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Abstract: Iraq is facing a water shortage due to water scarcity and anthropogenic activities. The
recent advance in technologies in geophysical methods has made groundwater monitoring possible.
Time-variable gravity data and outputs of the climatic model, as well as rainfall data, are integrated
to investigate the spatio-temporal mass variations caused by groundwater changes over Iraq. The
findings are: (1) For the entire study period (04/2002–12/2020), Period I (04/2002–12/2006), Period
II (01/2007–12/2017), and Period III (01/2018–12/2020), the study region had an average annual
precipitation rate of 223.4, 252.5, 194.2, and 311.6 mm/y, respectively. (2) The average Terrestrial
Water Storage variations (∆TWSs) varied from −5.79 ± 0.70 to −5.11 ± 0.70 mm/y based on the
three different gravity solutions with a mean of −5.51 ± 0.68 mm/y for the entire investigated
period. (3) For Periods I, II, and III, the average ∆TWS fluctuation was calculated to be +6.82 ± 1.92,
−6.20 ± 1.17, and +28.58 ± 12.78 mm/y, respectively. (4) During the entire period, Periods I, II,
and II, the groundwater fluctuation was averaged at −4.86 ± 0.68, +2.47 ± 2.20, −3.79 ± 1.20, and
−4.63 ± 12.99 mm/y, respectively, after subtracting the non-groundwater components. (5) At the
beginning of the 2007 drought during Period II, a decline in rainfall rate, and significant groundwater
withdrawal during Period III all appear to have contributed to groundwater depletion. The Euphrates
and Tigris Rivers, as well as the Mesopotamian plain, receive water from the running streams created
by the ground relief. The area of the Mesopotamian plain, which has a thicker sedimentary sequence
that can reach 9000 m, is found to have a positive TWS signal, indicating that its groundwater
potential is higher. The integrated approach is informative and cost-effective.

Keywords: Iraq; time-variable gravity; mass variations; precipitation groundwater

1. Introduction

Due to its importance for humans and ecosystems, water sustainability is a global
issue [1,2]. Anthropogenic water consumption and climatic variables have an impact on
water sustainability [3,4]. Around the world, irrigation accounts for 90% of water usage and
70% of water extraction. Arid regions experience significant groundwater depletion [5,6].

The water infrastructure will be under strain by 2050, when the world’s population is
increased by 22 to 34%, 9.4 to 10.2 billion people. The impact will be made worse by uneven
population growth across the country that is unrelated to regional resources. The majority
of this population growth will take place in developing nations, initially in Africa and then
Asia, where a lack of potable water is already a serious problem [7]. At the moment, just
less than half of the world’s population, 3.6 billion people (47%) live in locations where
water scarcity occurs at least 1 month a year [8]. Moreover, more than half of the world’s
population (57%) will live in locations where water scarcity occurs at least 1 month a year
by 2050. This prediction for water demand, water resources, and water quality is based on
some geopolitical issues that are hard to anticipate.
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Freshwater resources are currently threatened by scarcity and limitation in several
areas, notably in dry and semiarid areas where water scarcity is a problem for both home
and agricultural uses [9,10]. Water scarcity is a global issue that has been identified as one
of the world’s greatest threats by the World Economic Forum [11].

Owing to the increasing heat and aridity, the Middle East is one of the most affected
regions of the world in terms of climate change. These conditions are affecting water
availability and causing water scarcity. Water scarcity is well-recognized in the Middle
East [12,13] and has been a challenging problem since the onset of the 2007 drought [14–16].
In addition to the prevailed dry climatic conditions, the heavy anthropogenic groundwater
withdrawal in these regions is a serious problem. Based on a recent [17] report, about 85%
of all water is used in the region for irrigation. The lack of water has had a negative impact
on almost every Middle Eastern country. Freshwater availability has fallen by 75% since
1950 and is anticipated to decrease by another 50% by 2030 [18]. This is especially true in
the case of the three countries (Iran, Iraq, and Saudi Arabia) that were studied by [19].

