this study [45], but they concern only a few stations in 2008 and 2009; this issue is further
discussed in Parracho et al. [6]). The equipment changes were extracted from the IGS
site-logs (https://files.igs.org/pub/station/log/, accessed on 12 June 2022). They consist
of the dates of receiver (R), antenna (A), and radome (D) changes. Experience showed
that not all equipment changes produce a break in the GNSS IWV time series. The most
important ones are antenna and radome changes [7]. However, there is some evidence
that changes in the receiver settings can also produce inhomogeneities [5], especially
changes in the elevation cutoff angle setting. Unfortunately, the elevation cutoff angle
settings have not been reported in the IGS site-logs in the early periods (mainly before
2000). The GNSS IWV estimates are also impacted by environmental changes that are
not reported in the IGS log-files, such as changes in the electromagnetic reflections and
scattering properties of surfaces around the receiving antenna and changes in the satellite
visibility (e.g., due to growing vegetation or urbanization). As a consequence, although
the metadata extracted from the IGS site-logs represent a valuable source of validation,
they may be incomplete and a perfect matching between our detected change points and
the IGS metadata is thus not to be expected. For the validation, it is customary to use
a certain time window, although there is actually no established standard for the size of this
window. Values between 5 days and 183 days have been used by various authors with
daily data [9,46,47]. In this study, we use a time window of ±62 days, which is consistent
with the study of [9].

Another important aspect in the analysis of our segmentation results is the post-
processing of clusters of change points that we are classifying as ‘outliers’. Figure 3 shows
an example of a time series with three clusters detected in October 1997, in May 2004, and
in May–August 2005, containing two, two, and four change points, respectively, within
a time window of ±80 days. This window size was chosen after performing a mixture
model analysis of the segment lengths, which showed that the distribution of segment
lengths could be optimally divided into two classes with a separation length of 80 days.
Moreover, we also noted that the shorter segments are associated with larger changes
in means, which seem to be due to noise spikes. This can also be seen from Figure 3.
We set up a screening method to reject the clusters of outliers that were not associated with
a significant change in mean before and after. A weighted t-test was used for this purpose
on the series corrected by the estimated periodic function. In the case of the time series
shown in Figure 3, the changes in the mean before and after all three clusters are significant,
meaning that they are all three associated with a change point. For these clusters, we kept
the middle position of the change points as representative of the actual change point. In this
specific example, the eight outliers are replaced with three significant change points, hence
decreasing the total number of change points from 12 to 7.

https://files.igs.org/pub/station/log/
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Figure 3. Segmentation results with the segfunc method for GNSS station IISC. Similar content
as Figure 1 with, in addition, the estimated periodic bias represented as a dotted line in magenta
at the bottom of the plot (unit kg m−2), the zero baseline of which is marked by the black horizontal
line at −5 kg m−2. The symbols at the bottom of the red lines indicate: outliers (circles), validated
change points (triangles), and other change points (squares). The text in blue reports the total number
of detections and of known changes, the minimum and maximum distance between detected change
points and the nearest known changes, the number of validated detections, and the number of noise
detections (outliers). The outlier detection window is ±80 days and the validation window is ±62 days.

3.2. General Results

In this section, we present global results for three versions of our segmentation
method: (a) segfunc, the new method described in Section 2 of this paper (in its final
form); (b) segonly, the method described in Bock et al. [8], which does not include the func-
tional part; and (c) seghomofunc, a variant of segfunc, which considers a homoscedastic
noise variance instead of a monthly one, where the single noise variance parameter is
estimated during Step 2 of the method.

