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Abstract: The 2020 ‘Elucidating the role of clouds-circulation coupling in climate-Ocean-Atmosphere’
(EUREC4A-OA) and the ‘Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign’
(ATOMIC) campaigns focused on improving our understanding of the interaction between clouds,
convection and circulation and their function in our changing climate. The campaign utilized many
data collection technologies, some of which are relatively new. In this study, we used saildrone
uncrewed surface vehicles, one of the newer cutting edge technologies available for marine data
collection, to validate Level 2 and Level 3 Soil Moisture Active Passive (SMAP) satellite and Hy-
brid Coordinate Ocean Model (HYCOM) sea surface salinity (SSS) products in the Western Tropical
Atlantic. The saildrones observed fine-scale salinity variability not present in the lower-spatial resolu-
tion satellite and model products. In regions that lacked significant small-scale salinity variability, the
satellite and model salinities performed well. However, SMAP Remote Sensing Systems (RSS) 70 km
generally outperformed its counterparts outside of areas with submesoscale SSS variation, whereas
RSS 40 km performed better within freshening events such as a fresh tongue. HYCOM failed to detect
the fresh tongue. These results will allow researchers to make informed decisions regarding the most
ideal product and its drawbacks for their applications in this region and aid in the improvement of
mesoscale and submesoscale SSS products, which can lead to the refinement of numerical weather
prediction (NWP) and climate models.

Keywords: saildrone; salinity; Soil Moisture Active Passive (SMAP); Hybrid Coordinate Ocean
Model (HYCOM); EUREC4A; ATOMIC; physical oceanography; remote sensing; air-sea interactions

1. Introduction

Sea surface salinity (SSS) influences ocean-atmosphere interactions which control
weather and climate patterns. Understanding ocean-atmosphere interactions in the western
tropical Atlantic is essential to the development of new parameterizations schemes for
numerical weather prediction (NWP) and climate models [1] that support forecasting over
this region. The need to improve weather and climate prediction models over this region is
driven by the fact that many Caribbean Small Island Developing States (SIDS) located in
the region heavily utilize NWPs to support severe weather forecasting as part of their multi-
hazard early warning system and climate models to drive their climate change adaptation
policies and programmes.

Studies have shown that salinity stratification as a result of riverine outflows from
large South American river systems, in particular the Amazon River system, that make
their way into the Northern Atlantic Ocean, reduce upper ocean cooling during hurricane
passage supporting hurricane intensification [2,3]. SSS modulates both vertical mixing and
Sea Surface Temperature (SST) [1]. The Barrier Layer (BL) produced as a result of freshwater
influxes may produce biases in SST by controlling vertical mixing and entrainment of cooler
water into the Ocean Mixed Layer (OML) [4]. The freshwater fluxes described also carry
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nutrients and organic matter which can produce ecological challenges that impact fisheries,
marine biodiversity and tourism [5].

Observations of ocean salinity and density provide information on ocean dynamics
especially in areas with complex ocean processes such as the North Brazil Current (NBC)
region [6–8]. Salinity variations provide insight into ocean circulation and air sea fluxes
which in turn impact the atmospheric boundary layer, resulting in changes to the Earth’s
climate [9]. Salinity is also used for monitoring the movements of water masses along
with vertical exchange of water between surface and subsurface layers [10]. Historically,
in situ measurements of salinity and temperature were taken from ships using bucket
and thermosalinograph (TSG) measurements and were sparse on a global scale [11]. This
improved over time with the implementation of the Argo Float programme, which included
in situ observations of salinity [12]. This global network, consisting of autonomous Argo
Profiling floats produces 3◦ spatial resolution salinity data at 10-day intervals. Although
useful for many applications, these spatial and temporal resolutions are too coarse to
provide useful salinity observations at the mesoscale level [13].

In 2010, the first global satellite ocean salinity measurements became available from
the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission,
which retrieved salinity at a spatial resolution of 40 km and a 23-day repeat cycle. In 2011,
National Aeronautics and Space Administration’s (NASA) Aquarius mission began provid-
ing salinity at a spatial resolution of 100 km and a 7-day repeat cycle [14]. This was followed
by NASA’s Soil Moisture Active Passive (SMAP) mission in 2015, which has a resolution
of 40 km and a repeat cycle of 8 days [15]. Although space-based platforms improved the
acquisition of salinity data, there are still inaccuracies when making measurements near to
the coast and at high latitudes, due to limitations of the L-band microwave radiometers
used to measure salinity [16].

