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Abstract: The detection and attribution of vegetation dynamics in drylands is an important step for
the development of effective adaptation and mitigation strategies to combat the challenges posed
by human activities and climate change. However, due to the spatial heterogeneity and interactive
influences of various factors, quantifying the contributions of driving forces on vegetation change
remains challenging. In this study, using the normalized difference vegetation index (NDVI) as a
proxy of vegetation growth status and coverage, we analyzed the temporal and spatial characteristics
of the NDVI in China’s Inner Mongolian grasslands using Theil–Sen slope statistics and Mann–
Kendall trend test methods. In addition, using the GeoDetector method, a spatially-based statistical
technique, we assessed the individual and interactive influences of natural factors and human
activities on vegetation-NDVI change. The results show that the growing season average NDVI
exhibited a fluctuating upward trend of 0.003 per year from 2000 to 2018. The areas with significant
increases in NDVI (p < 0.05) accounted for 45.63% of the entire region, and they were mainly
distributed in the eastern part of the Mu Us sandy land and the eastern areas of the Greater Khingan
Range. The regions with a decline in the NDVI were mainly distributed in the central and western
regions of the study area. The GeoDetector results revealed that both natural and human factors
had significant impacts on changes in the NDVI (p < 0.001). Precipitation, livestock density, wind
speed, and population density were the dominant factors affecting NDVI changes in the Inner
Mongolian grasslands, explaining more than 15% of the variability, while the contributions of the two
topography factors (terrain slope and slope aspect) were relatively low (less than 2%). Furthermore,
NDVI changes responded to the changes in the level of specific influencing factors in a nonlinear
way, and the interaction of two factors enhanced the effect of each singular factor. The interaction
between precipitation and temperature was the highest among all factors, accounting for 39.3% of
NDVI variations. Findings from our study may aid policymakers in better understanding the relative
importance of various factors and the impacts of the interactions between factors on vegetation
change, which has important implications for preventing and mitigating land degradation and
achieving sustainable pasture use in dryland ecosystems.

Keywords: NDVI; vegetation dynamics; influencing factors; spatial stratified heterogeneity;
geographical detector method

1. Introduction

Drylands, covering about 41.30% of the Earth’s terrestrial surface and supporting
more than 38% of the global population [1], are characterized by a lack of water, infertile
soil, and high climate variability. They are highly susceptible to climate fluctuations and
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human activities [2,3]. Because of the limitations imposed by water resource availability
and challenging climate change effects, drylands fall victim to persistent land degradation
problems that have led to the desertification of 3.6 billion hectares worldwide and have
threatened the lives and livelihoods of the local people [3,4]. Monitoring land degradation
and identifying its potential causes are of great significance to sustainable land use. As
the primary producer in the ecosystem, the ground vegetation links the carbon–water
cycle and the energy flow within the hydrosphere, pedosphere, and atmosphere [5,6],
and it plays a fundamental role in providing ecosystem goods and maintaining terrestrial
ecosystem functions [7]. The vegetation conditions of degraded land have always been
used as a proxy to quantitatively detect ecosystem processes at both local and regional
scales [8–11]. With the help of satellite remote sensing images, the detection and attribution
of vegetation greening and browning trends have emerged as a popular subject in the
scientific community over the past several decades [12], and the relation between the
normalized difference vegetation index (NDVI) and vegetation growth status and coverage
has been well established. Due to the spatial heterogeneity and the combined effects of
the driving factors [13,14], quantifying the contributions of the main drivers of vegetation
change remains challenging. It is urgent that techniques be developed to help disentangle
the contributions of factors to variations in vegetation for the development of strategies for
vegetation restoration and desertification prevention in drylands.

In general, vegetation change was influenced by intertwined natural and human-
induced factors. The impact of global climate change on vegetation growth is a major
research priority. Numerous studies have been carried out related to the response of the
NDVI to variations in climatic factors (e.g., air temperature, solar radiation, and precipi-
tation) at different spatiotemporal scales [5,6,15], aimed at improving our knowledge of
the mechanistic link between the effects of climate change on vegetation activity. Over the
last decades, human activities became diverse and intensive, exerting greater pressure on
terrestrial ecosystems [3,16]. Anthropogenic factors manifest primarily in land-use change
(LUCC) or changes in management measures [17,18]. Urbanization, characterized by the
occupation of vegetation-covered surfaces by impervious ground, may lead to vegetation
degradation [19]. Overgrazing, cultivation of arable land, and deforestation have resulted
in bare ground and soil erosion, which may result in vegetation degradation [20], while the
enclosure management of degraded rangeland may promote vegetation restoration [21].

The residual trend method (RESTREND), ecosystem modeling methods, and various
mathematical models are widely used for quantifying the influences of driving factors on
changes in vegetation growth. The RESTREND method distinguishes between human-
induced and climate-driven vegetation changes based on the trend of NDVI residues
(defined as the differences between the actual and predicted NDVI values) [22], and it is
predominantly useful in studies of regions where water is limiting [9,23,24]. However,
the RESTREND method is associated with some uncertainties [25]. The results of the
RESTREND method may vary considerably with the time employed to compute the NDVI-
precipitation regression and the trends of its residuals [23,26]. Moreover, this method
attributes the residuals to the total effects of all human disturbances, making it difficult
to disentangle and compare the contributions of different human activities on vegetation
variations [18]. The mathematical models mainly include regression, correlation analy-
sis, and the structural equation modeling method [6,18,19,27]. Most of the mathematical
models detect the impacts of the environmental variables on the vegetation dynamics
using a linear hypothesis [28]. However, theory and empirical evidence suggest that
the trajectory of the responses of the vegetation index to the influencing factors is often
nonlinear [2,29,30], so the linearity assumptions may result in erroneous conclusions and
misleading interpretations. Many process-based ecosystem models have been developed to
quantify the responses of environmental variables to key ecological processes in a nonlinear
way [28,31,32], overcoming the deficiencies of the mathematical models. However, ecosys-
tem modes usually require a large number of inputs and parameter settings, and there
are uncertainties in the models’ structures and parameter choices [33], which may lead to
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inconsistent model results [15]. The GeoDetector method, which was developed by Wang
in 2010 [34], quantifies the impacts of factors on geographical phenomena or attributes
from a spatially stratified heterogeneity perspective [34,35]. The GeoDetector method does
not involve complex parameter settings, nor does it follow the restrictive assumptions of
traditional statistical methods. This technique has been used to evaluate the influences
of factors in the eco-environmental and social science fields [15,36–40]. The GeoDetector
method can be a promising tool for exploring the associations between various impact
factors and vegetation changes in drylands.

