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Abstract: In the long-distance space target detection, the technique of laser reflection tomography
(LRT) shows great power and attracts more attention for further study and real use. However, space
targets are often non-cooperative, and normally a 360◦ complete view of reflection projections cannot
be obtained. Therefore, this article firstly introduces an improved LRT system design with more
advanced laser equipment for long-distance non-cooperative detection to ensure the high quality of
the lidar beam and the lidar projection data. Then, the LRT image reconstruction is proposed and
focused on the laser image reconstruction method utilizing the total variation (TV) minimization
approach based on the sparse algebraic reconstruction technique (ART) model, in order to reconstruct
the laser image in a sparse or incomplete view of projections. At last, comparative experiments with
the system are performed to validate the advantages of this method with the LRT system. In both
near and far field experiments, the effectiveness and superiority of the proposed method are verified
for different types of projection data through comparison to typical methods.

Keywords: laser reflection tomography (LRT); non-cooperative target; algebraic reconstruction
technique (ART); total variation (TV)

1. Introduction

With the rapid development of aerospace science and technology, space target detec-
tion and identification have become a hot topic. Reflective tomography lidar can overcome
the resolution limitation with little influence from the external environment, especially for
targets in the dark background, such as space satellites and debris, which has been proved
to be a new lidar system with long distance and high resolution.

Developed from computed tomography (CT), the concept of laser reflective tomog-
raphy (LRT) was firstly introduced in 1988 by Parker et al. [1] and then some reflection
tomography lidar imaging experiments were carried out. In recent years, the research
of lidar imaging technology has come into a new stage [2]. Lidar obtains the laser echo
projection data at different angles and reconstructs the image of the target by image re-
construction algorithms. For non-cooperative space target detection, the optical imaging
system makes it difficult to obtain the detailed information of the target in a long distance
due to the limitation of receiver aperture. However, the spatial resolution of lidar imaging
based on the reflection tomography is independent of the range and receiver aperture, only
related to the pulse width, bandwidth, and noise. On the basis of the improvement of the
lidar experimental system, the theory of LRT was further developed, and many efforts have
been made to complete the non-cooperative space target detection. Jin conducted reflection
tomography lidar imaging by pulse detection to obtain the image of the conical object in
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the laboratory environment and experiment preliminarily on the LRT imaging with the
incomplete view of the projection data [3–5]. Zhang determined the limiting conditions
of the sampling interval and sampling angle for laser reflective tomography imaging in
sensing targets with typical shapes [6,7]. Hu applied LRT to plane target centroid detection
for the first time and proposed a method for calculating centroid distance using multi-angle
echo data [8]. However, to obtain accurate imaging of non-cooperative space targets in
incomplete angles, breakthroughs should be made in both the system design and the laser
image reconstruction method, which is also the focus of this article.

Radon-Fourier [3,9] transform is the basic tomographic algorithm, but its accuracy is
low, and the reconstructed image has obvious artifacts. Therefore, the FBP algorithm [10–13]
has become the most commonly used algorithm for laser reflection tomography. However,
in the space environment, almost all space targets are non-cooperative targets, which
significantly affects the result of the FBP algorithm. Hence, it is not acceptable under such
circumstances. R. Gordon [14] first proposed the ART to reconstruct the image by solving
the linear equations. Considering the projection matrix is huge and cannot be solved
directly, the reconstructed image is generally obtained by iterative approximation [15].
ART breaks through the limitation of the viewing angle and can roughly reconstruct the
image in the sparse viewing angle. Then, ART is applied to LRT, which can be solved
by the iterative method combined with prior knowledge [16]. At the same time, in order
to solve the problem of the complex and time-consuming iterative process caused by
the huge measurement matrix, the relative method is also utilized [17]. However, the
implementation of ART is complicated, and the reconstructed image quality is not high
enough and is sensitive to noise. Therefore, it is necessary to improve ART algorithm.

For non-cooperative targets in space, image reconstruction from a small number
of observations is at the heart of the problem, which reminds us of the sparse recovery
technique. Many prior works in other domains have been performed to improve the source
reconstruction quality. In the medical CT image restoration field, Liu et al. proposed a
total variation-strokes-projection onto the convex sets (TVS-POCS) reconstruction method
to preserve consistencies and eliminate the patchy artifacts [18]. Non-local total variation
(NLTV) minimization combined with reweighted L1-norm was conducted by Kim et al.
for compressed sensing CT reconstruction [19]. The referable method can also be found
in electron tomography, where Goris et al. applied the TV reconstruction technique [20].
Zhang et al. applied the sparse recovery iterative minimization method in ship classification
to estimate the high-resolution range profiles of ships [21]. Rostami et al. resolved the
imitation in the sensor networks by using diffusive compressed sensing and sparse recovery
under the heat equation constraint [22]. Inspired by these excellent prior works, this article
introduces the TV sparse reconstruction approach to a more advanced LRT imaging system
to detect long distance non-cooperative targets in space, for better performance in resolution
maintenance and artifact elimination of the lidar imaging. Furthermore, regarding the angle
limitation in the space non-cooperative target detection due to orbits of the target and the
transceiver, LRT imaging utilizing the TV sparse approach especially shows its dominance
in high-quality image reconstruction of the space target with a sparse or incomplete view
of projections.