Physical, chemical, and modelling techniques have all been used to evaluate the rates of
recharge and depletion of large hydrogeological settings, including aquifer systems [20–23].
However, these methods are difficult to use on a regional scale due to the scarcity of datasets
required for implementation, as well as the time and money required to obtain them, and
their findings are occasionally questionable.

The start of the satellite Gravity Recovery and Climate Experiment (GRACE) mission
is now measuring the mass variation caused by changes in terrestrial water storage (∆TWS).
The National Aeronautics and Space Administration (NASA) and the German Aerospace
Center (GFZ) jointly launched the GRACE project in March 2002. The GRACE mission was
launched to take accurate measurements of the Earth’s gravity field in order to determine
the spatial and temporal fluctuations in the Earth’s mass [24] from space. GRACE-derived
∆TWS is a combination of groundwater, soil moisture, and other components. These
GRACE datasets were widely applied for water balance studies on the basin scale (e.g., [25]),
storage variations on the basin and sub-basin scale (e.g., [26–28]), estimation of the recharge
and depletion rates of the aquifer (e.g., [29]), identification of the natural and human-
fabricated influences on water availability and mass fluctuation [30], and calculation of the
hydrological plus cryospheric excitation of polar motion [31]. Furthermore, some Middle
Eastern studies have merged GRACE with other relevant climatic datasets to predict
fluctuations in the amount of water stored underground and assess the behavior of the
aquifer (e.g., [32–42]).

The GRACE Follow-On (GRACE-FO) mission was launched by NASA and GFZ as a
continuation of the GRACE mission [43]. The initial GRACE project, which orbited the Earth
from 2002 to 2017, was followed by this mission. It improves upon the accomplishments of
its predecessor while also testing a new technology that greatly increases the measurement
system’s already impressive precision. It also contributes data to the high-resolution
monthly global models of the Earth’s gravitational field that were started during GRACE.
The GRACE-FO twin satellites were sent from Germany to Vandenberg Air Force Base
in California in December 2017, and a SpaceX Falcon-9 rocket launched them on 22 May
2018 from that location [44]. The Jet Propulsion Laboratory (JPL), the GFZ), and the
Center for Space Research at the University of Texas (CSR), Austin are the three processing
facilities that provide monthly gravity solutions for the GRACE and GRACE-FO Science
Data System.

GRACE is unable to distinguish between contributions from TWS’s various com-
partments (e.g., soil moisture, surface water, groundwater). To overcome this challenge,
climate model outputs were integrated with GRACE data allowing separate individual
components from GRACE-derived TWS estimates to be extracted and the data’s horizontal
resolution to be improved. Climate model outputs employ quantitative approaches to
mimic the interactions of the atmosphere, seas, land surface, and ice, among other sig-
nificant climate drivers. These models have several applications in climate prediction,
water cycle modeling, and water resource management. One of these is the Global Land
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Data Assimilation System (GLDAS; [45–47]). GLDAS collects observational data from
satellites and ground stations. It calculates optimal fields of land surface states and fluxes
using advanced land surface modeling and data assimilation techniques. Previous research
in Saharan Africa [48] showed that GLDAS provides better accurate estimations of soil
moisture in arid settings compared with other land surface models.

Other recent gravity field data from the Gravitational Models of the Earth have been
utilized to look at crustal characteristics and features on a broad scale [49]. Groundwater
investigation, subsurface geology [50,51], the shape of the magma chamber [52], and
land subsidence [53] have all used aircraft and/or ground-based geophysical data on a
smaller scale.

A previous investigation carried out by [54], using gravity data from GRACE, showed
that the north-central part of the Middle East lost ~143.6 km3 of total water storage between
2003 and 2009. By using data from land surface models, they showed that the groundwater
depletion was 91.3 ± 10.9 km3 in this region during 2003–2009, where a low rate of storage
of 14.7 ± 9.3 km3 was lost during 2003–2006, and a higher rate of 76.9 ± 10.1 km3 was lost
during the drought event (2007–2009). However, no previous studies on the calculation of
groundwater storage changes for the entire country have been conducted in Iraq. Therefore,
in this work, GRACE data were used in conjunction with GLDAS data to map the spatio-
temporal and estimate the mass variations caused by climatic effects and/or groundwater
withdrawal in Iraq. The time-variable gravity data were used to estimate the changes in
the ∆TWS. To estimate groundwater storage variations (∆GWS), the outputs of GLDAS
model were used to exclude non-groundwater components from ∆TWS.