With climate change and increasing anthropogenic activities, the vulnerable ecosys-
tems of the drylands in northern China have been degraded to varying degrees, posing
severe ecological and environmental problems [41–43]. In order to reverse the environmen-
tal degradation trend, particularly in the ecologically fragile regions, several ecological
conservation programs were carried out in the late 1990s [44,45]. Since then, land-use
patterns have changed substantially [45]. An in-depth understanding of the spatial fea-
tures and the changes in and underlying the driving mechanisms of vegetation activity is
important to improve policymakers’ understanding of the sustainable use of vegetation
resources and for the development of reasonable strategies for ongoing ecological restora-
tion. At present, scholars have mainly focused on the relationships between vegetation
variations and climatic factors at different time and spatial scales in the drylands of north-
ern China [15,24,26,46–49], but they have paid little attention to different human activities
(e.g., grazing pressure, land use conversions). In addition, few studies have considered
the potential of interactive effects between the factors impacting vegetation changes. If the
interactions between factors are not taken into consideration, the results may be biased [19].

In this study, the Inner Mongolian grasslands were selected as the study area. The Inner
Mongolian grasslands act as an ecological protective belt for eastern China and provide
plenty of ecosystem services (e.g., food supply, grass production, climate regulation, carbon
sequestration, soil erosion control, and cultural heritage) [50]. The objectives of this work
were twofold: (1) to investigate the temporal and spatial characteristics of the NDVI
in the Inner Mongolian grasslands from 2000–2018; and (2) to examine the individual
contributions and interactive effects of natural factors and human activities on vegetation
changes using the GeoDetector method. This work aims to provide a scientific foundation
for detecting the underlying mechanism of vegetation changes in temperate grasslands.

2. Materials and Methods
2.1. Study Area

The Inner Mongolian grasslands, located in the drylands of northern China
(105◦18′–125◦15′E, 37◦38′–50◦50′N; Figure 1a), cover an area of approximately 78.2 × 104 km2.
This region is mainly arid and semi-arid [48]. It is ecologically fragile and is vulnerable
to climate variations and human activities, but it plays a critical role in safeguarding the
ecological security of northern China’s agricultural plain and metropolitan regions [44].
Dominated by a temperate continental climate, the Inner Mongolian grasslands have an-
nual precipitation of 120–520 mm and an annual mean temperature of −2 to 10 ◦C. More
than 80% of the annual total precipitation is concentrated between July and September,
which coincides with the period of high temperatures [44]. The climate has distinct seasonal
characteristics: (1) windy and dry in spring, with strong evaporation; (2) warm and hot
in summer, with an uneven precipitation distribution; (3) a short autumn, with early frost
and snow and large day–night temperature differences; and (4) a cold and long winter. The
vegetation across the Inner Mongolian grasslands has obvious east–west zonal distribution
characteristics. From west to east, the precipitation and soil fertility gradually increase, and
the solar radiation gradually decreases, forming three different types of temperate grass-
lands (Figure 1d). There are also nonzonal vegetation types, including saline meadows and
marshes along riverbanks and large tracts of sandy lands, which are closely associated with
site-specific geographical characteristics (e.g., water bodies, topography, and salinization).
The study area is dominated by high plains and low mountains, which are characterized
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by high elevations in the central and western areas and low elevations in the southeastern
and northern areas, with altitudes ranging from 90 m to 2300 m (Figure 1b).
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Figure 1. (a) Location of the study area, (b) topographical conditions, (c) weather station distribution,
(d) ecoregions of the study area, and (e) city boundaries. The numbers in (e) represent the prefecture-
level cities (1—Hulunbuir; 2—Hinggan; 3—Xilingol; 4—Tongliao; 5—Chifeng; 6—Ulanqab; 7—Alxa;
8—Baotou; 9—Bayannur; 10—Hohhot; 11—Erdos; 12—Wuhai).

2.2. Data Acquisition and Processing

The NDVI values were extracted from the MOD13A2 product (Version 6, 1000 m
resolution, 16-days composite). The MOD13A2 product was geographically projected using
the MODIS Reprojection Tool (MRT) software; then, the maximum value composite method
(MVC) was used to obtain monthly NDVI data to reduce the effects of clouds and image
noise. The MVC method still cannot guarantee that all pixels of an image are cloud-free. In
this study, we used the variable weight filtering method proposed by Zhu to reconstruct a
set of high-quality NDVI time-series data; the reconstructed vegetation index time-series
data can enhance the application capability of vegetation index time-series data in the
study of vegetation–climate factor interactions [51]. Given that most of the plants withered
and stopped growing during the winter, we used the growing season (defined as April to
October) NDVI to detect the inter-annual variations in the vegetation activity [48,49].

The meteorological datasets covering the period of 2000–2018 were compiled from
ninety-six weather stations (Figure 1c). The datasets included daily values of the mean
temperature, precipitation, sunshine duration, relative air humidity, and mean wind speed,
which were obtained from the National Meteorological Information Center of China. The
Solar Energy Resource Evaluation method (QX/T 89-2008), which was developed by the
China Meteorological Administration, was used to estimate solar radiation. The spatial
distribution results for meteorological station data at a spatial resolution of 1000 m were
obtained via spatial interpolation using ArcGIS 10.2.

The 2000 and 2015 land cover type data (1000 m resolution) were retrieved from the
Resource and Environment Science and Data Center. The dataset was interpreted visually
based on Landsat thematic mapper images and unmanned aerial vehicles, which are char-
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acterized as being highly accurate via random sampling checks and field surveys. The data
contain 26 secondary categories with a comprehensive evaluation accuracy of >90% [52].

The soil type data were extracted from the soil map of China (1:1,000,000), which was
provided by the Chinese Soil Census Office. The data were compiled by soil generation
classification standards.

