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Abstract: Phenotyping has been a reality for aiding the selection of optimal crops for specific en-
vironments for decades in various horticultural industries. However, until recently, phenotyping
was less accessible to tree breeders due to the size of the crop, the length of the rotation and the
difficulty in acquiring detailed measurements. With the advent of affordable and non-destructive
technologies, such as mobile laser scanners (MLS), phenotyping of mature forests is now becoming
practical. Despite the potential of MLS technology, few studies included detailed assessments of
its accuracy in mature plantations. In this study, we assessed a novel, high-density MLS operated
below canopy for its ability to derive phenotypic measurements from mature Pinus radiata. MLS
data were co-registered with above-canopy UAV laser scanner (ULS) data and imported to a pipeline
that segments individual trees from the point cloud before extracting tree-level metrics. The metrics
studied include tree height, diameter at breast height (DBH), stem volume and whorl characteristics.
MLS-derived tree metrics were compared to field measurements and metrics derived from ULS alone.
Our pipeline was able to segment individual trees with a success rate of 90.3%. We also observed
strong agreement between field measurements and MLS-derived DBH (R2 = 0.99, RMSE = 5.4%)
and stem volume (R2 = 0.99, RMSE = 10.16%). Additionally, we proposed a new variable height
method for deriving DBH to avoid swelling, with an overall accuracy of 52% for identifying the
correct method for where to take the diameter measurement. A key finding of this study was that
MLS data acquired from below the canopy was able to derive canopy heights with a level of accuracy
comparable to a high-end ULS scanner (R2 = 0.94, RMSE = 3.02%), negating the need for capturing
above-canopy data to obtain accurate canopy height models. Overall, the findings of this study
demonstrate that even in mature forests, MLS technology holds strong potential for advancing forest
phenotyping and tree measurement.

Keywords: lidar; MLS; SLAM; UAV; ULS; tree form; mensuration

1. Introduction

Digital phenotyping is an emerging science that uses non-invasive techniques, such
as laser scanning, to assess the interaction between genetics, environmental factors and
silviculture (GxExS) to guide the selection of the most productive trees for a given envi-
ronment [1]. In forestry, phenotyping is emerging as a means of selecting the right tree,
for the right place, for the right purpose, and to increase the efficiency of tree breeding
programmes [2]. Current phenotyping methodologies require the combination of GxExS
data with the physical description of tree form [3]. Traditional methods for the physical
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description of tree form are manual, time-consuming, costly and error-prone—severely
limiting the potential throughput [2,4].

Remote sensing (RS), on the other hand, could provide a set of convenient tools for
in situ tree phenotyping, with data from sources that include airborne laser scanning
(ALS) being useful for deriving information from the canopy and the terrain [3]. ALS was
researched extensively for extracting tree height, stand density and crown metrics [3,5–8].
However, it is limited in its ability to describe stem form due to the heavy occlusion
and limited pulse penetration caused by the dense forest canopy. The lower pulse density
observed under the canopy often provides sparse three-dimensional (3D) characterisation of
the stems—making it unsuitable for comprehensive tree form assessment [9]. An alternative
RS data source is unmanned aerial vehicle (UAV) laser scanning (ULS) which enables close-
range aerial captures over forested areas with higher pulse densities. ULS systems vary in
their accuracy depending on the scanner utilised, with high-end options (e.g., Riegl VUX
range) being more accurate compared with more affordable options that utilise re-purposed
automotive laser scanners (e.g., Velodyne Puck range) [10]. Despite offering much higher
pulse density than ALS, ULS still suffers from occlusion caused by the dense canopy.

To limit canopy occlusion, the description of tree form has often focused on RS meth-
ods, such as terrestrial laser scanning (TLS), that capture data from below the canopy.
Statically-mounted TLS was explored for forestry applications for nearly two decades [11–14].
In this approach, multiple scans are acquired and aligned from different viewpoints to min-
imise occlusion and achieve plot-level coverage. Most recent research on statically-mounted
TLS focused on topics, such as scanning forestry plots, deriving tree form metrics and
assessing the efficacy of TLS as a tool for carrying out forest inventory [15–20]. Although
these studies reported higher accuracy in the tree-form assessment [18], the technology was
not seen as widely operational due to its impractical nature [19]. TLS also produces fewer
returns from the upper stem due to occlusion from branching [21] which, in turn, reduces
the accuracy in height measurement [22].

Mobile laser scanning (MLS) was introduced as an alternative to TLS and was used in
forest environments since 2013 [23]. MLS systems are similar to ALS, in that they combine
a laser scanner with an inertial measurement unit (IMU) and a global-navigation-satellite
system (GNSS) receiver on a moving platform [24]. Arguably, it was not until the GNSS
component was replaced with simultaneous localisation and mapping (SLAM) algorithms
that these systems became truly suited to the forest environment where below-canopy
GNSS reception is often poor. SLAM algorithms are GNSS-independent and enable the
creation of locally consistent point clouds in GNSS-denied environments, such as beneath a
dense forest canopy. Lightweight MLS systems are often referred to as personal, handheld
or backpack laser scanners depending on the configuration of the unit. In recent years,
there is a growing body of research focused on MLS application within forestry [22–26]. By
their nature, MLS systems can achieve greater coverage of a forest environment in a shorter
timeframe with reduced occlusion, addressing the key issues that make TLS impractical for
forest inventory [27]. However, MLS systems are often restricted to integrating lightweight
scanners that have large beam divergence and lower power. This limits their range and
accuracy, specifically when characterising the upper part of tree stems [28,29].

Algorithms for tree-form description from lidar point clouds were developed for tree
stem segmentation [30] and extraction of a wide range of metrics, including diameter
at breast height (DBH) [31], stem straightness [17], stem volume [32] and branch char-
acterisation [33]. The majority of these algorithms work on heuristic principles. Stem
characterisation methods for TLS data were effectively adapted to ULS data [26,34,35],
allowing for scalable measurement of tree-form metrics. However, owing to the denser
canopy, a previous study that used ULS data in a mature stand of Pinus radiata failed to
obtain a sufficient number of stem points to derive any metrics other than height [36].
This highlights the need for an efficient remote-sensing tool that can be used to improve
the 3D tree characterisation below the dense forest canopy of plantation species. The
efficiency gains of using MLS compared with traditional inventory methods was already
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demonstrated for several popular plantation species [25] with nothing to report on P. radiata.
Therefore, this study will pursue the potential accuracies of tree form measurement from
MLS platforms under dense P. radiata, which is one of the most widely planted exotic pine
species globally and the dominant species in the Southern Hemisphere [37,38].