2. Geological and Hydrogeological Setting

The geology of Iraq is represented by a thick succession of marine and continental
sediments overlying the basement rocks [55]. The Khabour Quartzite Formation of the
Cambrian and Ordovician age represents partially the oldest rocks that are exposed on the
surface of Iraq. Most of the deeper basement rocks were formed in the Proterozoic. Due to
the Neo-Tethys extensional faulting, the northeastern part of the study area has a thinned
quasi-continental crust [56]. The grabens were formed, then thick sediments accumulated.
The deposition was paused in Late Silurian twice due to the Caledonian orogeny, and in the
Carboniferous–Permian due to the Hercynian orogeny. The Kaskaskia marine transgression
event resulted in the formation of the Devonian Pirispiki Red Beds and Chalki Volcanics
along with the limestone and Ora Shale formations [57]. The Ga’ara and the Chia Zairi
Limestone formations were formed during the Permian time. Northern Iraq is dominated
by limestone, marl, evaporite, and shale, while interactions of calcareous and clastic rocks
appear in the south. Central Iraq and the Mesopotamian Foredeep have thick sediments.
The Maastrichtian and Paleocene sediments range from ~100 m to ~2.79 km. The basement
faulting represents the orogeny period where the Zagros Mountains initiated form [56,58].
The geological map of Iraq is shown in Figure 1.

According to physiological, structural, geological, and hydrogeological properties,
Iraq was categorized into seven zones from a hydrogeological standpoint by [59]. The
hydrogeological and hydrochemical properties of each zone are distinct. These zones
(Figure 2) are: The Mesopotamian Foredeep (Mesopotamian), Low and High Folded Zone,
Suture and Thrust Zone, Al-Jazira Zone, and Western and Southern Desert Zones. While
Ref. [60] categorized Iraq’s groundwater aquifers system into five primary hydrogeological
units: Foothill, Al-Jazira, Mandali-Badra-Teeb, Mesopotamian, and Desert Aquifer systems,
which include two aquifers subsystem, the northern and southern. The hydraulic properties
of groundwater-bearing layers show higher values in gravel and sandy fragment aquifers,
as well as geological formations with a high intensity of fractures, fissures, and karstic gaps,
and lower values in restricted clay layers or impermeable crystalline layers with no cracks
and fissures [61].
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Figure 1. Geological map of Iraq.

Geological, structural, and lithological factors influence the spatial distribution and
extensions of hydrogeological components, such as aquifers and aquitards, as well as
their hydrological characteristics. In Iraq, fourteen major aquifers (Figure 3) have been
identified and categorized by [60,62] based on the above-mentioned features and their
link with the geological formations that store groundwater. The aquifer’s components
range from densely fractured and fissured limestone to karstified carbonate rocks, as well
as sandy limestone, limestone, and sandstone. Gravel sands, karst limestone, gypsum,
sandy deposits, and conglomerates are examples of other aquifer materials. According



Remote Sens. 2022, 14, 3346 5 of 22

to [61], the directions of groundwater flow in Iraq vary depending on the parameters of
subsurface aquifers, such as hydraulic features, hydraulic slope, and the hydrogeological
boundaries of the basins that contain these aquifers. The difference between the levels
of groundwater in the aquifers and the inclination of the aquifers determines the flow of
groundwater [63]. However, the general trend of the groundwater flow is towards the
lowland of the Mesopotamian zone in the southeastern part of Iraq. The groundwater
levels vary from higher values of about 550 m above mean sea level (amsl) close to the
Foothill zone in the northeastern part and the Rutba subzone in the western part to about
0 amsl in the Mesopotamian zone (Figure 4; [60,64]).
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3. Data and Methodology
3.1. GRACE Data

Three time-variable gravity mascon solutions provided by GRACE processing centers
were used in the current study. The mascon products are represented by JPL-RL06M v02,
CSR-RL06M v02, and GSFC-RL06M v01 datasets from JPL, CSR, and the NASA Goddard
Space Flight Center (GSFC), respectively. In comparison to spherical harmonic solutions,
these mascon solutions capture all signals within the GRACE noise levels with improved
spatial resolution and lower error. No de-striping, and/or smoothing is required. The
scaling factor might also be not required for these products [43,65–67].