The topographic data consisted of altitude, slope, and aspect data. Through image
mosaicking, we obtained a DEM of the study area with a spatial resolution of 90 m from
the Geospatial Data Cloud site (http://www.gscloud.cn, accessed on 25 March 2022).

The administrative boundaries, roads, and settlements (1:250,000) vector data were
obtained from the National Catalogue Service for Geographic Information, Ministry of
Natural Resources of China.

The statistical data, including the total population, gross regional product, agricultural
mechanical power, fertilizer applied for agriculture, grain production, oil production, and
quantity of livestock (including goats, sheep, horses, cattle, and camels), at the county
level, were obtained from the Inner Mongolia Statistical Yearbook (https://data.cnki.net/,
accessed on 20 March 2022). According to prior research, we used an equivalent unit of
grazing (i.e., “sheep unit”) to normalize the grazing intensity among different species [53].
Using the empirical formula [10,53], we set the transition factor for large livestock (e.g.,
cattle, donkeys, camels, and horses) to 6, whereas the transition factor was set to 1 for goats
and sheep.

2.3. Mann-Kendall Trend Test and Sen’s Slope Estimator

In this work, the Sen trend analysis and the Mann–Kendall test [54–56] were used to
detect the trend slopes and significance of trends in the NDVI time series, respectively. The
procedure for the nonparametric Mann–Kendall trend test [55,56] is as follows:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
(1)

In Equation (1), S denotes the standardized test statistic value, xi and xj are data values
at time i and j, respectively; n is the length of time series; and sgn(xj − xi) is the sign
function, which is calculated as follows:

sgn
(
xj − xi

)
=


−1, i f xj − xi < 0

0, i f xj − xi = 0

+1, i f xj − xi > 0

(2)

In this study, the length of time series n = 19, and the trend test were conducted using
the ZS value, which is defined as follows:

ZS =



S + 1√
Var(S)

, i f S < 0

0, i f S = 0
S− 1√
Var(S)

, i f S > 0

(3)

In Equation (3), the variance Var(S) is computed as:

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(4)

In Equation (4), m is the number of tied groups in the time series and ti is the width of
the tied groups. In this study, a significance level of α = 0.05 was used. It is assumed that,
for null hypothesis, the data are arranged with no significant trend. When |Z| > Z1−α/2,
the null hypothesis is rejected and the trend of the change in the series data is considered
to be significant.

http://www.gscloud.cn
https://data.cnki.net/
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The Sen slope calculation is carried out as:

β = Median
(

xj − xi

j− i

)
(5)

where Median() denotes the median function of the requested series; β is the slope of the
time series x; and a negative β value indicates a decreasing trend in the series.

2.4. GeoDetector Method

Spatial stratified heterogeneity (SSH), referring to a within sub-region variance of
less than that between the sub-regions [35], is ubiquitous in ecological phenomena, such
as soil types, land use types, and climate zones. The GeoDetector comprises a series of
spatial statistical methods, and it is frequently used to detect the SSH of the dependent
variables without linear assumptions and reveal the driving forces behind a phenomenon
by quantifying the impact of associated factors. The GeoDetector assumes that if an
independent variable (e.g., precipitation) has a certain degree of influence on a dependent
variable (i.e., NDVI changes), then the spatial patterns of the two variables have high
similarity. Figure 2 illustrates the principle of the GeoDetector; spatial variances within each
sub-region and among the different sub-regions are compared to identify the explanatory
powers of the potential explanatory variables [34,39,57].
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H = {hi, i = 1, 2, . . . , n}, and the sub-region of the potential factor D = {Di, i = 1, 2, 3}.

2.4.1. Single Factor Influence Detection

The impact of an individual factor on changes in NDVI can be measured using the
q-statistic [34,35]:

q = 1− ∑L
h=1 Nhσ

2
h

Nσ2
(6)

where q is the measurement index of the factor. The range of q-statistic is [0, 1]. Based on the
model principle, the larger the q-statistic is, the stronger the independent variable represents
the heterogeneity of the dependent variable. L refers to the number of stratifications of
factor X; Nh and N are the numbers of units in sub-region h and over the whole study
region, respectively; and σ2 and σ2

h represent the variances of variable Y over the entire
study region and in sub-region h, respectively.

2.4.2. Interaction Detection of Pairwise Factors

The interactive impact of two explanatory factors (X1 and X2) on NDVI change also can
be quantified by q-statistic. The module of interaction detection quantifies the interaction
between two factors by comparing q(X1∩X2) with q(X1) and q(X2) to assess whether the
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factors weaken or enhance one another or are independent of each other, in which q(X1∩X2)
indicates the explanatory power of a new factor created by overlaying the layer of the two
variables in GIS tools (Supplementary Figure S1). Generally, the results of the interaction
detector encompass five categories (Figure 3).
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Figure 3. Judgment for interaction types between explanatory variables. Note: max() and min()
denote the maximum and minimum functions, respectively. q(X1∩X2) represents the interaction
between factors X1 and X2. Modified from prior research [38,57,58].

2.4.3. Selection of Factors

In this work, we chose the slope of the change in the NDVI from 2000–2018 as the
dependent variable and selected 15 potential natural and human factors (Table 1, Figure 4).
Specifically, in addition to the climatic factors, we included soil and topography as funda-
mental environmental factors, which have been demonstrated to be critical to inter-annual
variations of vegetation [9,59–61]. Additionally, six factors (road impact, geographical
location, population pressure, grazing pressure, land use/cover change, and economic
development) were selected to reflect the magnitude of anthropogenic influences [19,59]. In
this study, we reclassified land cover types into six types, and the land cover maps (water
bodies were excluded) for 2000 and 2015 were superimposed to generate a land use/cover
change (LUCC) map. The spatial distribution of the grades for all driving factors can be
found in Figure 4.

Table 1. Potential driving factors of vegetation variation in the study area.