Ocean modelling provides another approach for estimating global ocean salinity.
Ocean modelling commenced in the 1960s with the development of simple ocean circulation
models [17]. These older models were incapable of simulating ocean processes at spatial
resolutions finer than 100 km and many typically had temporal resolutions of approximately
three months. However, improvements over the years have led to the development of
models capable of simulating submesoscale ocean behavior. The accuracy of an ocean
simulation model depends on how well the model represents ocean dynamics, the quantity
and quality of input data as well as its ability to simulate air sea interactions among other
things [18].

The HYbrid Coordinate Ocean Model (HYCOM) (https://hycom.org, accessed on
17 September 2021), used in this study, assimilates Argo float and Conductivity, Tempera-
ture and Depth (CTD) data for its salinity estimates. HYCOM has exhibited large errors near
river discharge areas in the tropics and in boundary currents such as the Brazil-Mailvinas
confluence and the Gulf Stream [19]. These errors may make the model a less than ideal
choice for estimating SSS values in tropical discharge regions. Saildrone data can provide
vital information regarding the extent of these errors in these locations and aid in the
improvement of model output. Contemporary, high resolution in situ observations by
saildrone uncrewed vehicles can resolve mesoscale and submesoscale variability observed
in coastal regions and remain accurate at high latitudes, providing valuable data for process
studies and validation of the satellite measurements [20].

The ‘Elucidating the role of clouds- circulation coupling in climate-Ocean-Atmosphere
component’ (EUREC4A-OA) and the ‘Atlantic Tradewind Ocean-Atmosphere Mesoscale
Interaction Campaign’ (ATOMIC, US) campaigns resulted in an unmatched observing effort
in the western tropical Atlantic. In this campaign, three autonomous saildrone vehicles
collected data over a 45-day period in regions east of Barbados (Figure 1). SSS collected by
the saildrones during the campaign are used to assess the validity of SSS data retrieved
from satellites and HYCOM products. Satellite SSS products as well as HYCOM model
outputs are used extensively in areas that are lacking in situ measurements such as the
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region where the North Brazil Current occurs. Furthermore, HYCOM outputs are used as
reference salinity fields for the calibration in SMAP products [21,22].
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Figure 1. The region of EUREC4A-OA/ATOMIC study. Saildrones focused on the region with
submesoscale variability, North Brazil Current (NBC) region (located in the red box), where the
NBC rings (red circle) can result in strong fronts and ocean barrier layers. The blue arrow shows the
direction of water transport via the NBC towards the Subtropical Gyre.

This study validates SMAP SSS products at both 70 km and 40 km resolution as well
as the HYCOM estimated SSS in the Western Tropical Atlantic. The validation is carried out
using saildrone SSS data collected during the 45-day EUREC4A-OA/ATOMIC campaign.
The paper is presented in the following manner. Section 2 introduces the EUREC4A
campaign and the marine data collection platforms, the SMAP products, HYCOM and
their respective datasets collocation and validation methodologies. Section 3 presents the
results of the comparison between the satellite products, HYCOM, and saildrones datasets.
Additionally, Section 3 highlights the investigation of a fresh tongue encountered during
the campaign. Finally, the results are discussed in Section 4.

2. Data and Methods

2.1. EUREC4A Campaign

The EUREC4A campaign was a cloud- and climate-focused undertaking, seeking to
measure microphysical properties of trade-wind cumuli as a function of the large-scale
environment and provide benchmark data for future satellite and modelling efforts [23,24].
Initially, a Caribbean-French-German partnership, the EUREC4A campaign, operated
eastward of the island of Barbados in the lower Atlantic trades (Figure 2) and incorporated
the Barbados Cloud Observatory (BCO), along with aircraft, research vessels, buoys and
drifters. Surface level observations carried out by the research vessel Meteor and the
BCO would serve to complement the airborne measurements within the ‘EUREC4A-Circle’
(Study area A east of Barbados where the HALO (High Altitude and Long Range Research
Aircraft) would circle in range of the land-based radar PoldiRad (Polarization Diversity
Doppler Radar), Figure 2) characterizing the atmospheric environment from the surface to
provide full measurement coverage of the atmospheric column.
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Figure 2. The EUREC4A study areas (A) located within the “EUREC4A-Circle”, (B) within the
‘Tradewind Alley” between the Northwest Tropical Atlantic Station (NTAS) and the Barbados Cloud
Observatory (BCO) and (C) the North Brazil Current region. The inset map shows the location of
the EUREC4A study area within the Atlantic Ocean. The background cloud field is taken from the
5 February 2020 MODIS-Terra overpass. Reprinted from Stevens et al., 2021 [23].