Figure 4 shows the distribution of the number of detected change points before screen-
ing, for the three variants of the segmentation method and the four selection criteria.
The most striking feature, common to all three methods, is the significantly different results
of mBIC compared to the three other criteria. This behavior was not observed with the sim-
ulations. In general, mBIC detects a number of change points close to the maximum, which
is 29 (since the method is parameterized with Kmax = 30). In the case of seghomofunc,
the mean number of change points with mBIC is slightly decreased (19, compared to 27–28
with the other variants). This may be explained by the fact that mBIC has been derived
theoretically under the assumption of homoscedasticity, independent noise, and Gaussian
distribution. As shown by [48] using simulations in a Gaussian homoscedastic indepen-
dent segmentation model, mBIC is much more sensitive to the distribution assumption
than the other criteria. Among the other three criteria, Lav shows a broader distribution
in K, which reflects the greater instability of this selection criterion (as was already seen
in the simulations). This criterion selects very few cases with no change point compared to
BM1 and BM2 (for segfunc, there are 6, 22, and 13 cases, for Lav, BM1, and BM2, respec-
tively). In the case of BM1, many of these cases correspond to the situation where there
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are multiple maximum dimension jumps (16 out of 22, with segfunc). The mean and total
numbers of change points are also larger with Lav than with the two BM criteria, with BM2
having slightly larger numbers than BM1.

Among the three variants, the mean and the total number of change points for Lav,
BM1, and BM2 are larger for segfunc compared to segonly and seghomofunc. The smaller
number of change points for segonly can be explained by the fact that, on average, the cost
of including more change points to fit the periodic bias in the signal is too high (although
this can happen in some cases, as in the introductory example of Figure 1). In the case
of seghomofunc, the estimated noise variance is not representative of the actual noise, which
is in general changing from one month to another. It appears that the estimated variance
leads to a smaller number of change points than in the case of segfunc. Stated in another
way, the segfunc method detects more change points thanks to the use of a more realistic
model, i.e., this method is able to detect smaller changes in the mean. Another argument
for this explanation is that the variance estimated with seghomofunc is, in general, larger
than the mean variance estimated with segfunc. However, we know from the simula-
tion study that the segmentation generally underestimates the number of change points
when the noise is large, i.e., in this case, seghomofunc would underestimate the number
of change points.

Figure 4. Histograms of the number of change points detected for three variants of the method,
(a) segfunc, (b) segonly, and (c) seghomofunc, and four different penalty criteria (mBIC, Lav, BM1,
and BM2), before the screening. The numbers given in the plots are the mean, minimum, and
maximum number of change points detected per station, and N is the total number of change points.

Table 1 reports additional statistics, before and after screening, which are useful to
assess the performance of the different criteria and methods. First, we note that BM1 has
the smallest number of detections and outliers, and the largest percentage of validations,
both before and after screening, among all four criteria. These are the most important
features expected from the segmentation method and therefore make this selection crite-
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rion the preferred one, although the performance of BM2 and Lav is close, mainly after
the screening. If we consider only the percentage of validation, the seghomofunc variant
has slightly better performance than segfunc, but the price of this small improvement is
a reduction in the total number of detections of around 20% for BM1 and BM2 and 30%
for Lav after screening. Moreover, the total number of outliers with seghomofunc is larger
than with segfunc by 10 to 25% for BM1, BM2, and Lav, due to the mis-modeling of the
variance. In some cases, the number of detections is also larger with this variant (up to 19,
compared to 13 with segfunc, as reported in Figure 4). In Section 3.3 below, we show a few
examples of such cases.

Table 1. Comparison of segmentation results for three variants of the method and four model selection
criteria, before and after the outlier screening. The columns report the total number of detected
change points, outliers, and validations with respect to the metadata (number and percentage).