Category Index Abbreviation Unit

Climate Annual precipitation Pre mm
Annual mean temperature Tem ◦C
Annual solar radiation SR MJ·m−2

Annual mean wind speed WS m·s−1

Annual mean relative air
humidity RH %

Topography Altitude Alt m
Terrain slope Slopd ◦

Slope aspect Slopa ◦

Soil Soil type Soilt categorical
Human activity Distance to the nearest road DNR km

Distance to the nearest county
centers DNC km

Population density Popd person·km−2

Per capita gross regional product GRP 10,000 yuan person−1

Livestock density Livstd sheep·km−2

Land use/cover change LUCC categorical
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Figure 4. The spatial distributions of all factors. The numbers in the legend of (h) represent (1) Flat
ground, (2) North slope, (3) Northeast slope, (4) East slope, (5) Southeast slope, (6) South slope,
(7) Southwest slope, (8) West slope, and (9) Northwest slope. The numbers in the legend of (i) rep-
resent (1) Luvisols, (2) Semi-luvisols, (3) Caliche soils, (4) Arid soils, (5) Desert soils, (6) Skeletol
primitive soils, (7) Semi-hydromorphic soils, (8) Hydromorphic soils, (9) Saline soils, (10) Anthrosols,
and (11) Others. The numbers in the legend of (o) represent (1) Cropland, (2) Forest, (3) Grassland,
(4) Construction land, and (5) Unused land. Pre: precipitation; Tem: air temperature; SR: solar
radiation; WS: wind speed; RH: relative air humidity; Alt: altitude; Slopd: terrain slope; Slopa: slope
aspect; Soilt: soil type; DNR: distance to the nearest road; DNC: distance to the nearest county centers;
Popd: population density; GRP: Per capita gross regional product; Livstd: livestock density; LUCC:
land use/cover change.

2.4.4. Factor Grading Optimization in the GeoDetector Method

Since the GeoDetector method is only suitable for dealing with discrete or categorical
variables, all the continuous predictor variables should be discretized using appropriate
discretization methods before modeling [38,62]. In this study, the twelve factors, namely,
five post-interpolation meteorological factors, two topography factors (altitude and terrain
slope), and five anthropogenic factors (distance to the nearest road, distance to the nearest
county centers, population density, per capita gross regional product, and livestock density),
are continuous variables. We converted the twelve continuous variables into discrete ones.

To reduce the subjectivity of user-defined discretization and ensure the best-quality
modelling results, the optimal discretization methods were determined from five types of
unsupervised discretization methods, including geometrical interval (GI), natural breaks
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(NB), equal interval (EI), quantile (QU), and standard deviation (SD) methods [38,62,63].
The procedures used for the factor grading optimization are as follows (Figure 5). First, we
classified each continuous variable based on the five discretization methods and fourteen
levels (stratification numbers of 2 to 15). Then, we extracted the values of the NDVI
tendency layer and all of the classification layers. Finally, we calculated the q-statistics of
each continuous predictor variable in all of the classification cases and plotted them to
show their changes (Figure 6).
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Figure 5. Flowchart illustrating the process of determining the optimal discretization method and
stratification number.

A combination of classification algorithms with prior knowledge was needed to
classify the continuous variable when using the GeoDetector method [34,57]. As shown
in Figure 6, the maximum q-statistics of the factors generally increased as the number of
stratifications increased. When the number of stratifications reached a certain value, the
maximum q-statistic stabilized. This certain value was defined as the stable value. When
the stratification number was bigger than the stable value, the characterization identified
by GeoDetector remained unchanged, implying that more discretization intervals do not
mine the information of the continuous variables. Considering the maximum stratification
numbers (7, 8, 7, and 9, respectively) used in relevant studies [38,64–66] and the stable value
observed in this study (approximately 10 in Figure 6), we limited the maximum number of
stratifications to 10. The largest q-statistic value indicates the optimal discretization method
and stratification number [38,62,63]. Based on this principle, we determined the optimal
discretization methods and stratification numbers of each predictor variable. The impact
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factors with the optimal discretization methods and stratification numbers can be found in
Table 2.
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Figure 6. Comparison of the q-statistics under the different discretization methods and stratification
number combinations. The five types of discretization methods include equal interval (EI), geometri-
cal interval (GI), natural break (NB), quantile (QU), and standard deviation (SD). Pre: precipitation;
Tem: air temperature; SR: solar radiation; WS: wind speed; RH: relative air humidity; Alt: altitude;
Slopd: slope; DNR: distance to the nearest road; DNC: distance to the nearest county centers; Popd:
population density; GRP: Per capita gross regional product; and Livstd: livestock density.
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Table 2. The classification of potential driving factors. The units of Pre, Tem, SR, WS, RH, Alt, Slopd,
DNR, DNC, Popd, GRP, and Livstd are mm, ◦C, MJ·m−2, m·s−1, %, m, ◦, km, km, person·km−2,
10,000 yuan person−1, and sheep·km−2, respectively. In the parentheses of the table header, QU, EI,
and GI correspond to three discretization methods of the quantile, equal interval, and geometrical
interval, respectively, and the numbers represent the number of stratifications.

Category/Factor Pre
(QU-9)

Tem
(QU-10)

SR
(GI-9)

WS
(EI-9)

RH
(GI-10)

Alt
(EI-10)

Slopd
(GI-9)

1 123.8–194.9 −2.28 to 0.74 4815–5130 1.72–1.85 40.0–43.7 90–311 0–0.17
2 194.9–233.5 0.74–2.11 5130–5371 1.85–1.97 43.7–46.5 311–532 0.17–0.24
3 233.5–269.0 2.11–3.18 5371–5555 1.97–2.09 46.5–48.5 532–753 0.24–0.40
4 269.0–306.1 3.18–3.97 5555–5695 2.09–2.21 48.5–50.0 753–974 0.40–0.79
5 306.1–332.3 3.97–4.94 5695–5802 2.21–2.33 50.0–51.1 974–1195 0.79–1.71
6 332.3–352.4 4.94–5.72 5802–5884 2.33–2.45 51.1–52.7 1195–1416 1.71–3.88
7 352.4–378.7 5.72–6.89 5884–5991 2.45–2.58 52.7–54.7 1416–1638 3.88–8.97
8 378.7–418.8 6.89–7.48 5991–6131 2.58–2.70 54.7–57.5 1638–1859 8.97–20.92
9 418.8–517.7 7.48–8.07 6131–6316 2.70–2.82 57.5–61.2 1859–2080 20.92–49.21
10 8.07–10.17 61.2–66.2 2080–2301