The rest of the article is organized as follows. In Section 2, the LRT model and the
experimental system set up by us are presented. In Section 3, the framework of LRT for real
data is introduced, and then the TV sparse reconstruction with the ART model approach
is presented for laser image reconstruction, in order to improve the anti-noise ability
and reduce the artifacts of the image reconstructed by an incomplete view of projections.
Experiments are performed in both the near-field and far-field environments to validate
the effectiveness of the proposed method in Section 4, and real data in more complicated
environments is also experimented with and discussed in Section 5. Finally, the conclusion
is given in Section 6.
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2. LRT Model and Experimental Design
2.1. Laser Reflection Tomography Model

The LRT imaging technology detects the multi-view one-dimensional echo signal of
the target viz. projections from different angles. Then, the 2-D contour image of the target
is reconstructed by image reconstruction techniques.

The LRT imaging model is shown in Figure 1. The rov coordinate system is obtained
by a rotation θ of the xoy coordinate system, which expresses the relationship between the
(x, y) coordinate and the (r, v) coordinate. The emitted laser beam covers the entire target
g(x, y) surface along the detection direction, and Radon transform is performed to obtain
the reflection projection pr(r, θ) of the target at angle θ [8]:

pr(r, θ) =
∫

Lr,θ

g(x, y)dv =
∫

Lr,θ

g(r cos θ − v sin θ, r sin θ + v cos θ)dv (1)

The integration path Lr,θ is perpendicular to the illumination direction, and the polar
diameter r = x cos θ + y sin θ, v is the integration path. In laser reflection tomography, the
laser cannot penetrate the target, so the reflection coefficient is 0 outside the surface, i.e.,

g(x, y) = 0, (x, y) /∈ D (2)

where D is the target surface point set.
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Figure 1. LRT imaging model.

2.2. Experimental System

The laser reflection tomography system is implemented at the preset test environment.
Figure 2a shows the actual photograph of the laser transmitter system. As shown in
Figure 2b, the scene of the laser reflection tomography experimental platform includes the
laser transmitter, the turntable and wireless remote receiving module, and one target. In
the experiment, the laser pulse width is 100 ps, the bandwidth is 10 GHz, and the laser
beam completely covers the target. The target is placed on the turntable, which is 1 m
above the ground.

While transmitting the laser, the turntable rotates at a uniform angular speed of 25◦

per second to ensure that the laser frequency and the received echo frequency match the
uniform speed of the target.
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Figure 2. Experimental platform. (a) The laser transmitter and (b) the outfield experiment environment.

The detailed schematic diagram of the LRT experimental system is shown in Figure 3.
The LRT radar prototype is composed of four parts, including the transmitting part, the
receiving part, the data acquisition part, and the data processing part. The transmitting
part is composed of a microchip laser, two reflectors, one beam splitter, and one expander
system whereas the receiving part is composed of a receiving telescope and a 7.5 GHz
avalanche photodiode (APD) detection module, along with a 15 GHz bandwidth Pin light
detection module on the other side of the splitter. A laser pulse high-speed data acquisition
module with a bandwidth of 4.25 GHz and a sampling rate of 50 GSPS is employed in the
data acquisition part and the data processing part is controlled by the industrial personal
computer and is able to complete real-time data processing [6].
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APD, avalanche photodiode; Pin, positive intrinsic negative; SMF, single mode fiber; MC Laser,
microchip laser.

3. LRT Image Reconstruction
3.1. LRT Data Processing Framework

Via the LRT experimental system mentioned in Section 2, we are able to conduct
the LRT experiment, where we transmit the laser toward the intended target and obtain
reflection projection data from laser echo. Then, it is necessary to process the echo data to
reconstruct the image of the target. The flow chart of the image reconstruction by projection
data is shown in Figure 4:
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The first step is the registration of projection data. In the outfield experiment environ-
ment, the atmospheric turbulence and the jitter of the target and the platform leads to the
inconsistency of the rotation center position of the projection data collected over different
angles. The image reconstruction based on the misaligned projection data causes disloca-
tion and distortion in the imaging results, which can seriously affect the identification of
the contour of the target. Phase retrieval and feature tracking techniques are commonly
used for registration [23,24].

The second step is the projection data conversion. The difference between LRT and
computed tomography (CT) imaging is that LRT is based on the reflection coefficient of the
object surface, whereas CT imaging is based on the internal transmission coefficient [25].
Therefore, the reflection projection data needs to be preprocessed where it is converted into
transmission data, which can greatly reduce the difficulty of image reconstruction. Then,
the relationship between them can be expressed as

p(r, θ + 90◦) = pr(r, θ) + [pr(r, θ + 180◦)]T (3)

where θ(0 ≤ θ ≤ 179◦) is the incident angle, pr(r, θ) is 0 − 179◦ reflection projection
data, pr(r, θ + 180◦) is 180◦ − 359◦ projection data, pr(r, θ + 90◦) denotes the transmission
projection data, and T means the symmetric transformation.

The last step, which obtains the cross-section information of an object by measuring
the projection of the object in different viewing angles, is tomography. It is undoubtedly
the most important throughout the process. With the emergence and development of
lidar, tomography algorithm is introduced, which improves the accuracy and efficiency
of laser imaging technology. At present, the commonly used classical algorithms include
iRadon transform [3], FBP [10–13], and ART [14]. However, the iRadon transform algorithm
can only restore the image roughly, which is far from the ideal imaging result. The FBP
algorithm requires complete projection data; otherwise, there will be serious artifacts
and distortions, resulting in the reconstructed image quality unable to be guaranteed.
However, in practice, it is difficult to sample 360◦ projections of the target due to the clutter
interference, insufficient data, or missing data. On the other hand, although ART can
reconstruct the image from incomplete projection data, it is too sensitive to noise and is
complex to implement, so the effectiveness and timeliness of the ART cannot be guaranteed
at the same time.