EUREC4A’s aim eventually expanded to include the examination of how air–sea inter-
action is influenced by mesoscale eddies, sub-mesoscale fronts and filaments in the vicinity
of the NBC [23]. Collaboration between the Ocean Atmosphere component of EUREC4A
(EUREC4A-OA) and the ATOMIC campaign led to the inclusion of three additional research
vessels (R/Vs): L’Atalante, Maria S. Merian and Ronald H. Brown. These vessels were
fitted with instrumentation to measure both the atmosphere and the upper kilometer of
the subsurface water column. Measurements from autonomous vehicles including ocean
gliders, drifters, floats and saildrones were used to supplement measurements directly
from the research vessels. More details of the motivations, the wide range of measure-
ment platforms and instrumentations involved in the EUREC4A campaign can be read at
Stevens et al. [23].

2.2. Saildrone

Saildrones are zero-emission, solar powered, wind propelled marine vehicles produced
by Saildrone Inc. with science-grade instrumentation. They have 12 sensors to measure
data at the air–sea interface (e.g., SSS, SST, air temperature, 3D winds) and can carry one
additional sensor on the keel (either an Acoustic Doppler Current Profiler (ADCP) or
scientific echo-sounders). A Global Positioning System (GPS) and an onboard computer
enables the vehicles to navigate following prescribed waypoints, while staying within
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a set corridor, taking winds and currents into consideration autonomously. Waypoints
can be dynamically updated as environmental conditions change or interesting features
develop. Vehicles are controlled and data transferred in near-real-time via two-way Iridium
satellite communications. Saildrones can travel approximately 100 km per day, depending
on wind speed, and can operate in remote regions where research vessels may be time-
and cost-prohibitive. During the EUREC4A-OA/ATOMIC cruise, each saildrone vehicle
measured salinity via the SeaBird-37-SMP-ODO Microcat and RBR CTD/ODO/Chl-A
instruments at 0.5 m depth for 12 s, each minute.

This study analyzed saildrone data from the three NASA-funded saildrones (SD1026,
SD1060 and SD1061) deployed during the EUREC4A-OA/ATOMIC campaign, which
operated during the period 17 January–2 March 2020 within the domain 7–13.5◦N and
48–60◦W (Figure 3).
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Figure 3. The tracks of the three NASA saildrones within the EUREC4A-OA study area. The start
(17 January 2020) and end (2 March 2020) points of each track are shown by a circle and diamond,
respectively. Bathymetry Data from The General Bathymetric Chart of the Oceans (GEBCO) (available
at https://download.gebco.net/ (accessed on 27 June 2022) is shown behind the saildrone tracks.

The saildrone data files collected at a 1 min temporal resolution over the duration of the
measurement period include platform telemetry and near-surface observational data (see
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ATOMIC, accessed on 30 April 2021).
The utilization of the saildrone platform represents a new and evolving trend in scientific
sampling campaigns in which the data collection platform and process are subcontracted
to Saildrone Inc. who is responsible for executing the experiment design and assuring the
quality of the data. Hence, it is important to independently assess the accuracy of the data
provided by the Saildrone operators.

https://download.gebco.net/
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ATOMIC


Remote Sens. 2022, 14, 3375 6 of 16

Preceding the EUREC4A-OA/ATOMIC campaign, saildrone-measured SSS data were
validated in polar latitudes during the Innovative Technology for Arctic Exploration (ITAE)
by Cokelet et al. [25] and in the tropics during the Salinity Process in the Upper-ocean
Regional Study 2 (SPURS-2) campaign in 2017 [26]. SSS for the saildrones during the polar
and tropical campaign had a root mean squared difference (RMSD) of 0.01 and 0.0075
practical salinity unit (psu), respectively.

Similar to our current study, SSS and SST data from saildrones were used to validate
SMAP satellite derived SSS and SST datasets during a 2018 Baja California campaign. Much
like the NBC region in the present study, the California current system is dominated by
submesoscale and mesoscale variability. Vazquez-Cuervo et al. [20] found that saildrone
SSS showed fresher biases compared to the SMAP products.

2.3. The Soil Moisture Active Passive (SMAP) Data

The SMAP mission is a polar orbiting, remote sensing observatory developed by the
NASA primarily for soil moisture mapping. SMAP uses an L-band radar and radiometer
with central frequencies of 1.26 GHz and 1.41 GHz, respectively. SMAP primarily detects
brightness temperature, which is then converted to soil moisture on land and SSS in the
ocean due to the L-band microwave’s sensitivity to salinity. SMAP data is independently
processed by the NASA Jet Propulsion Laboratory (JPL) and the Remote Sensing System
(RSS). Both data providers produce Level-2 (L2) data, which contain data from a single
orbit of the satellite (orbital data), and Level-3 (L3) data which are 8-day averages of SMAP
salinity data. This study uses SMAP JPL version 5, L2 and L3 data at a spatial resolution of
60 km from 17 January to 2 March 2020 and SMAP RSS version 4, L2 and L3 at two spatial
resolutions: 40 km, hereafter referred to as RSS40, and 70 km, hereafter referred to as RSS70
for the same time period.