Category\Factor Slopa Soilt DNR
(GI-9)

DNC
(GI-9)

Popd
(GI-10)

GRP
(EI-9)

Livstd
(QU-10)

1 Flat ground Luvisols 0–1.44 0–19.5 0.98–1.95 1.04–3.63 20.05–29.85
2 North Semi-luvisols 1.44–2.35 19.5–31.9 1.95–3.79 3.63–6.22 29.85–52.72
3 Northeast Caliche soils 2.35–3.79 31.9–39.8 3.79–7.28 6.22–8.81 52.72–55.99
4 East Arid soils 3.79–6.11 39.8–44.8 7.28–13.89 8.81–11.39 55.99–69.06
5 Southeast Desert soils 6.11–9.83 44.8–52.8 13.89–26.42 11.39–13.99 69.06–78.86
6 South Skeletol primitive soils 9.83–15.79 52.8–65.2 26.42–50.17 13.99–16.57 78.86–111.53

7 Southwest Semi-hydromorphic
soils 15.79–25.35 65.2–84.6 50.17–95.20 16.57–19.16 111.53–157.27

8 West Hydromorphic soils 25.35–40.68 84.6–115.1 95.20–180.56 19.16–21.75 157.27–186.67
9 Northwest Saline soils 40.68–65.26 115.1–163.0 180.56–342.39 21.75–24.34 186.67–261.82
10 Anthrosols 342.39–649.17 261.82–853.17
11 Others

3. Results
3.1. Spatio-Temporal Variability of NDVI

The areas with mean growing season NDVI values of greater than 0.6 accounted
for 5.34% of the entire area from 2000–2018 (Figure 7a), indicating the generally inferior
nature of the vegetation cover in the Inner Mongolian grasslands. The spatial pattern
of the multi-year mean NDVI during the growing season exhibited an increasing trend
from south to north and from west to east (Figure 7a), which was highly consistent with
the distribution pattern of water and heat resources. The northeastern part of the Inner
Mongolian grasslands is located in the transitional zone between the Greater Khingan
Range forest region and the Inner Mongolia temperate grasslands, and high NDVI values
(>0.6) are concentrated in this area (Figure 7a). The topography of the central part of the
region is dominated by high plains and low mountains, with good forage quality and
NDVI values from 0.3–0.5. The western part of the region is subject to low rainfall and
is home to xerophytic vegetation, which is mainly composed of xerophytic bunch grass
mixed with semi-shrubs and allium plants. This area also has widely distributed low NDVI
values (<0.2), indicating poor vegetation coverage (Figure 7a).

The growing season average NDVI of the entire study area ranged from 0.289 to
0.365 during the period of 2000 to 2018 (Supplementary Figure S2) and exhibited a sig-
nificant increase at a rate of 0.003 a−1 (p < 0.05). Figure 7b shows the NDVI changing
trends at the pixel scale in the Inner Mongolian grasslands, which indicates that the NDVI
mainly increased, with the areas of increase and the areas of decrease being 71.90 × 104

and 6.30 × 104 km2, accounting for 91.94% and 8.06% of the entire region, respectively. The
areas with significant increases in NDVI (p < 0.05) accounted for 45.63% of the entire region,
and they were mainly distributed in the eastern part of the Mu Us sandy land (i.e., Erdos
and Hohhot) and in the eastern areas of the Greater Khingan Range (i.e., Hinggan City,
Tongliao City, and Chifeng City). Although the vegetation conditions improved in general,
different degrees of degradation were also observed across the study area. The regions with
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a decline in NDVI were mainly distributed in the central and western regions of the study
area (Figure 7b), especially in four prefecture-level cities (i.e., Bayannur, Baotou, northern
Ulanqab, and western Xilingol). The areas with significant decreases in NDVI were small,
accounting for 0.44% of the study region, and they were relatively scattered.
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Figure 7. The (a) spatial distribution of the growing season average NDVI and (b) the slope of the
change in the NDVI from 2000–2018. The inset graph in (a) is a statistical histogram; the inset map in
(b) shows the significant decreases (red) and increases (green) in the NDVI at the 95% confidence level.

3.2. Impacts of Natural and Human Factors on NDVI Changes
3.2.1. Impacts of the 15 Factors on NDVI Changes

The q-statistics of all of the influencing factors passed the significance test (p < 0.001)
(Supplementary Figure S3). The q-statistic values of the factors exhibited a marked dif-
ference that can be ranked as follows: Pre (0.217) > Livstd (0.182) > WS (0.173) > Popd
(0.167) > GRP (0.126) > Alt (0.100) > Tem (0.096) > RH (0.088) > Soilt (0.067) > DNC (0.062)
> SR (0.051) > LUCC (0.049) > DNR (0.035) > Slopd (0.015) > Slopa (0.001) (Supplementary
Figure S3). These results indicate that the precipitation, which had the highest q-statistic
value, predominantly explains the spatial heterogeneity of NDVI changes. The next most
important factors were the livestock density, wind speed, and population density, with
contributions of greater than 15%, while the impacts of the two topography factors (terrain
slope and slope aspect) were relatively low, with q-statistic values of less than 0.02. There-
fore, both the natural and human factors were identified as important factors influencing
the vegetation NDVI changes in the Inner Mongolian grasslands.

3.2.2. Interactions between the 15 Factors

Two types of interaction relationships (i.e., nonlinear enhancement and bivariate
enhancement) were identified among the 105 cases. For 55 cases, the q-statistics of the
pairwise factor interactions were larger than the sum of the q-statistics of the two involved
factors (Figure 8), which implies a nonlinear enhancement effect. The top five interac-
tive q-statistics decreased in the following order: Pre∩Tem (0.393) > Tem∩Popd (0.336)
> Pre∩Livstd (0.334) > Tem∩SR (0.332) > Tem∩RH (0.331). This indicates that the inter-
actions between the climatic factors, population density, and livestock density had the
greatest impacts on vegetation changes. These results show that the q-statistic of any pair of
interacting factors was greater than the q-statistics of the single factors in the pair, implying
that no factor influenced the vegetation changes in an independent manner but rather
through interactions with the other factors.