TWS anomalies were calculated for each equal-area 3◦ × 3◦ spherical cap mascon block
in the JPL-RL06M v02 solution [43,67]. The TWS fluctuations are sampled to 0.5◦ × 0.5◦

longitude–latitude grids in the final dataset. Provided that the JPL-RL06M v02 has a real 3◦

resolution, the scaling factors provided by JPL must apply to recover the leakage signals
caused by 3◦ mascon blocks. JPL-RL06M v02 data provide enhanced separation of land
and ocean mascons compared with the prior version (JPL-RL05M). As a post-processing
step, the Coastal Resolution Improvement filter was used for the entire mascon solution
to detect land and ocean mass from individual mascons that cross coastlines [43] and to
reduce leakage errors across coastlines [67].

TWS fluctuations are displayed in 0.25◦ by 0.25◦ longitude–latitude grids in the CSR-
RL06M v02 solution, which was calculated from an equal area with a 1◦ resolution [66,68].
In this new grid, the hexagonal tiles that make up the shoreline are divided into ocean and
land tiles to minimize signal leakage between the two. For these small mascons, the scaling
factor is not necessary. The GSFC-RL06v1.0 mascon solution was calculated for each 0.5◦

equal-area square mascon was utilized in addition to the JPL and CSR mascon datasets.
The cubic-spine approach was used to interpolate the missing monthly data. The

mascon solutions, throughout the investigated period, were utilized in the current study.
To obtain the best-fit line for a set of points, the slope values of the TWS trends were
determined using the least squares fitting method using Equation (1). After then, the errors
associated with the obtained trend values were calculated.

Slope = ∑(y− y)(x− x)

∑(x− x)2 (1)

Given (x1, y1), (x2, y2), . . . , (xn, yn) are the data points, the y is the dependent variable,
and y stands for the average. The independent variable is x and their average is x.

3.2. GLDAS and TRMM Data

Due to the scarcity and unavailability of data from gauge stations across the research
area and because GRACE cannot differentiate between anomalies caused by different
TWS components, two GLDAS [45] models (CLM, VIC, and NOAH) were employed to
estimate the non-groundwater components. These components were used to differentiate
the ∆TWS into its main components (e.g., soil moisture, canopy water storage, and snow
water equivalent). The GLDAS data span the same period as GRACE data. Because there
is a scarcity of rainfall data from ground stations, we used data from the satellite Tropical
Rainfall Measuring Mission (TRMM) to create the average monthly rainfall time series and
the average annual precipitation (AAP). By averaging all the monthly rainfall data over a
year, the AAP rate was obtained. It was utilized to investigate the impact of precipitation
on GWS over the course period of the study.

3.3. Temporal Variations in Surface Water Storage

Lake Tharthar is the largest lake in Iraq. Its water body has an impact on GRACE
data-based mass variations and, as a result, GWS calculations. The global reservoir and lake
monitoring database of the United States Department of Agriculture’s Foreign Agricultural
Service (USDA-FAS) was used to construct the time series of Lake Tharthar’s surface
water (GRLM). In the research region, the trend of surface water storage fluctuations was
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determined. The area and surface water level of Lake Tharthar over the study region were
used to estimate the temporal mass variation in the lake over the studied period. Because it
does not contribute to the GWS, the trend of the lake’s surface water storage variation was
subtracted from the TWS.

Using Equation (2), which has been used by several scientists (e.g., [33,35,46,69–73]),
the trend value in groundwater storage variation was calculated from the terrestrial water
storage variations by removing other derived terrestrial storage changes from GLDAS
data [33,46,74] and the variations in surface water storage.