Remote Sens. 2022, 14, 3310 6 of 20

Therefore, aiming at solving the problem of large artifacts, low anti-noise performance
of the ART and incomplete projections limitations of the FBP algorithm, we utilize the
gradient sparse characteristics of the laser reconstructed image, add the regularization term
of the imaging model, and combine the ART with the TV sparse reconstruction approach
for the LRT technique, which is discussed in detail in the remainder of this section.

3.2. Tomographic Imaging of Lidar Projection Data
3.2.1. ART for Lidar Image Reconstruction

ART reconstructs the image of the target by solving linear equations as Equation (4).
Considering the projection measurement matrix is huge and cannot be solved directly,
the reconstructed image is generally obtained by iterative approximation. The iterative
method first discretizes the continuous image u(x, y). The whole image is divided into
N = n× n pixels, the width of which is δ, and the gray value of each pixel is a constant
value. Thus, the image can be represented by an n-dimensional matrix u = [u1, u2, . . . .uN ].
Assuming that the projection data obtained by M-ray projection is represented by a matrix
p = [p1, p2, . . . , pM], the process of image reconstruction is equivalent to solving the gray
value of each pixel in the image according to the received projection data, i.e., the essence
of iterative reconstruction is to solve the linear equations:

ω11u1 + ω12u2 + . . . + ω1NuN = p1
ω21u1 + ω22u2 + . . . + ω2NuN = p2
. . .
ω31u1 + ω32u2 + . . . + ω3NuN = pM

(4)

pi =
N

∑
j=1

pij =
N

∑
j=1

ωijuj, i = 1, 2, . . . , M (5)

where ωi,j is the weight factor, which represents the weight of the jth pixel on the ith
projection value of the image passed by the ray, i.e., the crossing length of the ray and each
pixel grid. Equation (5) can also be expressed by matrix:

p = Au (6)

Practically, it is very difficult to directly solve the equations. Hence, Kaczmarz relax-
ation method [15] is generally used to solve the problem. For the ith set of projection data,
the iterative equation of ART is:

uk+1
j = uk

j + λ1
pi −∑N

j=1 ωinuk
n

ω2
in

, i = 1, 2, . . . , N (7)

where i is the projection sequence number, j is the pixel sequence number, k is the number
of iterations, and λ1 denotes the relaxation factor. After traversing all grids, an iterative
process is completed.

3.2.2. Sparse Reconstruction with ART Model

Based on the traditional ART, considering that most of the reconstructed images of
laser reflection tomography have sparse characteristics, or have sparse representation
under certain transform bases, the sparse reconstruction method is proposed for the image
reconstruction [15]. The image u itself is sparse or the representation of the image under
certain transformation bases is sparse, i.e., there exists a matrix ψ when the equation u = ψα
holds, where α is sparse and ψ is a sparse transformation matrix. In this way, the original
ART model (4) is transformed to

p = Au = Aψα = Bα (8)
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where B = Aψ. Then, α is reconstructed from the observation value p and matrix B, and
the original image is reconstructed by u = ψα.

Hence, the image recovery problem based on compressed sensing is transformed
to an L0 norm minimization problem, and the norm L1 is used to replace the norm L0,
making it a convex optimization problem, which is convenient to solve. The equation can
be expressed as:

min
α
‖α‖1, s.t. p = Bα (9)

where ‖ · ‖i(i = 0, 1, 2) represents the i norm. Common sparse model solving methods
include basic pursuit (BP), orthogonal matching pursuit (OMP), etc. The principle of the
BP algorithm is to constantly find the smaller norm L1 of α to explain the projection data p.
By constant iteration to find a sufficient sparse signal (a signal with a sufficiently small
norm L1) that meets the condition, it can be considered that the most appropriate solution
of the equation is found. For linear equations p = Bα, if we take each column in the matrix
as a variable, OMP can select the variables most correlated with the current residual in each
iteration process. These selected variables can form a subspace of the matrix B, and each
residual is obtained by calculating the difference of p with the orthogonal projection of p
on the subspace.

In other words, because there are many zero elements in α, p should belong to a
subspace of Span(B), which refers to the column vector space of B. Furthermore, the
subspace of Span(B) can be represented as Span(Bsub). Note that the subspace Bsub is
composed of some columns of B, and α corresponds with these columns which are recorded
as αsub. If Bsub can be figured out, the following optimization problems can be solved:

argminxsub‖Bsubαsub − p‖2 (10)

Then, the linear regression is applied to obtain αsub = (BT
subBsub)

−1BT
sub p. Thus, α is

obtained (for the other elements it is zero). The efficiency of the OMP algorithm is greatly
improved compared with BP algorithm, but the determination of sparsity fluctuates greatly
in different situations, resulting in low image quality. Therefore, this article adopts the
idea of sparse reconstruction, combined with the TV regularization approach to reconstruct
the image.