The JPL and RSS data products use different retrieval algorithms to generate SSS
satellite data. Additional variations include corrections, flags, filters, masks as well as
approaches to error and uncertainty estimation. The JPL product includes a land correction
algorithm which uses a look up table and ‘land-near climatology’ to correct brightness
temperature. JPL produces a 60 km product and its algorithm retrieves SSS within 35 km
from the land wherever sea ice concentration values are less than 3% [27]. Version 4.0 of
SMAP RSS mitigates land intrusion using simulated Aquarius and SMAP observations.
RSS’s method allows retrievals within 30–40 km from land. RSS produces both a 40 and
70 km SSS product; however, salinity retrievals degrade within 500 km of land [22]. The
SSS 70 km product is often used as it is significantly less noisy than the 40 km data [22].

The JPL SSS product has been validated extensively and has shown good accuracy
in validations carried out by other studies [28–30]. Tang [31] validated the SMAP JPL L3
SSS product using in situ data obtained from Argo floats, moored buoys and TSG. The
results had a margin of error within 0.2 psu for the zonal band between 40◦N and 40◦S.
Bao [13] investigated the accuracy of three L3 salinity products including the SMAP RSS
and observed that SMAP RSS was positively biased in the tropics. Qin et al. [32] found
in their evaluation of RSS SSS that undetected precipitation and strong winds biases SSS
measurements. Fournier et al. [30] analyzed the performance of two satellite SSS products
(including SMAP RSS) and found that close to the Amazon River RSS SSS products not
only captured the full spatial extent of the plume during peak discharge consistently, but
also the salinity gradients [30].

2.4. Hybrid Coordinate Ocean Model (HYCOM)

HYCOM is an assimilated model which, through the three-dimensional variational
Navy Coupled Ocean Data Assimilation (NCODA) system, incorporates satellite observa-
tions as well as Argo float, CTD and Expendable Bathythermograph (XBT) measurements
to forecast ocean variables such as salinity, currents and temperature among others [33].
The U.S. Navy uses HYCOM on a daily basis as part of their Global Ocean Forecasting
System (GOFS) as does the National Oceanic and Atmospheric Administration (NOAA) at
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the National Centers for Environmental Prediction (NCEP) [33]. The HYCOM data used in
this study is from GOFS 3.1 and experiment 93.0, which has a 0.08◦ spatial resolution and a
3 h temporal resolution. In GOFS 3.1, SSS is initialised using climatology from the General-
ized Digital Environmental Model (GDEM4). In-model relaxation to GDEM4 climatology
occurs at locations where the model salinity values have a less than 0.5 psu difference from
climatology salinity values. This is intended to improve model SSS calculations at river
outflow areas [34].

NCODA runs on a regular basis at the Fleet Numerical Meteorology and Oceanog-
raphy Center (FNMOC) as well as at the Naval Oceanographic Office (NAVOCEANO)
and it supplies HYCOM with input parameters for SSS, SST and currents [19]. To do this,
ocean observations are compiled and put through specific quality control methods. The
quality-controlled data are then ingested by NCODA, which is run with data from the
previous HYCOM forecast. The updated NCODA output is then used to initialize the
final HYCOM simulation. HYCOM’s fine resolution accurately resolves mesoscale ocean
behavior and fast flowing western boundary currents [18]. These elements have made the
model one of the favored choices for researchers to examine freshwater fluxes and salinity
budgets [35] and to validate satellite salinity retrievals [14,21]. Due to the inability of Argo
floats (one of the model’s main sources of in situ data acquisition) to record measurements
at areas close to land, HYCOM may have an issue recognizing freshwater discharge in
these locations [21]. Overestimations of salinity by HYCOM in certain areas may also be
due to deficiencies in the climatological forcing of the model, specifically in its ability to
represent freshwater fluxes in its output [35,36].

2.5. Collocation and Validation Methodology

All (RSS70, RSS40, JPL and HYCOM) salinity datasets were collocated with saildrone
observations. Data collocations were made using Xarray’s interp method for multidimen-
sional interpolation of variables [37]. The Xarray nearest-neighbour interpolation routine
was used to match the locations and times of the saildrone product with the nearest location
and time available in the averaged model and satellite salinity products. Only collocations
within 24 h and 25 km were included, and the closest points in space were collocated before
the closest points in time.