∆TWS = ∆GWS + ∆SMS + ∆SWS + ∆CWS + ∆SWE (2)

where ∆TWS and ∆GWS refer to the changes in terrestrial water and groundwater storage,
respectively. ∆SWE, ∆CWS, ∆SWS, and ∆SMS, indicate snow water equivalent, canopy
water storage, change in surface water, and soil moisture, respectively.

4. Results

The analysis of TRMM-derived rainfall data is shown in Figures 5 and 6. The study
area received average annual precipitation of 223.4 mm/y for the whole investigated period.
In the northeastern parts of Iraq, the AAP exhibits higher values of ~600−900 mm/y, close
to the borders with Turkey and Iran (Figure 6) and decreases west and southwards, reaching
lower values of ~70 mm/y, close to the borders with Jordan and Saudi Arabia. Three distinct
climatic periods with unique AAPs were found. The results of the spatial distribution and
the temporal variation in the secular trend in GRACE-estimated ∆TWS data are shown
in Figures 7 and 8, respectively. The GRACE-estimated ∆TWS shows a depletion trend of
−5.51 ± 0.68 mm/y (Table 1) for the averaging of the different solutions across the entire
study area. The results of the decomposition of the ∆TWS were shown in Table 1 using
outputs of the GLDAS models and the trend value of Lake Tharthar’s surface water storage
variation. The monthly ∆GWS time series (Table 1) shows a negative trend estimated at
−4.86 ± 0.69 mm/y during the entire period.

Table 1. TWS trends values and components (mm/y) were calculated by GRACE and GLDAS.

Component Entire Period Period I Period II Period III

G
R

A
C

E
to

ta
l

(∆
TW

S)

CSR-M −5.79 ± 0.70 +6.43 ± 4.08 −5.60 ± 1.24 +32.7 ± 13.07
JPL-M −5.11 ± 0.70 +7.15 ± 4.00 −5.22 ± 1.18 +30.16 ± 12.25
GSFC −5.64 ± 0.67 +6.87 ± 3.97 −7.77 ± 1.15 +22.89 ± 13.5

AVG −5.51 ± 0.68 +6.82 ± 1.92 −6.20 ± 1.17 +28.58 ± 12.78

∆SMS −0.03 ± 0.02 +0.01 ± 0.01 +0.08 ± 0.04 −0.84 ± 1.45
Tharthar Lake −0.62 ± 0.06 +9.28 ± 0.93 −2.48 ± 0.25 +34.05 ± 3.4

∆GWS
p-value

−4.86 ± 0.68
<0.0001

−2.47 ± 2.20
0.0542

−3.79 ± 1.20
<0.0001

−4.63 ± 12.99
0.0253

AAP 223.4 252.5 194.2 311.6
CSR-M and JPL-M: mascon products; JPL-SH and CSR-SH: spherical harmonic solutions; TWS: Changes in
Terrestrial Water Storage; GWS: groundwater storage change; SWE: change in snow water equivalent; SMS:
change in soil moisture; CWS: change in canopy water storage; SWS: changes in surface water storage; AAP:
annual average precipitation. p-value is the probability value.
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5. Discussion
5.1. Identification of Time-Periods

The climate data were used to identify three periods throughout the investigated time.
Large changes occurred in 2007 as a result of the commencement of a drought and a rise
in temperatures [75]. The three periods are discussed as follows: Period I covers the time
preceding the onset of the 2007 drought, and Period II covers the time following its onset
in 2007 until December 2017 as shown in Figure 5 which displays the measured mean
monthly rainfall’s temporal fluctuations. It indicates slightly higher average precipitation
between April 2002 and December 2006, defining the first period (Period I); and lower
values between January 2007 and December 2017, establishing the second period (Period II)
of the investigated time in Iraq. It also shows a higher precipitation rate during the period
between January 2018 and December 2020, characterizing Period III. The AAP rate shows
that Period I (04/2002–12/2006) had a higher AAP rate of 252.5.1 mm/y; while period
II (01/2007–12/2017) had a lower AAP rate of 194.2 mm/y; whereas Period III (01/2018–
12/2020) had the highest AAP rate of 311.6 mm/y. The study area is receiving an average
AAP rate of 223.4 mm/y over the entire study period (Table 1).