Before Screening After Screening

Detections Outliers Validations Detections Validations

Variant (a) segfunc

mBIC 3251 2714 415 13% 1270 263 21%

Lav 474 194 108 23% 341 102 30%

BM1 335 70 93 28% 292 93 32%

BM2 435 113 107 25% 370 105 28%

Variant (b) segonly

mBIC 3367 2123 538 16% 1865 393 21%

Lav 350 54 87 25% 316 85 27%

BM1 269 28 76 28% 253 74 29%

BM2 414 66 98 24% 378 94 25%

Variant (c) seghomofunc

mBIC 2283 1941 278 12% 678 180 27%

Lav 415 212 86 21% 249 75 30%

BM1 287 75 86 30% 242 83 34%

BM2 387 142 101 26% 295 96 33%

Table 2 compares the distance of detected change points from the documented changes,
before and after screening. The median distance is, in all cases, smaller for BM1. The disper-
sion, measured by the inter-quartile range (iqr), is the smallest either for BM1 or BM2. Af-
ter screening, the best performance in terms of median and iqr is found with seghomofunc,
but since the number of detections is significantly smaller than with segfunc, this result
may be misleading. The performance of segfunc with BM1 can be established to 150 days
based on the median distance, with an iqr of 358 days. Given that the metadata may be
incomplete and that the noise variance and functional in these data are relatively large (see
Figure 5), this performance is satisfying. Regarding the incompleteness of the metadata, we
noticed a special case (station JOZE) where no equipment was reported between August
1993 and May 2009, which seems rather suspicious (i.e., some changes may not have been
reported). In this case, we found an extreme distance of 4615 days with all variants and
criteria. For all other stations, the largest distance was smaller than 1500 days.
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Table 2. Comparison of mean and inter-quartile range (iqr) of distance of detected change points from
known changes (from the metadata), for three variants and four model selection criteria. Distance
unit in days.

Before Screening After Screening

Median iqr Median iqr

Variant (a) segfonc

mBIC 221 430 205 399

Lav 190 390 149 358

BM1 168 361 150 358

BM2 171 352 158 337

Variant (b) segonly

mBIC 219 414 224 417

Lav 183 418 175 425

BM1 163 341 157 337

BM2 193 348 188 350

Variant (c) seghomofunc

mBIC 225 423 178 376

Lav 190 370 155 340

BM1 129 320 132 336

BM2 153 354 138 333

Figure 5 presents additional characteristics of the time series and detected change
points in the case of segfunc and BM1. Figure 5a shows that the yearly mean standard de-
viation of the noise ranges between 0 and 2 kg m−2, with a mean value over the 120 stations
of 0.84 kg m−2 and a range (seasonal excursion) of 0.63 kg m−2 on average, which reflects
the importance of modeling the heterogeneous variance. Figure 5b presents a measure
of the magnitude of the periodic bias with an average value of 0.33 kg m−2. It is clear that
the periodic bias is not negligible and that it is important to model it. Figure 5c shows that
the distribution of offsets (changes in mean) is nearly symmetrical, with a mean absolute
value of 1.27 kg m−2, which is relatively large. The dip centered on zero reflects the fact that
the smaller offsets are more difficult to detect because of their small signal-to-noise (SNR)
ratio. The most frequently detected offsets are found around +/− 0.5 kg m−2. The larger
offsets (up to +/− 10 kg m−2) are due to outliers (see, e.g., Figure 3). Figure 5d shows
the distribution of SNRt, computed as the absolute value of offset divided by the standard
deviation of noise. It is peaking at 0.6 and the larger values (up to 10) correspond again
to outliers. The mean SNRt of 1.55 indicates that this segmentation method has a good
efficiency of detection.



Remote Sens. 2022, 14, 3379 13 of 22

Figure 5. Segmentation results for the segfunc method with penalty criterion BM1. (a) Number
of stations binned as a function of the noise; the white bars show the mean over the 12 monthly values
(square root of the estimated noise variance) and the gray bars show the annual variations (maximum–
minimum of the 12 monthly values); (b) Number of stations binned as a function of the estimated
period bias function (standard deviation of the time variations of the bias function); (c) Distribution
of mean variations (offsets) around the detected change points; (d) Distribution of SNRt of detected
change points.