Of the various metrics derived from MLS and TLS data, DBH and height received
some of the widest attention in the literature and a comprehensive list of studies can be
found in [18,39]. Although existing studies reported a strong correlation between point
cloud-derived DBH and field-measured DBH, Bauwens et al. [24] noted that the calculation
of DBH at a fixed height above the derived digital terrain model (DTM) (the fixed-height
method) could potentially introduce errors. Inclusion of swelling within estimations for
DBH is currently not taken into account in the existing DBH algorithms; however, this
contradicts field measurement guidelines, affects the accuracy of point cloud-derived
DBH and introduces errors, such as stem volume or taper, into other calculations, such
as stem volume or taper. Another common finding in the literature is the inability of TLS
data to accurately describe the full tree height [39]. This can be addressed through the
combination of the above-canopy ULS data with the below-canopy TLS data; however, this
adds additional complications and resource requirements to the operation.

DBH and height are, arguably, two of the most important tree-form metrics for foresters
and tree breeders [21]. Thus, to replace traditional field measurement, any new system
that is developed for phenotyping or inventory would need to address the issues with the
DBH and height estimations from RS platforms. To address the issues related to the DBH
height, in this study, we proposed a variable breast height (VBH) detection method that
intuitively decides DBH height based on a stem-diameter profile and compared this to the
fixed-height method and a method involving taking DBH measurements at the same height
as field measurements (field-height method), as per [24]. We also tested the potential of
MLS data to accurately describe the full tree height under a dense canopy.

While methods exist to assess metrics associated with growth and basic stem character-
istics, one of the largest drivers for timber value is knottiness [40]; branching characteristics
are, therefore, one of the most important phenotypic traits for foresters and breeders. Met-
rics, such as branch size and angle, branch frequency and branch dispersion (length of
internodes) are key determinants of timber grades and, therefore, genotype value [41].
Consequently, the ability to accurately and objectively characterise branching patterns at
scale is a valuable tool for phenotyping. A small body of research developed around the
extraction of branching characteristics from lidar point clouds [15,33,42–44], with only a
few papers focusing on the detection of branch knots or branch whorls [45–47]. However,
nothing specific was developed for P. radiata, which is known to have more branches than
most of the other needle-leaf plantation species. In this study, we developed and tested a
diameter profile-based whorl detection method.

The overall aim of the study is to assess a novel, high-density MLS for its ability to
segment individual trees and derive tree-form metrics, e.g., DBH, tree height and whorl
height, in a mature stand of P. radiata. In this paper, we (1) present the results of tree-form
metrics derived from MLS data utilising various algorithms; (2) compare the MLS-derived
metrics with traditional field measurements and ULS-derived metrics; and (3) discuss the
applicability of MLS systems in the context of tree phenotyping and commercial forestry.

2. Materials and Methods
2.1. Data Capture
2.1.1. Study Site

The Scion nursery in Rotorua, on the North Island of Aotearoa New Zealand (NZ),
(Figure 1) was selected for the study site for this genetics trial. The trial stand is approxi-
mately two hectares in size and comprises P. radiata D. Don with an age range of eighteen
to twenty years. Details of the tree size are summarised in Table 1 and Figure 2.
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Figure 1. Map of the study site showing the area of the trial stand (purple box) and the locations of
tree stems in the study (blue rings). Insets show the location of the trial site.

Figure 2. Plots showing the distribution of diameter (a) and height (b).

The stand is located on a very flat site and is regularly mowed for access. Consequently,
it has very little understory, which is limited to small patches of low-growing blackberry
between the lines of trees. The aim of this study was to assess the absolute accuracy of
phenotypic measurements from laser-scanned point clouds against field measurements.
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This site was, therefore, an ideal choice for this study, providing idealised conditions with
little noise from understory or terrain undulations to confound the measurements.

Table 1. Tree height and diameter distributions of the studied trees.

No. Trees DBH Range
(cm)

Mean DBH
(SD) (cm) Height Range (m) Mean Height

(SD) (m)

884 2.2–67.1 30.5 (12.58) 1.7–34.4 23.9 (7.93)

2.1.2. Field Data

Ground validation for this study was carried out in the form of traditional forest
mensuration. Pre-harvest inventory (PHI) was conducted on every tree within the stand
following the PlotSafe methodology and utilising the RAD05 cruising dictionary commonly
used in New Zealand [48]. Phenotypic traits were measured at the tree level and included
DBH measured at 1.4 m, tree height, stem straightness, branch size, green crown height,
and stem malformation. DBH was measured over bark to the nearest millimetre using a
diameter tape, and heights were measured to the nearest 0.1 m with a Vertex 4 hypsometer
(Haglöf, Langsele, Sweden). PHI was conducted between 12 and 16 October 2020. Due to
the time elapsed between field measurements and laser scanning, DBH was re-measured
between 11 and 13 August 2021. Any discrepancies found between these measurements
and the field data were checked by remeasuring diameters in the field to avoid any anoma-
lous results.

In addition to the mensuration data, a sub-sample of twelve trees was intensively
measured using a crown-mapping procedure. For this exercise, an intensive phenotypic
assessment was undertaken, including measurements of internodal diameters, internodal
distances and whorl height above ground level (AGL) for the entire stem up to a height
of 20 m. Heights and internodal measurements were measured by a crew of two certified
climbers using a 50 m nylon measuring tape that was secured at the base of the tree and in
the tree crown (Figure 3a). Internodal diameters were measured with a DBH tape.

Figure 3. Images from the data capture showing (a) measurements being recorded to a mobile
application during crown mapping and (b) a target deployed to the site as a ground control point.

2.1.3. MLS Data

Ground-based lidar data were captured using the Hovermap MLS (Emesent, Milton,
QLD, Australia) (Figure 4a). The Hovermap comprises a Velodyne Puck-LITE (VLP-16)
laser scanner, which houses an array of 16 lasers that spin 360◦ about a single axis. The
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scanner is mounted on a rotating arm, which allows the whole scanner to rotate about 360◦

on a perpendicular plane giving the unit full spherical 360◦ coverage while the system
is in a stationary position. The system is SLAM-based, enabling the capture of coherent
point clouds below the canopy, independent of GNSS signal availability. The Hovermap
can be utilised in multiple formats, such as a handheld, backpack, vehicle-mounted or
UAV-mounted MLS system. For this study, the backpack-mounted format was utilised.

Figure 4. The Hovermap MLS in use (a) and (b) the trajectory of the MLS (in black) overlaid on stem
locations within the trial, coloured by height (blue = low, green = high).