5.2. Water Budget

Figure 8 shows the spatial distributions of the secular trends in GRACE-derived ∆TWS
from the monthly spherical harmonic and mascon solutions through the investigated period
over Iraq. Inspection of this figure shows that the TWS is witnessing negative trend values
increasing toward the south, close to the borders with Saudi Arabia and Kuwait, and
decreasing toward the north. GRACE-extracted ∆TWS data were used to create time series
for the study area. The ∆TWS trends extracted from the three different solutions indicate an
overall depletion rate (Figure 8). The GRACE-derived ∆TWS estimated from CSR mascon,
JPL mascon, and GSFC mascon witnessed depletion rates of −5.79 ± 0.70, −5.11 ± 0.70,
−5.64 ± 0.67 mm/y, respectively. The TWS of the three different solutions are averaged at
−5.51 ± 0.68 mm/y (Figure 8; Table 1) across the entire study area. Between the different
TWS time series, there was a significant correlation ranging from 0.97 to 0.98 (Figure 9).
The average ∆TWS time series shows three distinct trends of varying slope values during
the whole investigated period, according to the linear regression analysis of their averaging
(Figure 10), which are compatible with those identified based on the rainfall data (Figure 5).
Examination of Figure 10 and Table 1 shows that the country experienced a TWS increase
during Period I at +6.82 ± 1.92 mm/y and a TWS decline at −6.20 ± 1.17 during Period II,
and a much higher rate during Period III at +28.58 ± 12.78 mm/y.
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Figure 10. Time series for the Avg-TWS over Iraq during the three periods.

Over the study area, three GLDAS (CLM, VIC, and NOAH models) versions were
utilized to calculate the differences in soil moisture storage (∆SMS) (Table 1). The study
area is experienced a slightly negative ∆SMS trend value calculated at +0.03 ± 0.01 mm/y
(Figure 11) during the whole study period. During periods I and II, the ∆SMS trend was
estimated to be +0.01 ± 0.01 and +0.08 ± 0.04, respectively (Table 1). However, during
Period III, the ∆SMS trend was calculated to be −0.84 ± 1.45 mm/y (Table 1). Due to the
lack of any observable trends in time series, the additional non-groundwater components
represented by changes in canopy water storage (CWS), surface water storage (SWS), and
snow water equivalent (SWE) are negligible in this arid environment.
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Figure 12 exhibits the changes in Lake Tharthar’s water level across the study period.
It varied between a higher value of 54.4 m in 2004, a lower value of 43.7 m in 2018, and
a maximum value of 55.8 m in 2019. The water level shows a rapid decrease, with the
onset of the 2007 drought, from 52.0 m in 2007 to 45.2 m in 2009, and continues with small
downward fluctuations until the year 2018. The lake’s water level increased rapidly from
the lowest value of 43.7 m in 2018 to 55.8 m in 2019, in response to the heavy rainfall
rate occurring during 2019–2020. The water level of the lake was likely affected by the
2007 drought and groundwater depletion. The annual mass variation in the lake’s water
(Figure 13) was estimated. It has been subjected to a mass depletion of −0.27 ± 0.03 km3/y.
In the case of lake water level, there is a 10% margin of error. The lake has a surface
area of 2710 km2. When the mass loss is averaged over the full study area, the regional
depletion rate is −0.62 ± 0.06 mm/y (Table 1) for the entire study period. Higher average
precipitation rates in Period I, which ranged from 244.86 mm in 2002 to 304.23 mm in 2004,
influenced the lake’s water level, which varied from 45.43 m in 2002 to 54.44 m in 2004.
Lower precipitation during the onset of the 2007 drought resulted in a large loss of the
water surface area of the lake, causing a decrease in its water level from 52 m in 2007 to
43.7 m in 2018. This decrease in water level may be identical to that calculated by [35,76]
for Lake Urmia in Iran which is subjected to the same climatic conditions. According
to piecewise linear trend analysis, the lake gained around +4.05 ± 0.41 km3/y of water
during Period I, which equals +9.28 ± 0.93 mm/y over the entire area. During Period II,
the lake volume depleted at a rate of −1.08 ± 0.11 km3/y, averaging at −2.48 ± 0.25 mm/y
across the entire region, owing to the commencement of the drought. The water volume
in the lake rapidly increased at +14.86 ± 1.49 km3/y during Period III, which averaged at
+34.05 ± 3.4 mm/y across the entire country.
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Figure 12. Time series of Lake Tharthar’s water level throughout the entire investigated period.