3.3. Examples of Special Cases

In this section, we analyze in more detail the results for a few stations, but we con-
sider only the results with the BM1 penalty criterion. With the segonly method, there
are actually 66 stations which have the same number of detections as method segfunc.
Although, in general, the change points are located at the same positions, this is not always
the case. For 18 stations, variant segonly detects more change points, and for 36 stations, it
detects fewer than segfunc. Station POL2 is an example of the former category and station
STJO an example of the latter. DUBO is an example where the same number is detected
with both variants, but the change points are not located at the same positions. With vari-
ant seghomofunc, the number of stations with equal, more, and fewer detections than
segfunc is 57, 24, and 39, respectively. Examples are EBRE, MCM4, and POL2, respectively.
The results for four of these stations are illustrated in Figure 6 and are discussed thereafter.

• In the case of POL2, variants segfunc, segonly, and seghomofunc detect 3, 12, and
1 change point(s), respectively. The signal shows a strong periodic variation, which is
well fitted with segfunc and seghomofunc but is erroneously captured by the segmen-
tation with segonly. Variant segfunc has one validated change point (23 February
2008), while segonly has no validation, although it detects 12 change points. Variant
seghomofunc detects only one change point, which is located 72 days from the nearest
known change point and is thus not validated, but it coincides with one of the three
detections found by segfunc. The detection of this change point is made difficult
because it is located in a month with strong noise.
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Figure 6. Examples of results obtained with three methods, segfunc (left), segonly (middle), and
seghomofunc (right), on the time series of four GNSS stations: POL2, STJO, DUBO, and MCM4 (from
top to bottom). The content of the plots is similar to Figure 3. The text inserted at the top left of the
plots reports the mean and range (maximum–minimum) of the noise (square root of the estimated
noise variance) and the standard deviation and range (maximum–minimum) of the periodic bias
as a function of time.

• In the case of STJO, variants segfunc and seghomofunc detect five and four change
points, respectively, with two similar validated change points (at 20 July 1999 and 18
April 2003) and one cluster of two outliers each. The two clusters are not at the same
positions, but both are associated with a significant change in mean before/after
and their outliers are thus replaced with one single change point at mid-range by
the screening procedure. Variant segonly gives no detection in this case. This is due
to the ’Big Jump’ heuristic, as discussed in the section above.

• In the case of DUBO, variants segfunc and segonly detect two change points at almost
the same position. Both are located close to known changes and are validated with
segfunc, but only one is validated with segonly. Variant seghomofunc has two clus-
ters of two outliers and no validation. Both clusters are associated with significant
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changes in mean before/after and thus two change points remain after screening.
The second one is close to a change point detected by the other variants.

• Finally, for MCM4, the signal has very marked inhomogeneities in the form of sev-
eral abrupt changes in the mean but also large oscillations between 2000 and 2005.
The abrupt changes are well captured by segfunc, which detects five change points,
among which four are validated. The non-stationary oscillations are only partly mod-
eled by the periodic function. This is a special case where the functional model does
not well capture the full signal. This result advocates for a future improvement of the
modeling of the functional part. Variant segonly works quite well too and leads to
almost the same detections as segfunc, but only two change points are validated. Vari-
ant seghomofunc, on the other hand, significantly overestimates the number of change
points in order to fit the non-stationary oscillations. It also contains several outliers.
This variant has six validated change points, with two additional ones compared to
segfunc, but this may be by chance because the total number of change points is
quite large.

3.4. Semi-Automatic Selection of Change Points

We have seen above that three of the penalty criteria (BM1, BM2, and Lav) used
with the segfunc method behave well, in the sense that they select a reasonable number
of change points and achieve a fairly good validation rate with respect to the GNSS
metadata (around 30%). However, to make the final selection, it is necessary to use
a decision rule, which can be either automatic or semi-automatic. We start with the semi-
automatic approach, in which we use our expertise to select the ‘best’ segmentation among
the solutions proposed by the three criteria. This work is done station by station, and
consists of inspecting first, visually, the monthly time series with the known GNSS metadata
superposed to derive a first guess of the possible change point dates. These dates are then
compared to the results from the three criteria and the closest solution is accepted partly
or totally. In this selection, priority is given to the change points close to known changes
composed of the GNSS metadata extracted from the IGS site-log files, as well as daily
quality check information produced with TEQC software (a software program widely used
for the translating, editing, and quality checking of raw GNSS measurements [49]). When
the choice is difficult, higher priority is also given to the solution with the smallest number
of change points. For each station, the change points selected by each of the three criteria
are either rejected or accepted and a corresponding flag is set. In case a change point is
accepted, its date can be either set to the date of the nearest metadata, or to a better one
than the nearest one (e.g., an antenna change instead of a processing change), or kept
as the detected date with the flag ’undocumented’. Table A1 lists the final results for all
stations with accepted change points (91 out of 120 stations, i.e., based on our manual
selection, 29 stations have no change point).