To create an accurate point cloud, the SLAM algorithm requires a process of “closing
the loop” in which the scanner is required to regularly revisit areas previously scanned to
aid in tying new scenes to the existing point cloud. The selected walking path conformed
well with these specifications. The trajectory of the backpack capture plan is shown in
Figure 4b. The MLS data capture was carried out on 28 July 2021 and resulted in a point
cloud with a pulse density of 22,256 pulses per square metre (ppm2).

2.1.4. ULS Data

ULS data for this study were captured using a LidarUSA snoopy V-series lidar system,
with an integrated Riegl MiniVUX-1 UAV laser scanner. ULS data capture was carried out
using a DJI Matrice 600 Pro hexacopter (DJI Ltd., Shenzen, China) (Figure 5b). The snoopy
V-series is a PPK (post-processed kinematic) system that uses a CHCX900B base station
(CHC Navigation, Shanghai, China) to log GNSS data to correct the UAV-mounted rover
trajectory. The RMSE of the base station was 0.012 m.

Flight planning was undertaken using the UgCS flight controller software (SPH En-
gineering, Riga, Latvia). In line with recommendations from Wallace et al. [49], flights
were carried out at 55 metres AGL to ensure a 20 m vertical separation between the tallest
tree in the stand and the craft, whilst ensuring minimal beam divergence and higher point
accuracy. The stand was flown in four directions with a 10-metre line-spacing between
flight passes to increase pulse density and incidences of pulses penetrating gaps in the
canopy. The first flight plan included flights both along and perpendicular to the rows
of trees. This was then duplicated and rotated by 45◦ to create the second flight plan
(Figure 5a). ULS data were captured on 5 May 2021 and the resulting point cloud had an
average pulse density of 1818 ppm2.
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Figure 5. The flight plan for ULS data capture (a) and (b) image of the MiniVUX ULS mounted on
the UAV system used in this study.

2.1.5. Ground Control: CloudReg

MLS data from the Hovermap backpack configuration does not contain GNSS data
so it had to be georeferenced and aligned with ULS data. However, georeferencing the
RS measurements using field measurements in mature forestry stands is traditionally a
difficult exercise owing to the low accuracy of GNSS data captured beneath the forest
canopy [36]. Therefore, Scion has developed a methodology called “CloudReg” to achieve
highly accurate co-registration of airborne and terrestrial RS data sets. CloudReg allows for
precise plot maps and, in turn, the confidence to enable tree-level comparisons of field and
remotely sensed data sets.

Prior to data capture, ground control points (GCPs) were established on the open
ground around the perimeter of the stand (Figure 1), utilising a Trimble Geo7X handheld
GPS unit (Trimble Inc., Sunnyvale, CA, USA) with a Trimble Zephyr Model 2 external aerial.
In this study, six 1 m2 targets coated in highly reflective material (Figure 3b) were utilised
as GCPs, remaining in place for both the ULS and MLS data captures. These targets were
clearly visible within intensity-colourised ULS and MLS point clouds allowing for accurate
co-registration of the data sets. The RMSE of the GCPs collected ranged from 0.05 m to
0.15 m.

Once the data were captured and the ULS and MLS point clouds processed, the
two data sets were loaded into the CloudCompare software package (CloudCompare,
version 2.12 alpha; CloudCompare, Paris, France). The point clouds were coloured by
backscatter intensity values and co-registered by aligning the GCPs within both data sets
using the ‘Align (point pairs picking)’ tool. After co-registration with the ULS point cloud,
the overall RMSE of the MLS point cloud across the site was 0.27 m. Figure 6 shows a
detailed view of a single tree point cloud from the ULS data each stage of the MLS data
processing, as well as images of the co-registered point clouds.

2.2. Data Processing and Analysis
2.2.1. MLS Data Processing

Raw data files from the Hovermap were processed utilising the Emesent software
package version 1.5 (Emesent, Milton, QLD, Australia). Data files were loaded into the
software package, which then uses Emesent’s proprietary SLAM algorithms to generate a
point cloud in the LAS format. To increase the quality of matches, some parameters were
adjusted from the defaults, including setting a spherical search radius of 1.5 m, a sliding
window size of 8 s and 14 global iterations for registration.
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Figure 6. Detailed views of an individual tree point cloud (Tree F43) from the MLS and ULS data. MLS
data are shown in their raw, decimated and processed forms. Figure also includes overlaid images
of the co-registered raw MLS and ULS point clouds, demonstrating the similarities in maximum
height and co-registered processed MLS and ULS point clouds. Number of points is reported below
each model.

2.2.2. ULS Data Processing

To derive point clouds in the universal LAS data format, all ULS data were processed
from the manufacturer’s native data formats, utilising the Inertial Explorer (NovAtel Inc.,
Calgary, AB, Canada) and ScanLook PC (Fagerman Technologies, Inc., Somerville, AL,
USA) software packages. The Snoopy V-Series system utilises a PPK GNSS system to
enhance the accuracy of the output point clouds. As such processing involves two stages,
the GNSS rover data were post-processed first, utilising the data from the GNSS base station
within the Inertial Explorer software. During this initial step, filtering was also applied to
remove noise points within a minimum distance from the scanner. Finally, the ScanLook
PC software was used to apply boresight calibration angles and lever-arm offsets to the
point cloud data, removing any inherent errors.

2.2.3. Individual Tree Segmentation

Co-registered MLS point clouds were imported to a segmentation pipeline devel-
oped utilising multiple algorithms within the SimpleForest software package [50]. For
computational reasons, the large LAS files had to be tiled into smaller subregions. The
segmentation pipeline consisted of four main steps: (i) ground classification and height nor-
malisation, (ii) stem cloud generation, (iii) individual tree segmentation and (iv) segment
post-processing.



Remote Sens. 2022, 14, 3344 9 of 26

In the first step of the segmentation pipeline, the imported point cloud was decimated
using a point-distance-based method to reduce the point density to a manageable size.
Ground points were classified and filtered using various denoising algorithms within the
package. The point cloud was then normalised and divided into two sections, i.e., lower
and upper clouds, using a vertical height threshold. A Euclidean clustering algorithm
was applied to the lower cloud to detect clusters representing stem segments. These stem
segments were then used as the seeds for the individual tree classification. Dijkstra [51] and
Voronoi-based clustering methods were used to allocate the unclassified points in the upper
point cloud to the seed stem segments. In the final step, various denoising algorithms,
e.g., radius, statistical and Euclidean outlier filtering, were used to denoise the detected
individual tree segments. A height-based tree identification filter was implemented to filter
out shrubs, grass and other non-tree segments and the remaining individual tree segments
were exported in LAS format.