3.2.3. TV Sparse Reconstruction with ART Model

In this article, considering that the laser reconstructed image has gradient sparse
characteristics, an image reconstruction method based on the TV minimization approach is
proposed. At the same time, in order to reduce the image reconstruction error, ART is used
to obtain the initial iterative image of TV. Compressed sensing theory points out that most
images can be sparse represented by appropriate transforms, such as DCT, FFT, wavelet
transform, and so on [15]. In this article, the sparse transformation matrix is measured by
total variation. Furthermore, the regularization of the image model is added to achieve the
sparse representation of the image. The total variation of an image is defined as the square
of the sum of discrete gradients of pixels in two dimensional directions of the image, which
is represented as:

TV(u) = ∑i,j

∣∣∇ui,j
∣∣ = √|u(x + 1, y)− u(x, y)|2 + |u(x, y + 1)− u(x, y)|2 (11)

For the ART model p = Au, the TV sparse regularization model based on TV mini-
mization is established as follows:

min
u
‖Au− p‖2

2 + λ2‖TV(u)‖1 (12)
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where λ2 is the regularization parameter. Update the image with ART, and then iterate
with the gradient descent method to minimize TV. The iterative equation is:

uk+1
i,j = uk

i,j − α
∂TV(uk

i,j)

∂uk
i,j

(13)

where uk+1
i,j is the last iterated image, k is the number of iterations, ∂ is the gradient, and α

is the step of gradient descent. By updating the image alternatively using ART algorithm
and TV minimization, steps of the TV sparse reconstruction with ART model are described
in Algorithm 1.

Algorithm 1: Implementation of TV sparse reconstruction with ART model.

Given p, A, N, maxiter, α

Initialization: u0 = 0
for k = 1,2,3... maxiter do
ART Updating:

for j = 1,2,3..., N do

uk
j = uk−1

j + λ
pi−∑N

j=1 ωinuk−1
n

∑N
n=1 ω2

in
ωij

uk
j =

{
uk

j uk
j ≥ 0

0 uk
j < 0

end
TV Minimization:

tk−1 = uk

v = ∂‖tk−1‖TV/∂tk−1

tk = tk−1 − α · v
uk = tk

k = k + 1
End

4. Experiments

In this section, the outfield experiments are carried out on the detection target as
shown in Figure 5 under the condition of both near-field and far-field. The detection
target, which is made of retroreflective material, is composed of three squares, 4 cm on
the side, and the included angle between each two is 135◦. The laser transmitter is located
around 30 m away from the detection target in the near-field and 1 km away in the far-field.
Furthermore, the two sets of the echo data are all collected every 1◦ of target rotation,
and 360 groups of echo data can be collected by the turntable rotating for one turn under
both conditions.
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4.1. Near-Field Experiment

Figure 6a shows the laser reflection projection data after registration in the near-field
experiment. A small amount of negative data is caused by the negative noise of the detector,
so the negative value in the echo is eliminated. Then, the projection data are converted
according to Equation (3), as shown in Figure 6b.
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Figure 6. (a) Laser reflection projection data after registration; (b) converted projection data in
complete angle.

For the projection data in the near-field experiment, the proposed TV sparse imaging
reconstruction method in Section 3.2 is performed compared with FBP [10–13], ART [14],
and sparse ART with a complete view of projections and uniformly sampled projections
in 5◦, 10◦, and 20◦ viewing intervals. The results are shown in Figure 7. In Figure 7a, the
iRadon [3,9] results are illustrated just to show the target contour according to the definition
in Equation (1), as mentioned in Section 3.1. In Figure 7(a4), for sparse ART with OMP
algorithm mentioned in Section 3.2.2, because of using discrete Fourier transform as a
sparse basis, it cannot make good use of the gradient sparse features of laser image, leading
to obvious deviation between the reconstructed contour and the original target. Then, for
Figure 7(a2,a3,a5), the target contour is very clear after imaging with all three approaches.
In Figure 7(a5), the resolution of the reconstructed image is significantly improved by
using the proposed algorithm compared to Figure 7(a2). Comparing Figure 7(a5) with
Figure 7(a3), there are artifacts in the image reconstructed by the traditional ART, which
are mostly eliminated in the result of the proposed method. Therefore, in the case of the
complete angle, the proposed algorithm greatly improves the resolution of the reconstructed
image and reduces the image artifacts.

Next, experiments are carried out at projections with viewing intervals of 5◦, 10◦, and
20◦, respectively. In the near-field experiment, according to the Nyquist sampling theorem,
the maximum projection angle sampling interval required to completely reconstruct the
detected target laser image within the range of 360◦ is calculated as about 9◦. In Figure 7b,
the sampling rate still meets the Nyquist sampling law, and the reconstruction result shows
little difference from Figure 7a. When the viewing interval of the projection data is 10◦ and
20◦, the sampling does not meet the Nyquist sampling law. It can be noticed in Figure 7c,d,
with the increase in sampling angle interval, that the artifacts in the reconstructed image by
iRadon and FBP algorithm increase significantly, which seriously affects the identification
of the target contour. However, in the three results related to the ART in Figure 7(c3–c5)
and Figure 7(d3–d5), the artifacts are in good condition. At the same time, the imaging
resolution of the proposed algorithm is better than the traditional ART and sparse ART
with the OMP algorithm. Comparing Figure 7(d5) with Figure 7(a5,b5,c5), with the increase
in the sparsity of the angle, the image resolution is generally consistent with that in the
complete angle. Furthermore, the artifact is in good condition and the image edge is
smooth as well, which greatly reduces the requirements for the detection angle of non-
conforming targets and provides convenience for high-efficiency and high-precision laser
image reconstruction of non-conforming targets.
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Figure 7. Near-field experimental imaging results with uniformly sampled views of projections
(Far left) iRadon; (Left) FBP; (Middle) ART; (Right) sparse ART with OMP; (Far right) TV sparse
reconstruction with ART. (a) Complete view data (a1–a5); (b) sampled data at 5◦ intervals (b1–b5);
(c) sampled data at 10◦ intervals (c1–c5); (d) sampled data at 20◦ intervals (d1–d5).