For the SMAP datasets, the L2 orbital data were collocated with the saildrone data
using the Pyresample kd-tree resample_nearest method and SciPy spatial kd-tree method
for quick nearest-neighbour lookup [38,39]. The multiple saildrone data points that matched
with a unique SMAP observation were averaged to a single saildrone observation, providing
a single collocation matchup. To compare the HYCOM model and SMAP data to the
saildrone observations, the standard deviation of the difference (STD), the mean difference
and the Spearman correlation coefficient between observed (saildrone) and each of the
estimated (HYCOM, JPL, RSS40, and RSS70) salinity products were calculated. The L2
JPL and RSS datasets were preferred for statistical comparison to the saildrone data since
these datasets have minimal spatial and temporal averaging as compared to the L3 datasets.
Therefore, the analysis presented in the discussion uses the L2 datasets (Section 4).

3. Results
3.1. Accuracy of Saildrone Observations

The accuracy of salinity measurements by each of the three saildrones deployed was
assessed by comparing individual salinity sensor (SBE37 and RBR) measurements on board
each vehicle. For our analysis we use the SBE37 data as recommended by the ATOMIC
Cruise Report [40]. Table 1 provides statistical analysis for the duplicate sensors-mean
difference, standard deviation difference (STD) and root mean squared error (RSME). There
is a consistent small offset (~0.06 psu) between the means of the SBE37 and RBR data on
each vehicle that is attributed to a constant calibration offset. The standard deviations are
~0.002 psu, indicating that variability is consistently observed by both sensors. Additionally,
the root mean squared error (RMSE) values for each vehicle are less than 0.07, which
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indicates that the two sensors produced quite similar datasets. These results confirm the
consistency and accuracy of saildrone salinity data across sensors highlighting that salinity
data from calibrated saildrone salinity sensors are ideal for validating conventional remote
sensing techniques in tropical coastal regions.

Table 1. Mean difference, standard deviation difference (STD) and root mean squared error (RMSE)
between each saildrone’s SBE and RBR instruments used to retrieve salinity from the western Tropical
Atlantic, between 17 January–2 March 2020.

Vehicle SBE37-RBR Salinity (psu)

Mean STD RMSE Number of
Samples

1026 0.052 0.002 0.052 66,240
1060 0.057 0.002 0.058 66,240
1061 0.059 0.0004 0.061 66,240

3.2. Comparison to Satellite and Model Salinity

Figure 4 shows the temporal plots of salinity for each saildrone versus the three
satellite salinity datasets described earlier. The SMAP SSS values are represented as points
and the saildrone and HYCOM values are represented as lines. This is to account for and
represent the variations in time between the saildrone and SMAP measurements. L2 SMAP
data from the JPL, RSS70 and RSS40 were able to capture the main salinity features detected
by the saildrones. SSS from the saildrones showed 3 fresh tongues during the 45-day cruise.
These are characterized by a 1.5 psu decrease in salinity on 5 February, a 1 psu decline on
7 February and the most significant decline of 2 psu during 16–19 February (this is discussed
further in Section 3.4).
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Figure 4. Salinity time series from SBE37, JPL, RSS40 and RSS70 for (a) saildrone 1026, (b) saildrone
1060 and (c) saildrone 1061 from 20 January–3 March 2020.

The saildrone and remotely sensed data were in general agreement, with differences
that are not temporally dependent. Consistent with the earlier discussion, RSS40 displays
the greatest variability. All satellite SSS clearly measure the strong fresh tongue, but the
HYCOM model did not detect the fresh tongue. To further analyze the relative performance
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of the SMAP and HYCOM salinity products, statistical comparisons along the entire
saildrone track, for the duration of the cruise, are shown in Table 2.

Table 2. Mean difference and standard deviation difference (STD) for saildrone minus satellite and
HYCOM data, as well as Spearman correlation coefficient from saildrone and satellite/HYCOM
between 17 January and 2 March 2020.

Product 8-Day L3 Salinity Orbital L2 Salinity

Mean
(psu)

STD
(psu)

Spearman
Correlation

Number of
Samples

Mean
(psu)

STD
(psu)

Spearman
Correlation

Number of
Samples

1026

JPL −0.166 0.241 0.859 208 −0.113 0.460 0.631 160
RSS70 −0.273 0.270 0.812 206 −0.187 0.398 0.593 210
RSS40 −0.279 0.323 0.759 206 −0.188 0.658 0.432 210

HYCOM −0.127 0.520 0.560 208 −0.105 0.522 0.544 160

1060

JPL −0.173 0.257 0.835 222 −0.105 0.545 0.584 169
RSS70 −0.298 0.261 0.857 221 −0.210 0.388 0.672 212
RSS40 −0.298 0.312 0.791 221 −0.159 0.666 0.481 212