Depletion rates of the total freshwater storage (∆TWS) vary from −5.79 ± 0.70 to
−5.11 ± 0.70 mm/y (Table 1) based on the three different solutions with an average value
estimated to be−5.51± 0.68 mm/y across Iraq throughout the entire study period (Table 1).
We subtracted the ∆SMS (−0.03 ± 0.02 mm/y) trend value as well as the Lake Tharthar
trend (−0.62 ± 0.06 mm/y) from the ∆TWS trend, the GWS depletion was then calculated
at −4.86 ± 0.68 (Table 1) during the entire investigated period.
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Groundwater depletion was 17.3 ± 2.1 mm/y in the transboundary portions of the
Euphrates and Tigris River basins, as well as the west part of Iran, from 2003 to 2009.
Iran, which has similar climatic conditions to the study area, had an overall groundwater
depletion of −10.28 ± 0.73% between 2002 and 2016 [35].
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The ∆GWS time series (Figure 14) exhibits slightly similar changes to the ∆TWS time
series (Figure 8) while having different trend values. By excluding the values of the ∆SMS
(+0.01± 0.01 mm/y), the approximated value of the GWS for Period I is +6.81 ± 1.92 mm/y
(Figure 15). However, the ∆GWS decreased to −2.47 ± 2.20 mm/y (Table 1) by subtracting
Lake Tharthar’s trend value (+9.28 ± 0.93 mm/y) from the ∆TWS trend value.

By subtracting the values of the SMS (+0.08 ± 0.04 mm/y) and Lake Tharthar’s
(2.48 ± 0.25 mm/y) trend values from the ∆TWS trend value, ∆GWS reveals a depletion
trend of −3.79 ± 1.20 mm/y during Period II (Table 1). The GWS displays a high depletion
rate estimated to be −6.81 ± 1.19 mm/y during Period II without subtracting the trend of
Lake Tharthar. Heavy rainfall resulted in a quick rise in the water level of Lake Tharthar;
therefore, the TWS exhibits a substantially higher trend value of +28.58 ± 12.78 mm/y
during Period III. After subtracting the SMS (−0.84 ± 1.45 mm/y) during Period III,
the estimated ∆GWS trend was found to be +29.42 ± 12.86 mm/y (Figure 15); however,
after removing the lake’s trend value (+34.05 ± 3.4), it decreased to −4.63 ± 12.99 mm/y
(Table 1).

Throughout the whole study period, the study area displayed a general negative
GWS trend. Keeping the periods in mind, the GWS decreased from −2.47 ± 2.20 mm/y
in Period I to −3.79 ± 1.20 mm/y in Period II. This drop in Period II is mostly related to
man-fabricated activities as well as the declining trend in rainfall that began with the start of
the 2007 drought and continued to 2017. Despite the study area experiencing higher rainfall
rates in 2019–2020, the GWS trend still declined, reaching −4.63 ± 12.99 mm/y over Period
III. The significant groundwater loss and surface runoff into the small Mesopotamian plain
zone and the Euphrates and Tigris Rivers may have been the source of this over the entire
study area.