Table 3 summarizes the results from the manual validation. It can be seen that a larger
number of change points have been accepted with the Lav criterion (175 out of 187),
although the percentage of accepted change points is slightly larger for BM1, while both
the number and percentage are smaller for BM2. Based on this result, BM1 and Lav appear
to be more adapted. The numbers of validations with respect to the IGS metadata and TEQC
results are quite similar among the criteria, demonstrating that the selection process was
performed consistently among the three criteria. It is also noteworthy that the validation
rate of the accepted change points significantly increases compared to the results before and
after the screening. The validation percentage reaches almost 59% based on IGS metadata
only and 62% when TEQC results are included.
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Table 3. The number of change points before and after screening from method segfunc, and the num-
ber of change points accepted by manual decision and validated by GNSS metadata (either with
IGS metadata only or with IGS metadata plus TEQC results, last column). The percentage of ac-
cepted and validated change points is computed with respect to the number after screening and
accepted, respectively.

Before After Accepted Validated (Metadata) Validated (+TEQC)

BM1 335 292 168 (57%) 99 (58.9%) 105 (62.5%)
BM2 435 370 166 (45%) 99 (59.6%) 105 (63.3%)
Lav 474 341 175 (51%) 103 (58.9%) 109 (62.3%)
total 187 110 (58.8%) 116 (62.0%)

The results from this semi-automatic approach were analyzed in order to check if
simple rules can be derived that could be used in a fully automatic selection procedure.
Therefore, we address the following questions:

1. Is there any one criterion that performs well and could be used systematically?
2. Is the solution with the smallest number of change points a better choice?
3. Is the solution selected by more than one criterion a better choice?

Question 1 was already partly answered above, with BM1 showing a higher percentage
of acceptance. In addition, we also checked how many times each of the criteria was
accepted totally (i.e., all the change points were accepted). Again, BM1 achieved the highest
score, with 62%, followed by Lav with 58% and BM2 with 42%. Not only BM1 does
perform better, but its success rate reaches 90% (168 change points accepted out of 187).
Thus, we conclude that if one wishes to chose one specific criterion, it should be BM1.
Regarding question 2, we found that with BM1, the solution with the smallest number
of change points is adopted in 60% of the cases, compared to 57% for Lav, and 38% for BM2.
These results reflect the fact that there are a number of cases where only a few or none
of the detected change points are accepted. Regarding question 3, the fraction of cases
when two or three criteria are consistent, after the screening, ranges between 52% (BM1
and BM2 consistent) and 63% (BM1 and Lav consistent). The special case when all three
criteria are consistent and accepted amounts to 58%. Thus, consistency between the three
criteria is not a sufficient condition for accepting all the detected change points. It thus
emerges that neither the solution with the smallest number of change points, nor the one
when all three criteria are consistent, is a sufficiently good option for a fully automatic
selection. Moreover, choosing the best criterion, BM1, also only achieves a validation
rate of 62%. We recommend thus to use the semi-automatic validation method based
on the station-by-station inspection of the results from the three criteria, as described above.