Remote Sens. 2022, 14, 3320 13 of 23

Remote Sens. 2022, 14, 3320 13 of 22 
 

 

3.2.2. Interactions between the 15 Factors 

Two types of interaction relationships (i.e., nonlinear enhancement and bivariate en-

hancement) were identified among the 105 cases. For 55 cases, the q-statistics of the pair-

wise factor interactions were larger than the sum of the q-statistics of the two involved 

factors (Figure 8), which implies a nonlinear enhancement effect. The top five interactive 

q-statistics decreased in the following order: Pre∩Tem (0.393) > Tem∩Popd (0.336) > 

Pre∩Livstd (0.334) > Tem∩SR (0.332) > Tem∩RH (0.331). This indicates that the interactions 

between the climatic factors, population density, and livestock density had the greatest 

impacts on vegetation changes. These results show that the q-statistic of any pair of inter-

acting factors was greater than the q-statistics of the single factors in the pair, implying 

that no factor influenced the vegetation changes in an independent manner but rather 

through interactions with the other factors. 

 

Figure 8. Influences of the interactions between two factors. Pre: precipitation; Tem: air temperature; 

SR: solar radiation; WS: wind speed; RH: relative air humidity; Alt: altitude; Slopd: slope; Slopa: 

slope aspect; Soilt: soil type; DNR: distance to the nearest road; DNC: distance to the nearest county 

centers; Popd: population density; GRP: Per capita gross regional product; Livstd: livestock density; 

and LUCC: land use/cover change type. 

3.2.3. Effects of the Different Grades of the Factors 

The rate at which the NDVI increased varied substantially with the different levels 

of the factors (Figure 9). Specifically, as the precipitation, population density, per capita 

gross regional product, and livestock density increased, the magnitude of the increase in 

the NDVI generally increased. As the wind speed increased, the rate of the increase in the 

NDVI generally decreased. The altitude, distance to the nearest road, and distance to the 

nearest county centers showed characteristics similar to those of the wind speed. As the 

relative air humidity increased, the rate of increase of the NDVI continued to increase and 

reached a maximum, and then it fluctuated slightly. The rate of increase of the NDVI fluc-

tuated for different ranges or types of temperature, solar radiation, slope, aspect, and soil 

type (Figure 9). As shown in Table 3, most of the types of land use conversion led to an 

increase in the NDVI. The land use conversion from grasslands to croplands caused the 

Figure 8. Influences of the interactions between two factors. Pre: precipitation; Tem: air temperature;
SR: solar radiation; WS: wind speed; RH: relative air humidity; Alt: altitude; Slopd: slope; Slopa:
slope aspect; Soilt: soil type; DNR: distance to the nearest road; DNC: distance to the nearest county
centers; Popd: population density; GRP: Per capita gross regional product; Livstd: livestock density;
and LUCC: land use/cover change type.

3.2.3. Effects of the Different Grades of the Factors

The rate at which the NDVI increased varied substantially with the different levels
of the factors (Figure 9). Specifically, as the precipitation, population density, per capita
gross regional product, and livestock density increased, the magnitude of the increase in
the NDVI generally increased. As the wind speed increased, the rate of the increase in
the NDVI generally decreased. The altitude, distance to the nearest road, and distance to
the nearest county centers showed characteristics similar to those of the wind speed. As
the relative air humidity increased, the rate of increase of the NDVI continued to increase
and reached a maximum, and then it fluctuated slightly. The rate of increase of the NDVI
fluctuated for different ranges or types of temperature, solar radiation, slope, aspect, and
soil type (Figure 9). As shown in Table 3, most of the types of land use conversion led to
an increase in the NDVI. The land use conversion from grasslands to croplands caused
the largest increasing rate of NDVI. There were two types of land use conversions (from
cropland to construction land and from unused land to construction land) that lead to a
decrease in the NDVI.
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Figure 9. Influences of the factors’ different grades on the magnitude of the increase in the NDVI.
The units of Pre (precipitation), Tem (air temperature), SR (solar radiation), WS (wind speed), RH
(relative air humidity), Alt (altitude), Slopd (slope), Slopa (slope aspect), DNR (distance to the nearest
road), DNC (distance to the nearest county center), Popd (population density), GRP (per capita gross
regional product), and Livstd (livestock density) are mm, ◦C, MJ·m−2, m·s−1, %, m, ◦, ◦, km, km,
person·km−2, 10,000 yuan person−1, and sheep·km−2, respectively. Soilt represents the soil type.
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Table 3. Impacts of land use/cover change types on NDVI variations. The numbers in parentheses
are the percentage of specific land use/cover change to the total area (%).

2000/
2015 Cropland Forest Grassland Construction

Land Unused Land

Cropland 0.0039
(13.649)

0.0033
(0.080)

0.0038
(0.229)

−0.0009
(0.106)

0.0039
(0.020)

Forest 0.0047
(0.036)

0.0031
(9.461)

0.0039
(0.059)

0.0039
(0.013)

0.0030
(0.014)

Grassland 0.0057
(0.364)

0.0037
(0.151)

0.0025
(60.929)

0.0010
(0.238)

0.0026
(0.423)

Construction
land

0.0045
(0.006)

0.0032
(1.381)

Unused land 0.0039
(0.048)

0.0049
(0.038)

0.0025
(0.474)

−0.0007
(0.047)

0.0025
(12.227)

4. Discussion
4.1. Applicability and Limitation of the GeoDetector Method

In relation to vegetation variations, numerous studies have explored the separation
of natural and human factors. It should be noted that the commonly used methods (e.g.,
RESTREND, statistical correlation, or regression analysis) suffer from potential limitations.
Specifically, RESTREND analysis cannot differentiate anthropogenic impacts from different
aspects of human activities [14,18]. Statistical methods of evaluating the factors influencing
vegetation changes mainly include correlation analysis [48], regression analysis [27], factor
analysis [66], and geographically weighted regression [18]. However, these statistical
methods involve assumptions regarding the data, fail to reveal the interactions between
factors, or are hindered by the multicollinearities among the influencing factors [67]. The
GeoDetector method was employed in this work, and it has three distinct advantages.
(1) The GeoDetector method is not based on linear hypotheses, thus, it provides easier data
preparation and wider applicability. (2) Working with both categorical and continuous
variables, the GeoDetector method is not limited by data type. (3) The GeoDetector method
can be used to determine how the interaction of explanatory variables affects the dependent
variables without the restriction of multicollinearities [37,39,68,69]. Our study demonstrates
that the GeoDetector method is an efficient technique for quantifying the impacts of driving
factors and their interactions on vegetation changes.