Iraq is one of the nations in the world that is most at risk from drought, climate change,
and rising desertification rates. Due to this, desertification rates in southern Iraq have
grown. Any wind intensity allows light soil and mud particles to move due to the drying
of these areas, which increases the frequency of dust storms over Iraq and the Gulf region.
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5.3. Stream Networks

The research area’s surface elevation map, created using the ETOPO1 Global Relief
Model, is shown in Figure 16. There is a sizable relief, ranging from 700 to 3000 m, across its
northern mountainous region. However, the western part of the region presents a moderate
relief of roughly 600–900 m close to the Jordanian border. The western and northeastern
parts of Iraq come together to create streams that feed the Mesopotamian plain downstream
of the Tigris and Euphrates Rivers. Surface runoff creates streams that flow toward the
Tigris River under the assumption that a significant precipitation rate (Figure 16) occurs
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over the northern mountainous region along the borders with Iran and Turkey. The stream
networks and the positive TWS signals from GRACE (Figure 7) show that streams and
rivers fed the Mesopotamian plain throughout the whole period.
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Figure 16. A map of the study area shows the ground surface elevation using a DEM; additionally, it
displays the local stream networks.

5.4. Sediment Thickness

The NOAA National Geophysical Data Center’s website provided the sediment thick-
ness information [77]. The northeastern portion of Iraq has a very low sedimentary success
varying from 0 up to 1200 m over the mountainous region, dissected by wadies, which drain
the surface runoff toward the rivers and the Mesopotamian plain to the south. The western
region shows sedimentary succession varying from 1800 to about 3000 m (Figure 17). The
sedimentary succession shows values varying from ~6000 m in the southwestern region to
more than 9000 m in the southeastern part of the Mesopotamian plain. This can support
the occurrence of a high reserve of the fluid downstream of the rivers, as indicated by the
positive TWS signals over this region.
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5.5. Level of Confidence and Inaccuracy Estimation in GWS Trends

In regions where this phenomenon is considerable, errors in GRACE data are caused by
observations, spatial and spectral leakages, post-processing, and glacial isostatic adjustment
(GIA). The computed ∆GWS trend data were analyzed using a Student t-test. At a 95%
confidence level, the t value is used in conjunction with a confidence chart to calculate the
probability (p-value) and statistically significant trends. The ∆GWS trend has an extremely
low p-value (0.0001), indicating a significant trend at a confidence level of >95%.

σGWS =

√
{(σTWS)

2 + (σSMS)
2 + (σSWS)

2} (3)

As a result of the errors (Table 1) calculated with TWS (σTWS), SMS (σSMS), SWS (σSWS),
CWS (σCWS), and SWE (σSWE), the error (σGWS) in GWS was established using Equation (3).

Errors on trend estimates of the GRACE-derived GWS were determined to be equal to
0.68 mm/y for a trend of 4.86 mm/y from April 2002 to December 2020.

6. Conclusions

Iraq experienced groundwater loss from April 2002 to December 2020, according to
our findings:
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• Based on rainfall studies in Iraq, three distinct climatic periods were identified over
the study period: Period I (12/2002–12/2006), which had a higher precipitation value
of 252.5 mm/y; Period II (01/2007–12/2017), which had a lower precipitation value of
194.2 mm/y; and Period III (01/2018–12/2020) with the maximum precipitation rate
of 311.6 mm/y;

• During the whole study period, the GRACE-derived TWS showed a general depletion
pattern, with positive TWS signals over the southern part of the country and negative
signals over the northern parts;

• Following the drought and the lower rainfall period starting in 2007, Iraq’s groundwa-
ter declined;

• For Period I, the rate of GWS was calculated to be −2.47 ± 2.20 mm/y; for Period II, a
higher GWS depletion rate of −3.79 ± 1.20 mm/y was obtained than for Period III;

• The GWS indicates an overall depletion rate of −4.63 ± 12.99 mm/y over the study
area throughout the period studied, which is the result of major anthropogenic activity
combined with the low rainfall rate that prevailed in the majority of Iraq;

• The Euphrates–Tigris Rivers and the Mesopotamian plain, which has a larger sediment
thickness, receive surface water from the streams that cross the mountainous areas of
northeastern Iraq;

• The findings demonstrate that the GRACE and GLDAS datasets are capable of provid-
ing a reliable calculation of the water budget in arid environments.
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