4. Discussion and Conclusions

This paper described an extension of the segmentation method developed by [8]
(segonly), which is dedicated to detecting abrupt changes in the mean in the presence of a
variance changing on known, fixed, intervals. The new method, called segfunc, includes
a function f representing a time-varying bias in the data (in the first instance, a periodic
bias is modeled). It implements an iterative procedure to estimate sequentially the function
by a weighted least-squares regression and the segmentation parameters (position and
amplitude of change points) by means of a Dynamic Programming algorithm. Both methods
have been tested and compared in a simulation framework (see the Supplemental Material).
They performed similarly when no periodic bias was simulated. However, in the presence
of a periodic bias, segonly had a tendency to over-segment the time series, in order to fit
the bias with changes in the mean. A third version of the method, called seghomofunc,
which implements the bias function but assumes a homogeneous variance, was also tested
with the real data.

All the methods have been applied to real data from a network of 120 global GNSS
stations with observations spanning a 16-year period. The GNSS IWV data were beforehand
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differenced with respect to ERA-Interim reanalysis data to remove the climatic signal.
As the correction is not perfect, a residual periodic bias and a monthly varying variance can
be present in the IWV differences. It is important that these characteristics are well taken
into account in the segmentation method. Note that some preliminary work with the more
recent ECMWF reanalysis, ERA5 Hersbach et al. [50], showed similar bias and variance
features and the segmentation results with ERA5 were not quite different. The GNSS station
history is well documented and was used for the validation of the detected change points.
All three methods achieved very similar hit rates, around 32% after screening. However,
segonly and seghomofunc deviated strongly from segfunc in the presence of a significant
periodic bias. In a few cases, it was observed that the segmentation captures the periodic
bias, leading these methods to detect many false change points. However, in general, both
methods rather underestimate the number of change points (often selecting no change
point at all) because the cost of adjusting the signal would require too many change points.
These results demonstrate the superior performance of the proposed segfunc method.

One critical feature in penalized maximum likelihood methods is the choice of the
penalty criterion. In this work, we used two versions of the criterion proposed by Birgé
and Massart [40], the modified BIC (mBIC) derived by Zhang and Siegmund [36], and
the criterion proposed by Lavielle [35]. From the simulation study, Lavielle’s criterion
appeared more unstable, with large dispersion in the number of detected change points,
compared to the other criteria, which were more conservative, with an underestimation
of the number of change points in the presence of large noise. These features were also
observed with the real data, with a tendency of all criteria to detect change points preferably
in the months with smaller variance. A notable difference between the simulations and real
data was found with mBIC, which strongly over-segmented the real data. It is known that
mBIC is more sensitive than the other criteria to the Gaussian distribution assumption [48].
Other criteria, such as, e.g., the Minimum Description Length (MDL) [51], were used
by some authors in the specific climate context [19,31]. According to Ardia et al. [52],
the MDL criterion can be seen as a Bayesian criterion with an appropriate prior distribution
for change point models. The obtained MDL-based penalties have thus essentially the same
properties as the mBIC and were not considered in our framework.

Another specific feature found with all the methods tested is the occurrence of clusters
of change points. We attributed this feature to noise spikes (outlying observations) and
applied a post-processing step to the estimated change points to screen out those change
points that did not show a significant change in the means before and after the clusters.
This behavior was also reported by [47] with the MDL penalty applied to daily temperature
data. Another option to reduce the influence of these outliers would be to apply a stronger
screening on the IWV differences, before running the segmentation, but with the drawback
of introducing more gaps in the time series. This option was thus not considered here.

The final selection was made by a semi-automatic validation procedure in which
the change points detected by the three penalty criteria that performed best (BM1, BM2,
and Lavielle) with the segfunc method were checked manually. More than 50% of the
detected change points were accepted, among which more than 60% could be explained by
the metadata. In the end, a total of 187 change points were selected for the 120 stations of the
IGS repro1 GNSS data set, which corresponds to a mean number of change points per station
of 1.62 over a 16-year period, i.e., approximately one change point every 10 years. The final
list of change points is provided in Appendix A. The next step in the homogenization
procedure will be the correction of the GNSS series for the selected change points following,
e.g., the methodology of [9].
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Future improvements of the proposed segmentation method would be: (i) to consider
other models for the function f since it was found that, in some cases, such as at station
MCM4, a simple periodic function may be insufficient; and (ii) to take the time dependence
(autocorrelation) in the data into account. The first point can be handled by an estimation
of the function f using a non-parametric approach. The second point can be developed
by following the approach of Chakar et al. [53], who proposed to model the temporal
correlation using an autoregressive process of order 1 in a mean segmentation Gaussian
process. These authors also proposed a two-stage whitening inference strategy that allows
the use of the DP algorithm and find the exact maximum likelihood solution.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.
com/xxx/s1: Assessment of the performance of the GNSSseg method by numerical simulations.
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Appendix A. Segmentation Results for 120 GNSS Stations