For quantitative assessment, information entropy (IE), no-reference signal-to-noise
ratio (NRSNR), and variance (Var) are introduced to evaluate the imaging results by using
different approaches. IE is defined as follows [26,27]:

IE = −∑ pi ln pi (14)

where pi is the probability that the pixel value in the image is i. According to Shannon’s
information theory, larger entropy indicates more information. That is, the image is clearer
with larger IE in LRT reconstruction.

SNR is the proportion of signal to noise and reflects the influence of the noise to signal
or image. Here, the NRSNR is adopted to measure the denoising and artifact elimination
effect of different reconstruction algorithms. Furthermore, the NRSNR is represented as
follows [28]:

NRSNR = 10 log10
255× 255

K
(dB) (15)

K =
G

M× N
(16)

where K is the noise level of the image, G = ∑ (g(x, y)− TH) is the noise distribution,
g(x, y) is the pixel value of the image, TH is a set threshold, and M and N are the size of
the image. The impact of the noise is smaller when the NRSNR value is higher, which
indicates that the quality of the image is better. In this article, NRSNR is utilized to evaluate
the anti-noise performance of different algorithms particularly.
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Var reflects the contrast ratio of the image [26], and the definition of Var is:

Var = ∑y ∑x|g(x, y)− µ| (17)

where g(x, y) is the pixel value of the image at coordinates (x, y) and µ is the mean pixel
value of the whole image. In other words, it is easier to distinguish different objects when
the Var is higher.

Based on the metrics mentioned above, all the reconstructed results in Figure 7 are
measured by IE, SNR, and Var as illustrated in Table 1. As shown in Table 1, the IE value
of the TV sparse reconstruction method is the highest and maintains well at different
sampling intervals, which indicates that the reconstructed image of the proposed method
better reflects the feature of the target. Meanwhile, the SNR value and Var value of the
proposed method are also better than the other algorithms at different sampling intervals,
which further proves the effectiveness of the TV sparse reconstruction method in LRT.

Table 1. Comparison of the metric values of the results by using different algorithms.

IE NRSNR (dB) Var

FBP ART OMP TV-ART FBP ART OMP TV-ART FBP ART OMP TV-ART

complete view 5.1485 6.2253 6.1133 9.6305 1.5081 2.0758 2.6317 3.2437 0.0463 0.2478 0.1318 0.3428
5◦ intervals 5.2353 5.2453 6.197 9.6313 1.5746 1.9728 2.3742 3.1592 0.0470 0.0423 0.0881 0.1572

10◦ intervals 5.3875 5.1411 6.0973 9.6319 1.7853 1.8311 2.4937 3.4724 0.0481 0.109 0.0649 0.1776
20◦ intervals 5.4357 4.6286 5.7298 9.6313 1.9615 1.574 2.623 3.2858 0.0461 0.0618 0.031 0.0912

Then, we test the anti-noise performance of the proposed algorithm and explore if
it still works under non-uniformly sampled projection data. Adding Gaussian noise to
the projection data at complete view angles and 10◦ intervals, the images reconstructed
by iRadon and FBP algorithm are destroyed by the noise in Figure 8b, yet the proposed
algorithm shows excellent performance in denoising regardless of the angle in Figure 8(b5).
It also performs better than the traditional ART not only in denoising ability but also in
edge preservation. In addition, experiments are conducted in random sampling at 10◦

intervals, as shown in Figure 8c. The result of the proposed algorithm in Figure 8(c5) is
superior to other algorithms in artifact elimination and the image can also be generally
well reconstructed under the influence of random sampling. For better analysis, all the
reconstructed results are evaluated by IE, NRSNR, and Var, illustrated in Table 2. It can
be concluded from Table 2 that whether the projection data are added with noise or non-
uniformly sampled, the IE and Var of the proposed method are still better than that of
the other three. It also can be noted that the NRSNR of the reconstructed image using the
proposed method is 2.2245 and 2.5897 in complete views and 10◦ intervals, respectively,
almost 30% higher than that of the FBP, ART, and OMP approaches, which highlights the
anti-noise performance of the TV sparse reconstruction method with incomplete views of
projection data.

Table 2. Comparison of anti-noise and random sampled results with the three metrics.

IE NRSNR (dB) Var

FBP ART OMP TV-ART FBP ART OMP TV-ART FBP ART OMP TV-ART

complete view
with noise 5.3208 5.4121 6.1208 9.6315 1.9989 1.9855 1.6487 2.2245 0.0298 0.0563 0.1359 0.2552

10◦ intervals
with noise 5.4262 4.6257 6.1078 9.6305 2.0265 1.6557 1.3547 2.5897 0.0137 0.0379 0.0641 0.1966

10◦ intervals
random sample 5.2839 4.7442 6.5712 9.6314 2.0345 1.5427 1.3827 2.3098 0.0418 0.0375 0.0651 0.0982
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Figure 8. Second near-field experimental imaging results (Far left) iRadon; (Left) FBP; (Middle) ART;
(Right) sparse ART with OMP; (Far right) TV sparse reconstruction with ART. (a) Complete view
data with noise (a1–a5); (b) sampled data at 10◦intervals with noise (b1–b5); (c) random sampled
data at 10◦ intervals (c1–c5).