HYCOM −0.183 0.509 0.487 222 −0.172 0.528 0.475 169

1061

JPL −0.158 0.246 0.868 196 −0.012 0.449 0.662 160
RSS70 −0.273 0.261 0.836 194 −0.201 0.391 0.601 209
RSS40 −0.271 0.320 0.771 194 −0.198 0.664 0.411 209

HYCOM −0.131 0.534 0.541 196 −0.099 0.519 0.541 160

Table 2 provides the mean difference, standard deviation difference (STD) and the
Spearman correlation coefficient for JPL, RSS40, RSS70 and HYCOM SSS data as compared
to the SSS data from each saildrone. All repeat observations have been removed and
observed salinity data is from the SBE37 instrument on each saildrone. For both the 8-
day L3 Salinity and the Orbital L2 Salinity, the 3 h HYCOM product was collocated and
interpolated to the times and locations of each of these datasets. These collocated HYCOM
values are compared to their corresponding saildrone values to calculate the statistics
displayed in Table 2.

For each of the L2 and the L3 salinity SMAP datasets, the saildrone observations were
fresher than the satellites and model SSSs. The L3 data are consistently more saline than the
L2 data. This could be because the L3 dataset consisted of an average of high salinity data
points as compared to the individual L2 data points. Averaging in L3 products smooths a
transient fresh tongue event that may be present in only 1 or 2 days of the 8-day average.
However, in the individual data points in the L2 dataset, the fresh tongue would be more
prominently represented.

For the L2 values, the RSS40 dataset has the highest STD values overall, HYCOM had
the second highest STD values, followed by JPL and then RSS70. For the L3 STD values,
HYCOM had the highest STD, followed by the RSS40, then RSS70 and then the JPL. The
L3 STD values are smaller than the orbital L2 STD values, which is most likely due to the
reduced noise in the L3 dataset because of the inclusion of averaged data.

The Spearman correlation coefficients for the L3 data were higher and therefore more
closely correlated to the saildrone data than the orbital data, which suggests that the linear
variability in saildrone data is closely related to the linear variability in L3 data versus
orbital data. This is likely due to the reduced noise in the L3 dataset. For both datasets,
the RSS70 showed moderate positive correlation with saildrone 1060, whereas the JPL
showed the highest positive correlation to data from saildrones 1026 and 1061. For all three
saildrones, HYCOM had the second lowest correlation coefficient and RSS40 had the lowest
as it is a higher resolution and noisier dataset. The other variations in STD and Spearman
coefficient values will be discussed further in Section 4.

Figure 5 explores salinity dependence in the satellite retrievals. RSS70 (Figure 5a) has
the least spread of all the datasets above 35 psu indicating good agreement but appears
to be too salty in the fresh tongue as reflected by the preponderance of delta-SSS values
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less than 0. RSS40 (Figure 5c) data points are the most spread, which corresponds with
the high noise content of the dataset. Additionally, all datasets appear to show a negative
salinity bias which suggests that the model/satellite tends to overestimate salinity. The JPL
appears to have the smallest negative bias out of the satellite datasets, and it was found
that 56.8% of all JPL measurements for all three saildrones were overestimating SSS, as
compared to 73% of RSS70 measurements and 61.6% of RSS40 measurements.
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Figure 5. Sea surface salinity difference versus sea surface salinity between (a) RSS70, (b) JPL and
(c) RSS40 (orbital L2 no repeat data) and (d) HYCOM and the saildrone instrument SBE37 as recorded
by saildrones 1026, 1060 and 1061.

The HYCOM data (Figure 5d) is the least spread dataset of all, which is an indication of
the lack of noise in the data due to the model’s SSS relaxation The majority of the HYCOM
SSS values were recorded within 1 psu difference of the saildrone SSS except for a few
outliers which presumably were the values recorded within the fresh tongue. HYCOM SSS
appeared to be at maximum 2 psu greater than the saildrone SSS in this area. The linear
relationship between saildrone and HYCOM SSS implies that the model’s SSS relaxation to
GDEM4 climatology limits its salinity values to a certain range.

3.3. Spatial Visualization of Fresh Tongue by SMAP Products

Figure 6 shows the L3 salinity data centered on 17 February 2020 from the SMAP and
HYCOM products in the background. Overlaid are the salinity measurements recorded
by the saildrone between the 16–20 February 2020. The SMAP data in Figure 6 shows
less variability than the saildrone measurements, due in part to differences in spatial and
temporal resolution. The JPL product is smoothly varying with some potentially erroneous
values in several pixels directly adjacent to South America that could be due to issues with
the land mask correction or could also potentially reflect real coastal variability.