The stem cloud generated in step two was used to create a stem map of the study site,
which was later validated in the field using a GIS-based mapping app and field observations.

2.2.4. Derived Tree Form Metrics

Individual tree point cloud processing and tree metric derivation was carried out in
the R statistical computing language [52]. The individual tree segments produced by the
SimpleForest pipeline were imported as inputs to a stem delineation algorithm in the TreeLS
library in R [53]. The detected stem points were then isolated and segmented into chunks
using pre-defined height intervals (1, 2.5, 5, 10 and 20 cm). Two-step sphere fitting was used
to avoid the errors coming from the stem noise. The first sphere fitting estimated the centre
XY coordinates of the stem chunk. The distance from centre coordinates to each point was
then calculated and a Laplace–Gauss distribution was fitted to the distance values. The
second sphere fitting was implemented only on the points within 0.1–0.9 confidence levels
of the Laplace–Gauss distribution. The fitting parameters of the second sphere fitting,
including diameter, centre XY coordinates and fitting error, were exported to create a
diameter profile of the stem. When the number of points was insufficient to fit a circle or
sphere, an “NA” value was assigned to the parameters. The diameter profile was then
utilised to derive phenotypic metrics, including DBH, stem height, volume and swellings
in the stem (nodes).

For DBH measurements, it is common practice in NZ to move the measurement of
the DBH height from 1.4 m by a maximum of ±10 cm to avoid taking the measurement
over a swelling. If the swelling persists within this ±10 cm tolerance, DBH is calculated
from measurements taken from two internodal sections at equal distances above and below
the swollen 1.4 mark in what is termed a “split”. Additional guidelines are followed
when moving the DBH height along the stem to ensure accuracy and consistency of
measurement [48]. These guidelines result in four DBH height classes, direct measurement
(diameter taken at 1.4 m AGL), direct measurement for small swellings (DBH height
shifted from 1.4 m by a maximum of ±10 cm to avoid small swellings on the stem),
split for large swellings (two diameter measurements taken at roughly equal distances
above and below 1.4 m to avoid large swellings on the stem) and direct measurement for
large swellings (when none of the above measurements are applicable). Following these
guidelines, a variable breast height (VBH) estimation method that used six different stem
diameter profiles (1, 2.5, 5, 10 and 20 cm) and six different tolerances (0.001, 0.5, 1, 1.5,
2 and 2.5 cm) was instigated when extracting DBH from individual tree segments. The
tolerance represents the minimum change in stem diameter between neighbouring stem
slices. 0.001 tolerance is referred to as “any change”, hereafter. In addition, as a control,
diameter extracted at a set height of 1.4 m above the DTM (fixed-height method) and at the
heights identified for measurement by the field crew (field-height method) was also tested.

Tree heights calculated from the SimpleForest pipeline displayed a strong negative
bias due to aggressive noise filtering. We, therefore, used the original co-registered MLS
point cloud to assess the height accuracy. Tree height was derived using a peak detection
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methodology. First, the stem map created in the SimpleForest pipeline was converted to a
shapefile of the stem locations at ground level. A buffer of 1 m was applied to each of the
stem circles and a new shapefile representing a search radius for the tree peak was created.
Point clouds from the ULS and MLS were then ground classified, height normalised and
noise filtered to remove spurious points above the canopy using the lidR package [54] in R.
The maximum height within each polygon of search-radius shapefile was then extracted as
the tree height.

For stem volume calculation, the stem was divided into 10 cm thick slices, from which
diameter profiles were extracted. A volume calculation algorithm that moves up the stem
profile by aggregating the individual volumes of stacked slices was developed to obtain
total stem volume. The algorithm only aggregates consecutively stacked chunks and stops
aggregating when it detects an “NA” in the stem profile, even if there are additional spheres
above this gap (Figure 7a).

Figure 7. Images showing sphere fitting on a delineated tree stem. (a) Spheres of a whole tree stem
(left) and stem points (right). (b) A close-up showing spheres (off-white), stem points (pink) and
branch points (blue).

We used the stem diameter profiles (5/10/15 cm) of each tree to detect the segments
that showed a significant increase in diameter compared with their neighbouring segments
and marked them as potential nodal swellings (Figure 7b). The heights of these nodal
swellings were later matched with field measured whorl heights.

2.2.5. Accuracy Statistics

Precision and bias were calculated using common statistical methods for the compari-
son of field and laser scanning metrics [5,24]. Root mean square error (RMSE) and mean
bias error (MBE) are calculated as follows:

R2 =
∑i (ŷi − y)2

∑i (yi − y)2

RMSE =

√
∑n

i=1 (ŷi − yi)
2

n
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MBE =
1
n

n

∑
i=1

yi − ŷi

where yi represents field measurements, ŷi represents predicted measurements from point
clouds, y is the average of the observed values and n represents the sample size. The
relative RMSE (RMSE%) was calculated as the percentage of the average observed value:
100(RMSE/y). To assess the impact of DBH on error, absolute error (AE) and percentage
error (PE) were both calculated at the tree level. AE was calculated for each tree using the
equation |yi − ŷi| and PE from 100× AE/yi. The effect of DBH on error was then evaluated
by plotting AE and PE against DBH categories in bins with 5 cm increments from 0–65 cm.

The accuracy assessment of whorl detection was calculated as per Pyörälä et al. [45]:

Accuracy(%) =
na

nm + n f p
× 100

where na represents the number of correctly identified whorls, nm represents the number
of field-measured whorls and n f p represents the number of falsely predicted whorls.

A confusion matrix was created for assessing the accuracy of DBH height class predic-
tion by VBH method. The overall accuracy and kappa values were calculated using the
confusion Matrix algorithm of caret package [55] in R statistical software environment.

3. Results
3.1. Individual Tree Segmentation

Of a total of 884 trees, 798 stems were correctly accurately segmented by the Simple-
Forest pipeline. This figure represents a detection accuracy of 90.3%. The trees that the
algorithm failed to segment mainly consisted of trees with errors introduced in the tiling
process (Figure 8b), trees that had low branching or were surrounded by denser under-
storey (Figure 8c,e,f) and the trees growing too close to a boundary fence. Trees that were
very small or growing in clusters also caused greater incidences of segmentation failure
(Figure 8d). Nearly 50% of the smaller diameter trees in clusters did not segment accurately.