Finally, the proposed algorithm is tested under 0–60◦, 90◦, 120◦, and 150◦ views of
projections. Among the results, the image can be roughly reconstructed under the 150◦

view of projections, as shown in Figure 9c, and Figure 9(c5) shows that the resolution
under the proposed algorithm is significantly better. When the viewing angle is less than
120◦ as Figure 9a,b, it is hard to recognize the contour of the image. To assess the LRT
reconstruction performance under a limited range of projections, the correlation coefficient
(CC) [29] is employed to measure the similarity between the reconstructed images with
the complete viewing angles and images with the incomplete viewing angles by using the
same algorithm. Furthermore, the CC is defined as follows:

CC =
cov(A, B)√

var(A)var(B)
(18)

here A and B are the two compared images, cov(A, B) is the covariance between A and
B, and var(A) is the variance of A. The CC value is between 0 and 1, where the closer
the CC value is to 1, the more similar the two images are. Therefore, the reconstruction
images in incomplete sampled views can be effectively evaluated as long as the CC value is
calculated between these images and the image with full sampled views.

From Table 3, it is obvious that the reconstructed images under the 0–150◦ view of
projections in Figure 9d are all the most similar to the images under the complete view of
projections in Figure 7a, as Figure 9d has more viewing angles compared to 0–60◦, 90◦, and
120◦ viewing projections. By using the proposed method, the CC values between the LRT
images under the limited range of projections and the images under the complete view of
projections are all the highest, which validates the superiority of the method compared to
other algorithms when dealing with the case of incomplete viewing angles.
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Figure 9. Near-field experimental imaging results under limited view of projections (Far left) iRa-

don; (Left) FBP; (Middle) ART; (Right) sparse ART with OMP; (Far right) TV sparse reconstruction 
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Figure 9. Near-field experimental imaging results under limited view of projections (Far left) iRadon;
(Left) FBP; (Middle) ART; (Right) sparse ART with OMP; (Far right) TV sparse reconstruction with
ART. (a) 0–60◦ sampled data (a1–a5); (b) 0–90◦ sampled data (b1–b5); (c) 0–120◦ sampled data (c1–c5);
(d) 0–150◦ sampled data (d1–d5).

Table 3. CC values of different algorithms with incomplete views of projection.

CC

FBP ART OMP TV-ART

0–60◦ sampled 0.4443 0.5061 0.4562 0.5380
0–90◦ sampled 0.4934 0.4848 0.5178 0.5789

0–120◦ sampled 0.6348 0.6538 0.6048 0.6919
0–150◦ sampled 0.8480 0.8612 0.6916 0.9319

4.2. Far-Field Experiment

After meliorating the optical system in the laser transmitter and using a more ad-
vanced module, the far-field experiment is performed on the same detection target as
shown in Figure 5. After preprocessing the projection data, Figure 10 shows the converted
projection data of the far-field experiment. It is obvious that the quality of the projection
data is significantly improved in that the echo data hardly fluctuate and their continuity is
maintained well.

Similarly, for the projection data in the improved far-field experiment, the proposed
imaging reconstruction algorithm is performed compared to iRadon, FBP, and ART with
the complete view of projections and uniformly sampled projections in 5◦, 10◦, and 20◦

viewing intervals. The results are shown in Figure 11.
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Figure 11. Far-field experimental imaging results with uniformly sampled views of projections
(Far left) iRadon; (Left) FBP; (Middle) ART; (Right) sparse ART with OMP; (Far right) TV sparse
reconstruction with ART. (a) Complete view data (a1–a5); (b) sampled data at 5◦ intervals (b1–b5);
(c) sampled data at 10◦ intervals (c1–c5); (d) sampled data at 20◦ intervals (d1–d5).

As shown in Figure 11, the reconstruction result is significantly optimized and the
contour of the detection target is well embodied, which indicates that the new optical
system has a great impact on the experiment. From the images in Figure 11a, the included
angle between each two squares can be clearly seen, overmatching the imaging results of
the near-field experiment. However, it is also obvious that there are more artifacts in this
experiment due to the influence of interference in the long distance.

The reconstruction effect of different algorithms resembles the result in the near-field
experiment. The proposed TV sparse reconstruction with the ART algorithm shows a better
effect under the circumstance of both complete view sampling and sparse sampling, which
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further proves the high precision of the algorithm. Table 4 analyzes the IE, NRSNR, and Var
of four approaches in far-field experiments. It can be clearly seen that the IE, NRSNR, and
Var of the proposed method are still better than that of FBP, ART, and OMP. Take the results
in 20◦ intervals as an example; the IE, NRSNR, and Var of the proposed method are 9.6316,
4.7132, and 0.0503, respectively, improved by about 160%, 50%, and 25% compared to that
of other approaches. As a result, the effectiveness of the proposed TV sparse reconstruction
with the ART algorithm in sparse views is again verified by the far-field experiment.

Table 4. IE, NRSNR, and Var value of different algorithms in far-field experiment.