Different grading standards (involving the discretization method and the stratification
number) have certain impacts on the GeoDetector results [38,62,68]. However, the selection
of the discretization methods and stratification numbers in prior model applications were
subject to weaknesses such as randomness and subjectivity [39,59,64,70,71], which may
introduce uncertainties and lead to misleading interpretations. In this study, an optimal
discretization method was obtained based on the five types of unsupervised discretization
methods (Figure 5). In addition, on the basis of a changing curve of the degree of influence
(of influencing factors) with different numbers of stratifications, an optimal stratification
number was also determined for each predictor variable (Figure 7). The optimization of
factor-grading improves the accuracy and effectiveness of the modeling [38,63,72].

In this study, the socio-economic data are obtained from the statistical yearbooks at the
county scale. It should be noted that the lack of spatial information of these socio-economic
indicators forces them to be uniformly distributed within administrative divisions. This
involves the spatial scale effect, which may have critical influences on the spatially stratified
heterogeneity analysis. However, it has not been fully investigated and integrated in the
GeoDetector method [38].
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4.2. Effects of Factors on Vegetation Changes
4.2.1. Effects of the Main Natural Drivers

Our results indicate that precipitation was the dominant factor influencing the changes
in the NDVI. This finding is consistent with the results of prior studies, which have
indicated that vegetation growth in dryland ecosystems is very sensitive to precipitation
changes [15,23,41,48]. As shown in Figure 9a, as the precipitation increased, the increase
in the NDVI initially kept rising and reached a peak, and then it decelerated. A possible
explanation for this is that the long-term cloud cover due to the excess precipitation may
have resulted in reductions in temperature and solar radiation [48], which are not conducive
to the improvement of the productivity of the grassland vegetation. In a similar vein, prior
research reported that as precipitation increases, there is a threshold for the response of
vegetation NDVI to precipitation, beyond which the magnitude of increase in NDVI driven
by precipitation will decrease [73].

The rate of increase of the NDVI decreased substantially as the wind speed increased
(Figure 9d) for two main reasons. First, the high wind speed increased evaporation and
decreased the surface moisture, resulting in adverse effects on vegetation growth. Second,
the Inner Mongolian grasslands are located in the sandstorm source region of northern
China [46], with frequent strong winds in spring. In aeolian desertification areas, vegetation
growth has been found to be constrained by burial and abrasion, the loss of surface soil
resources, and the interruption of nutrient accumulation [74]. Zou and Zhai reported that
vegetation coverage, as indicated by NDVI, was significantly negatively correlated with
the occurrence frequency of spring dust storms in Inner Mongolia [75].

Overall, the magnitude of the increase in the NDVI values on the east-facing slopes
was larger than that on the west-facing slopes (Figure 9h). One possible reason was that the
study area is located in a marginal zone of the East Asian summer monsoon. Compared
with the east-facing slopes, the west-facing slopes receive less precipitation and more solar
radiation and thus are characterized by drier and hotter microclimates, which are harsher
environments for vegetation growth.

The areas with semi-luvisols showed significant increases in the NDVI, while the
desert soil had little effect on the increase in the NDVI (Figure 9i). Luvisol soils form under
temperate forest and grassland vegetation. Due to the high accumulation of dead forest
leaves and herbaceous debris and the cool climate, microbial decomposition is limited to a
certain extent, leading to the formation of a humus layer with high fertility that can serve
as important agricultural and forest soil resources. Desert soils, which develop under the
temperate desert grassland vegetation in the northwestern marginal areas of the study
region (Figure 4i), have little humus accumulation, a low organic matter content, and harsh
environments (e.g., low precipitation, strong winds, and solar radiation), all of which are
unfavorable for vegetation growth.

4.2.2. Effects of Human Activities

Livestock grazing is the main form of grassland utilization in Inner Mongolia [23,43].
Our results show that livestock density was the most influential anthropogenic factor
affecting NDVI changes. Prior studies in arid Inner Mongolia were predicated on the belief
that overgrazing substantially decreases vegetation cover and biomass production [76–78].
However, in this study, with an increase in livestock density, the magnitude of NDVI
increase generally rose (Figure 9n), apparently suggesting, paradoxically, that grazing
intensity, as indicated by livestock density, improved grassland vegetation. One possible
reason for this is that the Inner Mongolia government has actively promoted the policy
of herdsmen settlements and livestock pen-raising in recent decades [44]. According to
the statistical yearbook of Inner Mongolia, in the past 19 years, the total area of livestock
sheds has significantly increased at a rate of 9.31 million square meters per year (p < 0.05)
(Figure 10), and the number of livestock in captivity has significantly increased at a rate
of 5.37 million sheep units per year (p < 0.05) (Figure 10). During the same period, the
total number of livestock in Inner Mongolia has increased at a rate of 2.07 million sheep
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units per year, and the growth rate of livestock in captivity is much higher than that of
the total amount of livestock. The intensive mode of livestock production accounts for the
increasing proportion of animal husbandry production in pastoral areas. Due to the strong
implementation of an ecological restoration policy and this intensive livestock production
mode, forage sources are more dependent on external imports, and less damage is caused to
the local vegetation. In addition, the livestock density is inherently high in areas with high
vegetation coverage. Hence, with the increase in livestock density, grassland vegetation
conditions still improved.
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Figure 10. Inter-annual variations in (a) livestock shed area, (b) livestock numbers in sheds, (c) the
total agricultural mechanical power, (d) the amount of fertilizer applied for agriculture, (e) the
grain yield, and (f) the oil production in Inner Mongolia from 2000–2018. Note: The data were
obtained from the Inner Mongolia Statistical Yearbook [79]. In (a,b), the data for livestock shed area
and livestock numbers in sheds for 2006, 2007, and 2009 are not recorded in the Inner Mongolia
Statistical Yearbook.