Figure 8. Selection of errors encountered in the segmentation process. (a) Tree F43—clear segmenta-
tion with accurate DBH; (b) tree D26—stem cut in half vertically in tiling process; (c) tree G4—forked
tree with additional leader diverging from the main stem below DBH height; (d) tree O40—inclusion
of more than one tree as a single segment; (e) tree G47—considerable needle noise at DBH height and
(f) tree T41—understorey points attached to stem.

3.2. Tree Metrics
3.2.1. DBH

Overall, our results demonstrate high levels of correlation (R2 = 0.96–0.99) and low
levels of error (RMSE = 1.72–2.61 cm/5.4–8.2%) when assessed against field-measured DBH
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(Figure 9). The best result for correlation (R2 = 0.988) in our VBH diameter method was
observed when the slice interval and tolerance parameters were set to 20 cm and “any
change”, respectively (Figure 10a); however, this method only achieved the fifth lowest
RMSE (1.83 cm/5.8%). The lowest RMSE (1.72 cm/5.4%) was observed in the results for
the DBH measurements taken at field height, with a 20 cm slice interval, which also has the
third highest R2 (0.987) (Figure 10b). The fixed height method, where DBH was derived
at 1.4 m above the DTM, with a slice interval of 20 cm displays the third lowest RMSE
(1.81 cm/5.7%) and fifth highest R2 (Figure 10c). The optimal results from each of the three
methods that were assessed: VBH method, the field-height method and the fixed-height
method are shown in Figure 10.

Figure 9. Correlation and relative RMSE values of each DBH methodology assessed. R2 values
represented by bars coloured by DBH method used, and relative RMSE represented by orange bars.
The tolerance represents the minimum change in stem diameter between neighbouring stem slices,
with tolerance of 0.001 referred to as “any change”.

Figure 10. Correlation between field-measured and MLS-derived DBH. (a) The best MLS-derived
DBH result from the VBH method, (b) the best result from the MLS measurements taken at field
height and (c) the best result from the MLS measurements taken at a fixed height above the DTM. The
dashed lines represent a 1:1 line and the red lines represent a fitted linear model with linear equation
and R2 shown.

When the sampled trees were binned into diameter intervals of 5 cm, trees with a DBH
less than 10 cm show a larger AE (4.12–1.11 cm), which decreases with each group until
the 15–20 cm group (1.07 cm) and then shows a trend for increasing positively with the
increase in DBH (Figure 11b). PE, however, started high with the 0–5 cm DBH trees (~39%),
decreasing to 5.5% in the 15–20 cm DBH group and then slowly decreasing incrementally
to 2.1% in the 60–65% group, with minor fluctuations in the 35–40 cm and 50–55 cm groups
(Figure 11a).
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Figure 11. Variation of DBH categories in (a) MPE and (b) MAE between field-measured and MLS-
measured values. Box plots show median error for each category and confidence intervals, with box
width representing sample size. The mean error for each height class is represented by diamonds.

Generally, the performance of the VBH algorithm for predicting DBH height class was
low to moderate with overall accuracy ranging from 34 to 52% for the different tunings of
the VBH algorithm that we assessed, with the highest value observed for the VBH method
with a 20 cm slice interval and any diameter change between neighbouring stem slices.
Kappa coefficient values generally fell in the poor to slight agreement range, with the
highest value of 0.143 observed by the same VBH model as the overall accuracy (Figure 12).
When assessing the performance of DBH height class detection, the confusion matrix shows
that the algorithm gives a moderate level of performance for taking a direct measurement at
1.4 m (58.8% correctly classified—recall) and moving for a small swelling (51.1.% correctly
classified/recall) (Figure 13). A total of 36.6% of direct measurements were misclassified as
small swellings, with 36.1% vice versa. The model performed poorly for split (3.5%), with
54.4% of splits being misclassified as direct measurements (Figure 13).

Figure 12. Accuracy and Kappa values for each of the VBH tunings that were assessed. Coloured
bars represent overall accuracy of each tuning, coloured by the tuning of the tolerance; orange bars
represent the kappa coefficient for each tuning.
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Figure 13. Confusion matrix showing the frequency that each DBH height class was identified
by the VBH algorithm (expressed as a percentage with the number of occurrences below) and the
percentage that each class was confused with a different class (small percentages), Direct_M is where
a measurement was taken at 1.4 m (no swelling), Direct_SS is where the DBH was moved by <10 cm
to avoid a small swelling, Split is where a split measurement was used to avoid a large swelling and
Direct_LS is where a large swelling was too large to use a split and so a single measurement was
taken at <1.4 m.

3.2.2. Tree Height

Both ULS and MLS height show a relatively weak correlation with field-measured
height (R2 = 0.24 and 0.22, respectively) (Figure 14a,c). The RMSE is also high for both
scanners (at ~28.6%) with a mean bias of −3.57 m for the ULS and −3.46 m for the MLS
(Table 2). Further analysis highlighted that most of the significantly over-estimated heights
were attributed to suppressed trees, or trees with broken tops. After removing suppressed
(which were measuring <20 m in height within the field data) and broken trees (which were
recorded as broken during field visits) from the analyses, correlation with field measure-
ments increased to 0.42 for ULS and 0.41 for MLS (Figure 14b,d) data. The improvements
to RMSE and MBE stood at 10.14% and −1.32 m for ULS and 9.9% and −1.18 m for MLS
(Table 2) data. The correlation between the heights derived from ULS and MLS data is
very strong, with an R2 value of 0.94 (Figure 15), an RMSE of 3.02% and an MBE of 0.11 m
(Table 2).

Table 2. Accuracy comparisons between point cloud-derived height and field-measured height.

Variables R2 RMSE
(m)

RMSE
(%)

MBE
(m)

ULS vs. Field 0.24 7.19 28.60 −3.57
ULS vs. Field (minus suppressed) 0.42 2.85 10.14 −1.32

MLS vs. Field 0.22 7.19 28.57 −3.46
MLS vs. Field (minus suppressed) 0.41 2.78 9.90 −1.18

ULS vs. MLS 0.94 0.87 3.02 0.11
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Figure 14. Correlation between field-measured and (a) all ULS-derived heights, (b) all MLS-derived
heights, (c) ULS-derived heights with all suppressed trees removed and (d) MLS-derived heights
with all suppressed trees removed. The dashed lines represent a 1:1 line and the red lines represent a
fitted linear model with the linear equation and R2.

Figure 15. Correlation between ULS- and MLS-derived heights. The dashed line represents a 1:1 line
and the red line represents a fitted linear model with the linear equation and R2.