IE NRSNR (dB) Var

FBP ART OMP TV-ART FBP ART OMP TV-ART FBP ART OMP TV-ART

complete view 4.5046 2.2764 3.9911 9.6317 4.251 1.5794 3.3193 5.7955 0.0781 0.0101 0.0563 0.1015
5◦ intervals 4.4616 1.9777 4.0875 9.6308 3.734 1.4916 4.0301 4.6043 0.0933 0.0187 0.0227 0.098

10◦ intervals 4.6289 1.764 4.4602 9.6312 3.3437 1.4779 3.9256 4.5962 0.0526 0.039 0.0545 0.0559
20◦ intervals 4.5152 1.7045 4.6932 9.6316 4.1645 1.5371 3.8309 4.7132 0.0319 0.0446 0.0452 0.0503

Figure 12 shows the second far-field experimental imaging results and then the same
conclusion can be drawn as near-field experiments. In Figure 12a,b, it can be clearly seen
that the proposed method reconstructs the contour of the target well and performs better
in denoising than the FBP and ART algorithms. In Figure 12c, the reconstruction effect of
random sampling is not ideal, but the proposed method generally restores the contour of
the target, which proves to be effective in random sampling as well. As shown in Table 5,
the proposed method is still the best among the four algorithms, whether the projection
data are added with noise or non-uniformly sampled, which proves the reliability of the
proposed method once again. Furthermore, the NRSNR of the reconstructed image using
the proposed method is also the highest, proving that the TV sparse reconstruction method
possesses the character of working well when dealing with noise.
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Figure 12. Far-field experimental imaging results (Far left) iRadon; (Left) FBP; (Middle) ART; (Right)
sparse ART with OMP; (Far right) TV sparse reconstruction with ART. (a) Complete view data with
noise (a1–a5); (b) sampled data at 10◦ intervals with noise (b1–b5); (c) random sampled data at 10◦

intervals (c1–c5).
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Table 5. IE, NRSNR, and Var value of anti-noise and random sampled results.

IE NRSNR (dB) Var

FBP ART OMP TV-ART FBP ART OMP TV-ART FBP ART OMP TV-ART

complete view
with noise 5.0696 2.1788 4.0617 9.6315 6.978 2.1002 4.8256 11.8431 0.0084 0.0086 0.0164 0.01672

10◦ intervals
with noise 5.154 1.9383 4.2768 9.6314 7.3181 1.974 5.2402 9.1245 0.0022 0.0044 0.0553 0.0479

10◦ intervals
random sample 4.373 1.8787 4.491 9.6313 4.9049 1.8302 2.4533 6.9627 0.0219 0.005 0.0297 0.0411

Finally, the proposed algorithm is tested under 0–60◦, 90◦, 120◦, and 150◦ views
of projections with new far-field data. When the viewing angle is less than 120◦ as in
Figure 13a,b, it is still hard to recognize the contour of the image. However, in this
experiment, the image can be reconstructed well under the 150◦ view of projections as
shown in Figure 13c, which is superior to the near-field results. Further, Figure 13(c5)
shows that the quality of the reconstructed image using proposed algorithm in 150◦ view
of projections can reach the same level as in complete angles. Correspondingly, Table 6
analyzes the similarity between Figures 13a–d and 11a in the form of CC. Furthermore, the
superiority of the LRT TV-ART method is obvious according to the quantitative comparison
in Table 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

     
(a1) (a2) (a3) (a4) (a5) 

(a) 

     
(b1) (b2) (b3) (b4) (b5) 

(b) 

     
(c1) (c2) (c3) (c4) (c5) 

(c) 

     
(d1) (d2) (d3) (d4) (d5) 

(d) 

Figure 13. Far-field experimental imaging results under a limited view of projections (Far left) iRa-

don; (Left) FBP; (Middle) ART; (Right) sparse ART with OMP; (Far right) TV sparse reconstruction 

with ART. (a) 0–60° sampled data (a1:a5); (b) 0–90° sampled data (b1:b5); (c) 0–120° sampled data 

(c1:c5); (d) 0–150° sampled data (d1:d5). 

Table 6. CC values of different algorithms with incomplete views of projection. 

 
CC 

FBP ART OMP TV-ART 

0–60° sampled 0.3978 0.3687 0.1975 0.4913 

0–90° sampled 0.471 0.4134 0.3701 0.4925 

0–120° sampled 0.4353 0.4269 0.4066 0.4727 

0–150° sampled 0.7586 0.7499 0.6805 0.7979 

5. Discussion 

In Section 4, both near-field and far-field experiments are performed and IE, NRSNR, 

Var, and CC are employed as the quantitative validation to validate the proposed method 

with nature data. As a result, the proposed method shows its superiority in the sparse or 

limited view of projections and better noise-suppressing ability compared to iRadon, FBP, 

ART, and OMP approaches. 

However, though near and far-field experiments verify the effectiveness of the TV 

sparse reconstruction with the ART model method, there are still some limitations. Now 

we can focus on another far-field experiment. In this far-field experiment, atmospheric 

turbulence is relatively serious. In addition, the jitter of the platform brings more noise to 

the nature data and poor illumination makes it harder to achieve a high quality image. 

Figure 13. Far-field experimental imaging results under a limited view of projections (Far left) iRadon;
(Left) FBP; (Middle) ART; (Right) sparse ART with OMP; (Far right) TV sparse reconstruction with
ART. (a) 0–60◦ sampled data (a1–a5); (b) 0–90◦ sampled data (b1–b5); (c) 0–120◦ sampled data (c1–c5);
(d) 0–150◦ sampled data (d1–d5).
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Table 6. CC values of different algorithms with incomplete views of projection.