Although the GeoDetector method excludes the influence of multcollinearity among
independent variables [37,39], the results show that the q-statistics and the ranking order of
the livestock density, population density, and per capita gross regional product are very
close (Supplementary Figure S3). This implied that the relationships between the human
factors are closer than those between the natural factors. Actually, the interference of the
anthropogenic factors in Inner Mongolia is not as complicated as those in developed areas.
Grazing is the primary human activity affecting the ecological environment in the study
area, and animal husbandry is the main source of income for local herders [41,44]. Where
there are large numbers of livestock, there is often a high population density and social
productivity (Figure 4j–n).

Land use/cover change is a manifestation of human activity [52]. Most of the types of
land use conversion had positive influences on vegetation change in this study (Table 3).
With the technological improvement and update of the industrial structures in agricultural



Remote Sens. 2022, 14, 3320 18 of 23

sectors, a 0.0039 a−1 increase in the NDVI was observed in the unchanged cropland, which
is corroborated by the fact that from 2000 to 2018, the agricultural mechanical power
and fertilizer used for agriculture in Inner Mongolia increased by 2.71 and 2.98 times,
respectively; the grain production increased from 12.42 × 106 t to 35.53 × 106 t, and the oil
production increased from 1.16 × 106 t to 2.02 × 106 t [79] (Figure 10). The conversions of
grassland and unused land into cropland increased the NDVI, indicating that reasonable
reclamation has a positive effect on vegetation recovery. Through a series of ecological
restoration measures, such as grazing prohibitions with grassland closures, restoration
of cropland to grassland, and reforestation with hillside closures, the NDVI values of
the unchanged grassland and forest land increased at rates of 0.0025 a−1 and 0.0031 a−1,
respectively. For the unused land that was converted into grassland and forest, the NDVI
values increased at rates of 0.0025 a−1 and 0.0049 a−1, respectively. For the cropland that
was converted into grassland and forest, the NDVI values increased at rates of 0.0038 a−1

and 0.0033 a−1, respectively. Prior research also reported that the implementation of
ecological restoration programs was beneficial to the improvement of vegetation coverage
in Inner Mongolia [44,80]. However, urban expansion has caused decreases in the NDVI of
0.0009 a−1 due to the conversion of cropland into construction land and 0.0007 a−1 due to
the conversion of unused land into construction land (Table 3). Therefore, more attention
should be paid to ensuring the development of green infrastructures, such as parks and
green spaces, during urban expansion.

The interactions among factors can greatly enhance the effect of a single factor
(Figure 8). Although the distance to the nearest road, slope, and aspect did not contribute
ideally to NDVI changes, their explanatory powers were enhanced when they interacted
with other factors, especially precipitation and livestock density. Natural factors such as
soil type (q(Soilt∩Livstd)) > q(Livstd)), slope (q(Slopd∩Livstd)) > q(Livstd)), and aspect
(q(Slopa∩Livstd)) > q(Livstd)) tended to enhance the influence of human activities on
vegetation changes.

4.3. Limitations and Future Research Directions

This study had certain limitations which can be improved in future research. First,
the spatial differentiation of the relationships between NDVI variations and the driving
factors was not taken into consideration. For example, most of the degraded vegetation
from 2000 to 2018 was in the central and western regions of the Inner Mongolian grasslands
(Figure 7b), and the interactions between the precipitation and temperature had the greatest
impact on vegetation changes. Thus, with the high surface evaporation potential and
low soil moisture due to a relatively small increase in precipitation and large increases
in temperature in the central and western regions (Figure 11), the increase in the water
stress level was probably the main reason for vegetation degradation. In further studies,
the introduction of spatial statistical methods (e.g., a geographically weighted regression
model), which can reflect the spatial nonstationarity of the parameters in different spaces,
may improve our understanding of the spatial heterogeneity of the relationship between
vegetation change and its driving forces [18,66]. Secondly, the drylands in northern China
are regions with diverse land uses (mainly deserts and grasslands) and substantial sea-
sonal climatic differences [81]. More evidence showed that soil moisture, which exhibits
significant spatial and temporal variability [82], is crucial in regulating vegetation produc-
tivity. In future studies, a multiple time and spatial scale analysis can contribute to a better
understanding of the drivers of vegetation growth change in order to develop suitable
management schemes that are regionally and temporally specific. Thirdly, prior research
observed the NDVI asymptotically saturating in high biomass regions [83]. Regarding
this issue, the EVI (enhanced vegetation index) and SAVI (soil-adjusted vegetation index)
were developed to make up for some of the shortcomings of the NDVI (e.g., atmospheric
noise, soil background, saturation). Due to the limited spatial resolution of MODIS NDVI,
it is difficult to meet the requirements of fine mapping. Combining the process with the
Sentinel dataset or other vegetation indexes (e.g., EVI, SAVI) may help to obtain more
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precise estimates of vegetation dynamics. Last but not least, if breakpoints, which indicate
a shift in the mechanism of influence on the time series under certain circumstances, are
neglected, the results of the trend analysis may lead to a misjudging of the factors that in-
fluence vegetation changes [40]. In future studies, the times at which breakpoints occurred
should be first identified, noting points at which the time series was split into sub-series.
Then, the trends and significance levels of the sub-series would be quantified separately to
obtain more accurate conclusions regarding the driving forces of vegetation changes.
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5. Conclusions

In this research, we investigated the spatial and temporal variability in the mean
growing season NDVI from 2000–2018 and quantified the individual and interactive in-
fluences of natural and human factors on NDVI change using the GeoDetector method
in the Inner Mongolian grasslands. The results reveal that the NDVI increased at a rate
of 0.003 a−1. Both the natural and human factors had significant impacts on vegetation
NDVI variations (p < 0.05), and the precipitation, livestock density, and wind speed had
the greatest influences, while terrain slope and slope aspect had the lowest influences. The
interactive impacts among factors often strengthened the impact of single factors.

Our study demonstrates that the GeoDetector method is an effective technique for
disentangling the complicated driving factors of vegetation change. To effectively use the
GeoDetector method, however, researchers need to carefully deal with the problem of
spatial data discretization, which may introduce uncertainties and lead to misleading inter-
pretations. The methodology used in this study can be applied to address the knowledge
gap in the selection of the optimal discretization methods and the number of stratifications
for further GeoDetector-based studies.
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