3.2.3. Stem Volume

Stem volume estimates from the MLS data show a very strong correlation with field-
measured volume with an R2 of 0.99 (Figure 16). The results show an RMSE of 0.21 m3

(10.16%), with an MBE of 0.16 m3. Sphere-fitting failures occurred at various heights for
the trees assessed (Table 3). Consequently, stem volume is directly linked to the height up
to which the algorithm was able to calculate volume.
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Figure 16. Relationship between field-measured volume and MLS-derived volume. The dashed line
represents a 1:1 line and the red line represents a fitted linear model with linear equation and R2.

Table 3. Tree-level volumetric calculations and whorl detection from MLS data. Results include
the maximum height of stem included in the volume calculations, calculated stem volume, and the
height of the highest whorl detected for 5 cm, 10 cm and 20 cm interval diameter profiles.

Individual Tree Identifier

A8 B23 C7 D14 E8 F19 G18 H7 J5 K1 L8 M7

Max Ht (m) 13.9 14.0 10.5 10.10 17.9 10.8 12.9 9.1 17.1 15.8 18.9 17.9
Stem volume (m3) 2.77 1.59 0.99 0.97 2.15 1.03 1.27 0.69 2.69 3.80 3.90 2.80

Max Ht Whorl (5 cm) 15.38 16.03 13.18 16.38 17.63 16.68 16.73 14.73 13.78 15.43 18.48 17.48
Max Ht Whorl (10 cm) 16.1 16.9 15.4 18.1 17.5 18.8 18.1 13.51 17.1 15.9 18.6 17.6
Max Ht Whorl (20 cm) 16.15 17.15 15.15 19.15 18.75 18.95 18.75 15.16 17.15 16.35 18.55 19.35

3.2.4. Whorl Detection

Whorl detection was analysed in two ways. First, the accuracy of whorl height
measurements as detected by the algorithm was assessed via a linear regression (Figure 17).
This involved assessment of true positive whorl predictions only. Second, the ability of
the algorithm to correctly identify whorls on each tree stem was assessed. The algorithm
assesses the stem diameters, averaged over a specified stem length, with neighbouring
stem diameters. The algorithm was tuned to 5 cm, 10 cm and 20 cm stem slices.

Figure 17. Relationship between field-measured whorl height and correctly detected whorl heights
derived from the MLS data with (a) 5 cm, (b) 10 cm and (c) 20 cm configuration. The dashed lines
represent a 1:1 line and the red lines represent a fitted linear model with linear equation and R2.

All three settings of the algorithm returned a high level of precision, with RMSE values
ranging from 17 cm/1.88% to 26 cm/2.73%) and a low level of bias, with all three tunings
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showing an MBE of ~1 cm (Table 4). The detection accuracy was, however, only moderate,
ranging from 40.25% for the 5 cm tuning to 42.41% for the 10 cm tuning (Table 4). The
20 cm configuration was able to characterise branches higher up the stem to a mean height
of 17.55 m and a maximum of 19.35 m, compared with a mean of 16.97 m and maximum
of 18.8 m for the 10 cm configuration, and 15.99 m and 18.48 m for the 5 cm configuration
(Table 3).

Table 4. Results for whorl detection along with values for precision and bias for each of the three
configurations of the detection algorithm.

Tuning
(cm)

No.
Whorls

Measured

No.
Whorls

Detected

No. True
Positives

No. False
Positives

No. False
Negatives

RMSE
(m)

RMSE
(%)

MBE
(m)

Detection
Accuracy (%)

5 410 602 289 313 108 0.17 1.88 −0.01 40.25
10 410 265 201 64 209 0.26 2.73 −0.01 42.41
20 410 193 175 18 235 0.22 2.10 −0.01 40.89

4. Discussion

In this study, a comprehensive ultra-high-density lidar data set was successfully
captured using ULS and MLS technologies. The CloudReg methodology enabled the
accurate co-registration and combination of the field, ULS and MLS data at the individual
tree level, which to the best of our knowledge was not previously undertaken on this scale.
Ancillary field measurements from crown mapping allowed for more intense scrutiny of
metrics derived from below-canopy laser scanning proving the ability of MLS technology
to characterise fine details of tree form. The results of our study show promise for the use
of high-density MLS technology in extracting metrics for tree phenotyping.

4.1. Individual Tree Segmentation

In this study, we were able to segment 90.3% of the stand using an automated in-
dividual tree segmentation pipeline. These results are comparable to previous studies,
reporting 92.4–94% segmentation rates for TLS in leaf-off conditions and MLS in leaf-on
conditions, respectively [56]. Our results also show a marked improvement on previous
studies using SimpleTree, a precursive software to SimpleForest for segmentation that
achieved detection rates of 74% [57] and 58% (averaged across two plots) [28]. Previous
studies found difficulties in segmenting trees with diameters of <10 cm [25,26]. The results
show that our study suffered from similar issues with small trees, where 79 had a DBH of
<10 cm which contributed to some of the segmentation failures. Of these, 63 trees were
stunted and growing in un-thinned clusters. The rigorous filtering applied in the stem seed
detection step may have removed a large number of smaller diameter trees that were in
close association with larger trees. The stand was planted in a 1.5 m × 5 m spacing and
never systematically thinned, resulting in areas of high stem density which caused some
additional issues for the segmentation algorithm. These results suggest that future work
should focus on resolving the segmentation of smaller trees and refining stem delineation
in dense and un-thinned stands.

4.2. Tree Metrics
4.2.1. DBH

Previous studies suggested that the estimation of DBH at a fixed height above the
derived DTM could potentially introduce errors, as the DTM averages the forest floor
height [24]. The results of this study, however, show that there is no significant difference
between using DBH measurements taken at a set height above a DTM, adjusting DBH
heights to match field-measurement heights or by using a variable height algorithm to
avoid areas of swelling on the stem. Diameter estimated using our VBH algorithm has a
marginally stronger correlation; however, the lowest RMSE was observed when diameter
was extracted from MLS data at field measured heights (Figure 10b). The fixed-height
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method also displays lower RMSE than the VBH method (Figure 10c). However, the
diameter results for the VBH, field height and fixed height methods were not significantly
different at the 95% confidence level (p = 0.0001), which indicates that use of any of these
methods for the measurement of plantation species, such as P. radiata, will give comparable
results on flat terrain. Nevertheless, the results of our VBH methodology for accurately
detecting swelling are moderate overall (52%), so further work should look to optimise
this method, as this could further increase the accuracy of the VBH methodology. As
our research was confined to a very flat site, we cannot be sure that steeper terrain will
not influence the choice of algorithm and so further research should look to apply these
algorithms in varied levels of terrain.