CC

FBP ART OMP TV-ART

0–60◦ sampled 0.3978 0.3687 0.1975 0.4913
0–90◦ sampled 0.471 0.4134 0.3701 0.4925

0–120◦ sampled 0.4353 0.4269 0.4066 0.4727
0–150◦ sampled 0.7586 0.7499 0.6805 0.7979

5. Discussion

In Section 4, both near-field and far-field experiments are performed and IE, NRSNR,
Var, and CC are employed as the quantitative validation to validate the proposed method
with nature data. As a result, the proposed method shows its superiority in the sparse or
limited view of projections and better noise-suppressing ability compared to iRadon, FBP,
ART, and OMP approaches.

However, though near and far-field experiments verify the effectiveness of the TV
sparse reconstruction with the ART model method, there are still some limitations. Now
we can focus on another far-field experiment. In this far-field experiment, atmospheric
turbulence is relatively serious. In addition, the jitter of the platform brings more noise to
the nature data and poor illumination makes it harder to achieve a high quality image.

In this far-field experiment, the distance between the laser transmitter and the detection
target is 1 km. The echo data are collected every 2◦ of target rotation and 180 groups of echo
data can be collected. The detection target is a triangular prism. The cross section of the
triangular prism is an isosceles triangle, with a short side of 11 cm and a long side of 15 cm.
Figure 14a shows the far-field target. Figure 14b shows the laser reflection projection data
after registration in the far-field experiment. In Figure 14b, the echo data are influenced
significantly, and it can be obviously noticed that the noise destroys the continuity of the
echo data and the echo fluctuates violently, which is different from echo data in the near-
field environment. Similarly, the projection data in the far-field experiment is preprocessed
to obtain the converted projection data in complete viewing angles, as shown in Figure 14c.
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Then, for the projection data in the far-field experiment, the proposed imaging recon-
struction algorithm is performed compared to iRadon, FBP, and ART with a complete view
of projections and uniformly sampled projections in 5◦, 10◦, and 20◦ viewing intervals. The
results are shown in Figure 15. The far-field experiment is also performed. In Figure 15a, for
the projection data in the complete angle, all algorithms can generally reconstruct the target
and the reconstructed contour of the target in Figure 15(a4) is clearer than others. However,
compared with Figure 7a, it can be noticed that the reconstructed image is disturbed and
has more artifacts because of the serious noise. Then, when the Nyquist sampling law
is satisfied, Figure 15b shows that the reconstruction result of each algorithm is basically
consistent with that under complete projections, respectively. With the increase in viewing
intervals in Figure 15c,d, the projection sampling does not meet the Nyquist sampling law.
In this condition, the artifact of image reconstruction results of iRadon and FBP algorithm
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increases significantly, which is not suitable for projection data reconstruction at a sparse
angle. Moreover, the proposed TV sparse ART method obviously shows its advantages in
artifact elimination and anti-noise performance, as displayed in Figure 15(c4,d4). Although
the far-field experiment is affected by atmospheric turbulence and jitter of the target and
platform, the proposed TV sparse ART method still maintains the image contour resolu-
tion of the detected target under sparse angle projection data due to its good anti-noise
performance and artifact elimination.
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Figure 15. Far field experimental imaging results with uniformly sampled view of projections
(Far left) iRadon; (Left) FBP; (Right) ART; (Far right) TV sparse reconstruction with ART. (a) Com-
plete view data (a1:a4); (b) sampled data at 5◦ intervals (b1:b4); (c) sampled data at 10◦ intervals
(c1:c4); (d) sampled data at 20◦ intervals (d1:d4).

To conclude, the TV sparse reconstruction method shows its great potential in LRT of
the space target, where better performance under a sparse or limited view of projections
along with the better ability of anti-noise and artifact elimination make it surpass traditional
approaches in the quality of image reconstruction. However, though in most cases the
image of the target can be generally restored, some improvements still need to be made,
especially in more complex environments. Our future work will focus on the system design
to promote its applicability and improve the algorithm to achieve the balance between the
noise suppression and reconstructed image quality.

6. Conclusions

In this article, the tomography model of laser reflection projection data is introduced,
and the designed LRT experimental system is shown. Then, aiming at solving the problem
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of high-resolution image reconstruction of long-distance non-cooperative target detection
under the sparse or incomplete view of reflection projections, a laser image reconstruction
approach viz. TV sparse reconstruction with ART model is proposed for lidar imaging
of LRT. Considering that the ART model can be formed into the sparse reconstruction
model, this article uses ART to reconstruct the initial image, and then utilizes the TV model
and the gradient descent algorithm to reduce the total variation of the iterative image
and improve its quality. Finally, the near-field and far-field experiments are performed,
and comparisons are made between different algorithms to verify the effectiveness and
universality of the proposed method. The experimental result illuminates that the proposed
LRT imaging using TV sparse reconstruction with the ART model greatly maintains the
resolution of the reconstructed image and improves the artifact elimination ability and
the anti-noise performance, which is of major significance to the long-distance space non-
cooperative target detection. Furthermore, the proposed method also shows its superiority
under random sampling and limited viewing angles, which should be still improved while
dealing with the far-field target. Furthermore, the experiments also show the weakness of
the LRT system in that the reconstruction results are badly influenced when interferences
exist, such as wind or vibration. Therefore, more improvement should be made in both the
LRT system and the algorithm to strengthen its reliability and accuracy in our future work.
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