Near-land retrievals: The RSS product masks regions near land, and generally matches
the JPL retrievals while also appearing to be marginally more saline. There appears to be a
fresh ‘halo’ around the land in both RSS products that is not present in any other data. The
RSS40 salinity has large biases near land that are not present in the JPL product as well as
additional fluctuations, without any clear indication of improved spatial resolution. Near
land, the JPL additional retrievals match the HYCOM data and appear to add value.
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Figure 6. (a) Map of RSS70, (b) RSS40, (c) JPL and (d) HYCOM salinity for 8-day average centered on
17 February 2020 shown behind the 1026 saildrone vehicle’s SBE37 salinity data from the 16 February
to the 20 February 2020. On 18 February 2020, the saildrone crossed the fresh tongue, the vehicle
position indicated by white dot.

Fresh Tongue: All versions of the SMAP satellite observations identified the fresh
tongue but recorded moderately more saline waters across the fresh tongue when compared
with the measurements of the saildrone, measuring a 33.33 psu minimum (18 February
2020 08:59:00) in contrast to the 33.49 psu, 34.03 psu and 33.52 psu of the JPL, RSS70 and
RSS40, respectively. HYCOM fails to reproduce the fresh tongue event in its prediction as
seen in Figure 6.

3.4. Investigation of Fresh Tongue

The three saildrone vehicle observations were very close to each other while within
the fresh tongue (Figure 4). Hence, one of the vehicles (SD1026) was chosen for an
analysis of the temperature and ocean conditions at and over the tongue. According
to Reverdin et al. [5], this fresh tongue originated from a freshwater plume off the coast
of South America. They also noted that the fresh tongue was transported to this area by
mesoscale eddies as well as Ekman Transport. The saildrone salinity values recorded in
this feature, observed in Figure 4, are relatively similar to the SMAP estimates and less
saline than HYCOM estimates. These data provide an opportunity to better understand
this feature and improve both the satellite and modeled products. Figure 7 compares the
time series of the saildrone, SMAP JPL and RSS salinity data as the saildrone crossed the
fresh tongue. Figure 7a puts the SSS into focus by comparing the salinity data observed by
the saildrone with salinity data from RSS40 and RSS70, JPL and HYCOM. The figure shows
that the satellite products were able to resolve the fresh tongue SSS, albeit not with as much
detail as the saildrone data. Despite resolving small scale variability, the RSS40 was the
only satellite product to capture the observed small increase in salinity at approximately
midday on 18 February 2020. As previously stated, HYCOM does not simulate the fresh
tongue event.
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Figure 7. Time series of (a) the salinity measured by the SBE37 sensor onboard the saildrone 1026
compared with that of HYCOM, RSS70, RSS40 and JPL satellite salinity products and (b) the sea
surface temperature measured while saildrone 1026 crossed the fresh tongue southeast of Barbados
from 16 February 2020 12 UTC to 19 February 2020 9 UTC.

Upon entering the fresh tongue, the SST fell by approximately 0.3 ◦C and the SSS also
experienced a reduction of approximately 2 psu (Figure 7a,b). This decline in SST and SSS
reveals that the saildrone crossed a cold core eddy.

4. Discussion

The EUREC4A-OA/ATOMIC campaign highlighted the effectiveness of the saildrones
in measuring SSS across the tropical North Atlantic Ocean. Saildrones were directed to
areas of significant interest in the NBC region and were able to provide exceptionally high
spatial and temporal resolution data. The high quality of the data was reflected in the
low RMSE values produced during the comparison of duplicate sensors on each saildrone
(Table 1). The saildrones also augmented the near surface data collected by the four research
vessels that took part in the campaign as they generally start observations about 5–7 m
above and below the sea surface [41]. A few months after the campaign, the shutdowns
associated with the COVID-19 pandemic restricted field campaigns including ship-based
research activities. As a result, remotely piloted or autonomous data collection platforms,
such as saildrone, have become increasingly valuable given their remote operation and their
ability to continuously collect in situ data over periods extending from months to years.
The aforementioned benefits of the saildrones made them ideal candidates for collecting
data to validate the satellite-derived marine products.

In this study, SSS from three saildrone vehicles were used to assess the quality of
satellite and ocean model data. The differences seen in Table 2 show that the RSS70 and
JPL estimates were more closely correlated to the saildrone data than equivalent HYCOM
and RSS40 products and the STD values indicate that the RSS70 SSS may have been most
accurate to the saildrone data [22]. The RSS40 data was the noisiest out of all four platforms
and this high noise content was represented by its STD values and Spearman correlation
values. This noise is most likely due to reduced spatial smoothing. However, some of this
noise could be groundwater discharges and other land-based discharges from small river
systems which are not visible in the lower resolution RSS70 and JPL output.
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These results suggest that for most applications, the RSS70 data should be preferred to
RSS40, which is in agreement with previous validation papers [20,42]. There also appears
to be a correlation between the spatial resolution of the SMAP satellite and the precision
of its salinity estimates. It was found that the satellites with coarser resolutions (JPL at
60 km resolution and RSS70 at 70 km resolution) and less noise resulted in more accurate
output. Additionally, the mean difference values from all saildrones minus satellite/model
values showed that SMAP and HYCOM overall tended to record more saline conditions
than the saildrones.