Some clear trends could be observed with the parameter tuning of our VBH algo-
rithm, notably that the 20 cm slice interval delivered the best overall performance in all
three methodologies, whereas using a 1 cm slice produced the weakest results. The perfor-
mance of the 1 cm slice interval could be explained by a greatly reduced number of stem
points in the slice after noise filtering. There is no clear pattern to explain the relationship
between the thickness of the slice used for the DBH measurement and the threshold to
detect swelling; however, this is an aspect that would benefit from future study to optimise
this methodology.

The high level of correlation and RMSE we found between field-measured and our opti-
mal MLS-derived DBH (R2 = 0.99, RMSE = 1.72 cm/5.4%) conforms with the correlations re-
ported in other SLAM-based MLS studies (R2 = 0.99, RMSE = 1.11–2.9 cm/3.4–23%) [24,58].
Furthermore, our results fall within the upper end of studies focused more generally on TLS
(R2 range of 0.93–0.99 and RMSE = 1.13–3.37 cm/5.4–13.4%) [24,26,58–61]. MLS-derived
DBH displayed a negative bias of ~1 cm, which was most pronounced in trees of larger
diameter. When exploring this further, our results showed that the percentage error is
negatively correlated with DBH, with a notable increase for trees < 15 cm in diameter.
However, our results also show that the absolute error, although higher for trees less than
10 cm, slowly increased from an MAE of ~1 cm with trees of 10–20 cm up to ~2 cm in
the 50–60 cm diameter range. Other studies also observed this and proposed various
explanations, including the decreased accuracy due to the roughness of the bark [24,25,62]
and the prevalence of stem profile irregularities in older trees [24]. Our results confirm
the findings from previous studies [24,25,58], which indicate that trees with a diameter
of <10 cm show higher levels of error in the MLS data. Smaller diameter P. radiata trees
are more likely to have lower branches and, therefore, in this study, we found more noise
around the DBH height (see Figure 18c,e) of smaller diameter trees, which other studies
also reported for different species [24]. Additional errors can also arise from segmentation
errors that exclude part of the stem (Figure 18b) or include additional stems or understorey
(Figure 18d,f). Our results imply that the Hovermap MLS scanner would give the best
DBH results for trees in the 10–20 cm diameter range, but future studies should focus on
assessing this relationship more closely.

The accuracy of the VBH algorithm in determining DBH height class was moderate,
with the optimal tuning delivering an overall accuracy of 52% (Figure 13). Our findings
demonstrate that the thickness of the stem slice used to derive DBH has an impact on
the accuracy of the model, with 20 cm providing the optimal model, and also on the
tolerance for identifying swelling, demonstrating some impact. The low Kappa scores,
however, indicate that the model performs poorly in identifying swelling (Figure 12). This
lack of accuracy could be related to the aggressive point filtering of the stem-delineation
pipeline, which could mask some of the stem swelling. Future research should focus on
fine-tuning our approach to make the variable height algorithm more sensitive to swellings
of difference sizes.

Other reasons for the differences in DBH measurements could be related to the accu-
racy of field measurements. Although the utmost care was taken to ensure the accuracy of
measurements, human error cannot be discounted from the field measurements and some
obvious errors were noted and remeasured. Field measurements involve an element of
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subjectivity in deciding where to measure the DBH and determining the highest ground
point from which to take the 1.4 m from. Grass and leaf litter could also add noise to the
DTM, a factor that would not impact field measurements as an inventory forester would
ensure that the height pole was sighted on solid ground. To avoid this scenario, other
studies compared MLS data with TLS data [22,24,25].

Figure 18. Stem cross-sections at DBH height, with red cross denoting estimated centre point from
sphere fitting and red dashed line showing the estimated radius. Cross-sections align with profiles
from Figure 7: (a) tree F43—clear segmentation with accurate DBH, (b) tree D26—stem cut in half
vertically by tiling errors, (c) tree G4—forked tree with additional leader diverging from main stem
below DBH height, (d) tree O40—inclusion of more than one tree as a single segment, (e) tree
G47—considerable needle noise at DBH height and (f) tree T41—understorey points attached to stem.

4.2.2. Height

The accuracies of MLS-derived (R2 = 0.22/RMSE = 7.19 m/28.57%) and the ULS-
derived (R2 = 0.24/RMSE of 7.9 m/28.6%) height were relatively low. When compared
with the literature, this is unusually weak with previous studies on TLS reporting RMSEs
between 0.54 m and 6 m [39,63–67] and R2 values between 0.57 and 0.95 [63,64,67]. ULS
height was also reported to have much higher R2 (ranging from 0.76 to 0.97) [68–72] and
RMSE (0.72% to 7.91%) [26,68,70,71,73] values. The poor results can largely be attributed
to the overestimation of height for suppressed trees within the stand. Figure 19 shows an
example of two suppressed trees that were overestimated by ~15 m by both scanners.

When the suppressed and broken trees were removed from the results, we observed sig-
nificant improvements in agreement (R2 = 0.42 and 0.41) and precision (RMSE = 2.85 m/10.14%
and 2.78 m/9.9%) for the ULS and MLS scanners, respectively. These results are consistent
with findings of a previous study, which found a much higher level of precision with
unbroken trees (RMSE = 6.8%) compared with broken trees (RMSE = 56%), the inclusion of
which significantly affected overall precision (RMSE = 15%) [36].

The negative effect of suppressed trees on the results implies that the peak detection
method used in this study is not appropriate for single tree-level height measurement in
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mature stands. Alternative methods for tree height detection were proposed to compensate
for this [74] and future studies should look to apply these algorithms to MLS and ULS data
at an individual tree level to assess their efficacy.

Figure 19. Nadir view of two suppressed trees in the CHM, and inset as a transect, highlighting the
issue of using peak-detection for suppressed trees.

Due to delays in the project caused by COVID-19, the ULS and MLS data sets were
captured 9 months and 11 months, respectively, after the field data. The potential impact of
this time lag between data captures must also be considered. Comparisons with a prior
ULS data capture of the site reveal an average 1.45 m increase in peak height from May 2020
to May 2021. Additionally, tree height is notoriously difficult to capture in the field and
even an experienced mensuration forester can have trouble accurately attaining height due
to occlusion, tree lean or inter-twined treetops [75,76].