The table below lists the change points selected manually from the BM1, BM2, and
Lav solutions derived with the method segfunc. There are 187 change points selected
in 91 out of the 120 stations. Flag key: R, A, D = receiver, antenna, radome change
(from GNSS metadata provided in the IGS site-log files); P = processing change (from
the IGS repro1 tropospheric solution provided by JPL/NASA); T = change in multipath
or number of observations (derived with TEQC software on the RINEX observation files),
G = change in GNSS formal error (from the IGS repro1 tropospheric solution); U = un-
known; ! = undetected known change; ? = undetected unknown change; C = crenel (two
consecutive changes in mean of opposite signs); L = long crenel (same as C but separated
by a longer period of time, typically several years).

Table A1. List of change points selected manually from the BM1, BM2, and Lav solutions of the
segfunc method with the help of GNSS metadata (see text for details).

Name Date Flag Name Date Flag Name Date Flag

algo 12 December 2008 RC gode 06 August 1998 U mcm4 18 May 2006 R

algo 26 March 2009 PC gope 26 April 1996 U mcm4 31 March 2008 P

alic 31 July 1999 RC gope 24 July 2000 RADGT mcm4 26 March 2009 P

alic 20 April 2006 UC gope 01 January 2002 UGTL mdo1 24 December 2001 UC

ankr 24 November 2000 RAL gope 18 January 2005 UL mdo1 18 April 2004 UC

ankr 06 May 2008 RADGTL guam 26 April 2000 RGT medi 27 March 1999 UC

areq 28 January 2000 RC guam 19 September 2004 U medi 27 June 2004 UC

areq 23 April 2001 UC hers 01 January 1998 RAGTC medi 14 May 2006 UC

www.mdpi.com/xxx/s1
www.mdpi.com/xxx/s1
https://doi.org/10.14768/06337394-73a9-407c-9997-0e380dac5591
https://doi.org/10.14768/06337394-73a9-407c-9997-0e380dac5591
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim


Remote Sens. 2022, 14, 3379 19 of 22

Table A1. Cont.