The most prominent feature to occur over the course of the saildrone cruise was the
salinity minimum experienced during 16–19 February 2020. This sharp drop in salinity was
spatially visualized in Figure 6 to examine how well the SMAP products reproduce the
saildrone data. The fresh tongue was adequately displayed by the JPL and RSS products,
showcasing the products’ ability to resolve fresh mesoscale features. The RSS40 produced
the most accurate salinity data inside the fresh tongue. It was the only product that was
able to depict the sharpest rise in salinity inside the fresh tongue, which is presumably
because it has the highest spatial resolution of the satellite datasets. This lines up with
Meissner et al. [22], where one of the suggested applications of RSS40 are areas of freshening
events of the surface layer of the ocean. Thus, RSS40 may be suitable for investigating
small scale salinity anomalies, but RSS70 should be the preferred datasets for most ocean
salinity research and investigation in the western Tropical Atlantic [22]. Due to the in-
model climatological relaxation which results in smooth data, HYCOM overall appeared
to have the least noisy dataset. It also had several measurements in good agreement with
the saildrone, but it failed to reproduce the fresh tongue. This is most likely due to an
underestimation of the freshwater flux entering the model domain from the Amazon River
system. Since the main sources of HYCOM’s assimilated salinity data are not deployed
close to land, freshwater discharges from rivers would be underestimated in model. River
data, which accounts for freshwater runoff from the Amazon and other river inputs along
the South American coastline, are required to improve model performance in the area of
the fresh tongue as demonstrated by Coles et al. [43].

In the Coles et al. [43] study, HYCOM was initialized using surface forcing from
the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year analysis
(1979–1998) and a salinity restoration condition to prevent the model from using its default
seasonal salinity cycle. Climatological discharge information from 315 rivers was included
as climatological mass flux input and a 17 term empirical equation calculated the near field
plume dynamics. In their HYCOM output, Coles et al. relied on the 35 isohaline to identify
the Amazon plume. The salinity within their plume remained under 35 psu as the plume
moved into the open ocean off the coasts of South America. This is not consistent with the
HYCOM SSS variable as Figure 7 shows the HYCOM variable consistently above 35 psu,
indicating the need for specific river input data to produce more accurate river outflow
salinity estimates.

SMAP SSS data, which more accurately represented the fresh tongue in this instance,
could potentially be incorporated into HYCOM’s data assimilation process to have a more
accurate representation of freshwater fluxes in the model. Such an approach has not
been described in the literature to our knowledge and represents a promising new area of
research that could improve the prediction performance of HYCOM.

5. Conclusions

During the EUREC4A-OA/ATOMIC campaign, saildrones and research vessels were
deployed in the North Brazil Current region in order to investigate mesoscale eddies
and submesoscale fronts. In this study, saildrone salinity observations recorded during
the campaign were compared with four different SSS products SMAP JPL, SMAP RSS
40 km, SMAP RSS 70 km and HYCOM, with the aim of highlighting the strengths and
weaknesses of each product and identifying the best product for use in this area. This
study represents the first validation of SMAP satellite-derived SSS using the saildrone in
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the river-influenced Western Tropical Atlantic, and this information can allow researchers
to make informed decisions regarding the most ideal product for their application as well
as highlight issues to algorithm developers. Overall, it was found that SMAP RSS 70 km
outperformed its counterparts. However, SMAP RSS 40 km was better within freshening
events such as a fresh tongue, with HYCOM being on the opposite spectrum, failing to
identify submesocale features such as the fresh tongue. Akin to the SMAP RSS 70 km, SMAP
JPL and HYCOM performed well in areas where the large-scale salinity conditions were
constant, but improved input SSS fields may be required for HYCOM to reproduce smaller-
scale salinity fluctuations. Finally, the results of this study can aid in the improvement of
mesoscale and submesoscale SSS products, which can lead to the refinement of NWP and
climate models and therefore to improved weather, ocean and climate forecasts, especially
for tropical regions. An increase in SSS observations (e.g., augmented Argo floats or buoys)
in the western Tropical Atlantic would allow for improved validation of SMAP and model
estimates in this area. The use of the three saildrones for such a short period is insufficient
to ascertain all of the SSS complexities in this location.
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