To remove time lag between measurements and other potential sources of error and
to assess the absolute accuracy of MLS height, we compared the MLS-derived height
to ULS-derived height, as our previous study reported a very high level of accuracy
(R2 = 0.99, RMSE = 5.91%) in tree height of P. radiata stands [5] using ULS data. The results
were extremely encouraging, demonstrating a strong correlation (R2 = 0.94) and a lower
RMSE (0.87 m). Interestingly, the MBE of 11 cm between the two scanners indicates that
the MLS data overestimated the tree height. Once the issues with measuring individual
tree-level heights are resolved, this would also suggest that the MLS data captures the
height of mature trees with sufficient accuracy to negate the need for capturing ULS data
from the air. This is a significant finding, as previous research has indicated that TLS and
MLS are both prone to underestimation of tree height due to the low range of the scanners
and the occlusion caused by branching [22].

4.2.3. Stem Volume

The stem volume assessment found that the MLS volume estimates were very strongly
correlated with field measurements (R2 = 0.99). Estimates demonstrate a moderately high
level of precision (RMSE = 0.21 m3/10.16%) and a tendency to underestimate volumes
(MBE = 0.16 m3). These findings fit well with existing studies that showed underestimation
of between 6.8% and 15% of total stem volume [26,42,77,78]. Of these studies, the closest
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methodology to that used in this study reported a general underestimation of stem volume
of up to 10% when comparing TLS with destructive sampling methods [42].

There was a slight inversely proportionate decrease in accuracy with an increase in
total stem volume (Figure 16). As expected, the volume per tree was related to the height up
the stem to which our algorithm was able to derive volume (Table 3). One possible reason
for this increase in volumetric error could be associated with an increase in the diametric
error of the point cloud higher up the stem caused by decreasing point density. This would
manifest itself as a greater error in tree volumes that include a greater proportion of stem
length. This is not an uncommon phenomenon and was observed in other studies that used
TLS and ULS data [34,66,79,80].

On average, the volumetric algorithms deployed in this study were able to calculate
volumes up to ~14 m, with a minimum and maximum height of 9.1 m and 18.9 m. In their
study, Bruggisser et al. [34] calculated that 71.9% of total stem volume could be found
within the first 10 m of the stem. Using this logic, measurements from the MLS should
be able to account for a minimum of two-thirds of the tree’s volume with an accuracy
of ~90%. This is a significant finding when the measurement of DBH, particularly in
smaller trees, is inherently biased with this technology. DBH is a measurement developed
to standardise tree growth assessment in a practical and convenient manner, and can be
used for calculation of stem volume, alongside measurements for tree height and taper
equations. The ability to calculate stem volume directly from the stem profile removes the
need for this legacy measurement and would arguably result in more accurate results for
stand volume. Future research should be focused on better understanding the interaction
between stem curve and diametric error for the MLS data. A better understanding of this
relationship, along with the development of methods to derive volume from areas of the
stem point cloud with lower point density, could aid in the development of usable models
for deriving stem volume from MLS point clouds.

4.2.4. Whorl Detection

All three configurations of the whorl detection algorithm showed high levels of
precision (Figure 17) and correlation with field measurements (Table 4) for whorl height
when manually aligned. The whorl detection algorithm also outperformed the volume
calculation algorithm in terms of the proportion of the stem covered (Table 4), with the best
configuration (20 cm) detecting whorls up to a max height of 19.35 m and a mean height
of 17.55 m. This is likely because the sphere-fitting algorithm struggled to fit spheres to
smaller chunks (e.g., 10 cm) of the stem higher up the tree (see Figure 7).

The whorl detection accuracy was somewhat lower than the whorl height accuracy.
The highest and lowest accuracies were achieved by the 10 cm (42.41%) and 5 cm (40.25%)
configurations, with false-positive rates of ~24% and ~52%, respectively. The 5 cm configura-
tion was able to correctly identify the most whorls (~70%); however, it also generated nearly
fivefold more false positives than the best configuration. Similar work by Pyörälä et al. [45]
used clusters of detected branches to identify whorl locations on the stem. Their algorithm
correctly detected only slightly more whorls than the algorithm in this study, at 71.1%;
however, the low number of false positives (1.9%) increased the overall detection accuracy
to 69.9% (compared with 40–42% in this study). Possible reasons for this large difference in
detection could be due to their use of TLS, which is known to create less noisy point clouds
than the MLS system used in this study [29]. Their reported mean lowest whorl height was
also above 7 m high, with a maximum lowest whorl height of 13.5 m, due to self-pruning
of the studied species. This would indicate that their stems had fewer branches, thus
much less noise than the P. radiata in our study, which was pruned up to ~2 m. Future
studies should be focused on methods for reducing the number of false positives identified
in our method, possibly by integrating branch and stem swelling detection to improve
overall accuracy.
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5. Conclusions

Unlike earlier stages of the forest-growing process, mature forests are challenging to
segment and characterise owing to the dense, multi-layered canopy and the height of the
trees. This study has shown that accurate phenotypic measurements can be derived from
mature stands of P. radiata using Mobile Laser Scanning (MLS) units, such as the Hovermap.
From MLS point clouds, a range of measurements, including diameter at breast height
(DBH) and stem volume can be extracted with a high level of agreement. When combined
with the CloudReg approach, the segmentation pipeline implemented in this study enabled
highly accurate segmentation and tree location identification, demonstrating the scalability
of MLS for phenotyping operations.

The novel variable height method introduced for determining measurement height
for DBH performed moderately for avoiding swelling. The method did, however, perform
strongly for the estimation of DBH when compared with the existing methods in the
literature, deriving measurements with low levels of RMSE.

A key finding of this study is that, from the ground, the MLS can derive canopy
height with a level of precision and accuracy comparable to a high-end ULS from the air.
Despite needing more work to increase accuracy at the individual tree-level, this finding
has significant implications for forestry as it was previously necessary to use laser scanners
both above and below the forest canopy to estimate tree height and characterise stems from
the same point cloud.

Volume extraction from the MLS data showed high levels of precision and, despite
occlusion of the upper stem, and showed promise as a potential replacement for legacy
measurements involving DBH and height.

The whorl detection method proposed in this study and its results establish a bench-
mark for more advanced methods of whorl detection and branch characterisation.

Measurement of smaller, suppressed trees were particularly problematic for both
diameter and height measurement from the MLS data. However, overall MLS technology
holds significant potential as a means of advancing phenotyping, forest mensuration and
inventory at different scales, particularly for characterising fine details in tree form when
used in combination with fine-tuned and standardised metric extraction algorithms. Thus,
further research should focus on testing MLS tools in more diverse forest environments,
refining capture techniques for better characterisation of the upper stem and fine-tuning
algorithms to further increase the accuracy and precision of measurement.
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