Name Date Flag Name Date Flag Name Date Flag

areq 20 August 2004 U hers 10 September 2000 UC monp 22 March 2000 AD

azu1 12 February 2008 RC hob2 16 August 1999 RGTL nlib 11 August 1998 U

azu1 03 October 2008 RC hob2 02 April 2002 RL nlib 12 March 2003 U

azu1 20 July 2010 R hob2 04 October 2005 RTL nlib 15 November 2009 U

blyt 14 May 1998 R holb 02 January 2002 RGTC onsa 02 February 1999 RAD

bor1 24 June 2003 UT holb 15 November 2005 UC penc 22 January 2001 UC

bor1 26 March 2009 P holb 06 March 2009 RTC penc 08 December 2003 RTC

braz 05 November 2005 T holp 19 November 1997 R pert 12 June 1996 R

brmu 01 October 1997 R hrao 26 April 2000 RGTC pert 06 June 2001 RA

brus 09 June 2006 UC hrao 02 August 2004 UC pert 18 August 2006 U

brus 26 October 2008 UC hrao 23 February 2006 AGT pin1 28 February 2001 AD

cagl 11 July 2001 RAGT iisc 02 May 2004 UC pots 15 January 1996 R

cas1 27 January 1996 RC iisc 22 July 2006 UC pots 19 August 1999 RGT

cas1 27 November 1997 UC irkt 17 April 1998 UL pots 15 April 2009 A

cas1 05 February 2000 RT irkt 17 June 2003 UL quin 13 November 2002 RA

cas1 31 March 2008 P karr 22 August 2006 U reyk 13 June 2003 A

cas1 02 December 2008 RPT kely 14 September 2001 RADL reyk 31 March 2008 P

ccjm 24 February 2001 RA kely 11 November 2006 UL reyk 26 March 2009 P

cedu 10 September 1997 RA kely 17 December 2009 UL rock 10 June 1999 RT

cfag 06 May 1997 UL kerg 31 March 1999 RA sant 02 November 1999 RC

cfag 21 January 2008 UL kerg 14 November 2002 UGT sant 14 December 2000 RC

chat 28 March 2002 RUC kiru 01 December 2004 U shao 08 February 2003 U

chat 31 March 2008 PC kit3 31 March 2008 P sio3 12 April 2000 AD

chil 30 May 1995 AD kokb 23 July 1999 R sni1 19 December 2000 AD

clar 12 September 1996 R kokb 21 July 2001 U stjo 23 January 1998 UC

coco 04 September 1998 RGT kokb 06 December 2006 U stjo 29 July 1999 RC

coco 09 August 2003 UL kosg 07 December 1996 U svtl 23 October 2008 RADT

coco 13 January 2007 UL kosg 28 February 1999 R syog 08 February 2000 RT

coso 09 November 2000 U kosg 27 November 2000 !RGT syog 25 January 2007 RGT

crfp 12 November 1997 RC kosg 29 September 2009 U syog 31 March 2008 P

crfp 27 May 2002 UC kour 30 July 1999 R syog 26 March 2009 P

crfp 07 September 2005 UC kour 21 November 2000 U tow2 29 August 1998 U

cro1 30 September 1999 R kour 30 September 2004 R tow2 01 November 2003 U

cro1 04 August 2005 RAD kour 13 December 2009 U tow2 14 February 2006 RT

darw 21 June 1998 UT lama 06 October 2000 AD trak 04 August 1995 AD

darw 23 December 2003 UC lbch 01 September 1998 U trak 05 February 2004 U

darw 03 November 2005 UC lbch 05 February 2004 U uclu 16 May 2003 UC

dav1 14 March 2002 UC long 04 April 1995 RA uclu 04 May 2007 RACT

dav1 27 January 2003 UC long 05 September 1996 R usud 05 October 2000 RT

dav1 31 March 2008 P long 25 March 2001 U vill 18 July 2000 R

dav1 31 January 2009 P long 02 January 2007 U vill 03 December 2004 R

dav1 04 May 2010 R lpgs 02 May 2003 U vndp 17 March 1996 R

dgar 15 November 2006 U lpgs 30 August 2006 ? wes2 05 February 1998 R
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Table A1. Cont.

Name Date Flag Name Date Flag Name Date Flag

dhlg 23 December 1999 R mac1 04 January 2001 R wes2 26 July 2000 RA

drao 08 October 1999 RGT madr 18 August 1999 R wes2 29 June 2001 RA

dubo 04 October 1999 RAD madr 07 November 2004 U wlsn 18 August 1997 U

dubo 31 March 2008 P mas1 14 August 1999 R wlsn 11 January 2000 U

ebre 23 February 1999 U mas1 30 March 2006 U wlsn 29 March 2006 U

ebre 16 November 2005 RT mate 25 September 2001 R wslr 29 March 2000 RAD

fair 03 June 1999 RTC maw1 07 November 1997 U wtzr 30 June 2009 R

fair 15 April 2000 RTC maw1 22 August 1999 R wuhn 08 June 2000 RAD

fale 04 September 1998 UC maw1 07 December 2004 RT wuhn 18 September 2006 U

fale 01 June 2001 UC maw1 04 May 2010 R yell 22 August 1996 A

flin 21 September 1999 AD mcm4 07 September 1999 R

flin 03 January 2008 P mcm4 13 November 2003 UGT
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