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Abstract: The Global Navigation Satellite System (GNSS) capability in smartphones has seen signifi-
cant upgrades over the years. The latest ultra-low-cost GNSS receivers are capable of carrier-phase
tracking and multi-constellation, dual-frequency signal reception. However, due to the limitations of
these ultra-low-cost receivers and antennas, smartphone GNSS position solutions suffer significantly
from urban multipath, poor signal reception, and signal blockage. This paper presents a novel
sensor fusion technique using Precise Point Positioning (PPP) and the inertial sensors in smartphones,
combined with a single- and dual-frequency (SFDF) optimisation scheme for smartphones. The
smartphone is field-tested while attached to a vehicle’s dashboard and is driven in multiple real-
world situations. A total of five vehicle experiments were conducted and the solutions show that
SFDF-PPP outperforms single-frequency PPP (SF-PPP) and dual-frequency PPP (DF-PPP). Solutions
can be further improved by integrating with native smartphone IMU measurements and provide
consistent horizontal positioning accuracy of <2 m rms through a variety obstructions. These results
show a significant improvement from the existing literature using similar hardware in challeng-
ing environments. Future work will improve optimising inertial sensor calibration and integrate
additional sensors.

Keywords: PPP; smartphones; IMU; single- and dual-frequency combination; ionospheric constraints;
GNSS outage

1. Introduction

Smartphone positioning techniques and their navigation capability based on Global
Navigation Satellite Systems (GNSS) have seen intensive development in the last decade.
The proliferation of GNSS-enabled smartphones and wearables has boosted the evolving
industry of Location-Based Services (LBS), around which a growing number of applications
such as lane-level navigation, personnel/property monitoring, augmented reality, etc., are
thriving. Many of these applications require greater user positioning accuracy, resilience,
and/or availability.

It has been a topic for both industry the research communities to innovate within the
low-cost domain to address these challenges and improve solutions further. The idea for
improving smartphone GNSS positioning is often two-fold: (1) improving GNSS processing
techniques to increase solution accuracy; (2) using sensor fusion to enhance accuracy, and
more importantly, resilience and availability. Compared to geodetic-grade hardware that
is traditionally used in the surveying and mapping community, ultra-low-cost GNSS
modules suffer from poor signal reception, low gain, or poor multipath suppression [1–3].
On improving GNSS-only solutions, progress has been made in evaluating smartphone
signal strength and carrier to noise ratios [4–7], observation noise characteristics and
optimisation [8,9], duty cycling [10,11], as well as precise positioning techniques and their
further enhancements [12–14].

In 2016, Google announced the availability of code and phase raw measurements
to smartphone users [15], enabling more precise positioning techniques such as Precise
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Point Positioning (PPP), which is capable of delivering centimetre-level positioning in
minutes with a standalone geodetic receiver and precise products [16,17], without the base
station and baseline length constraints [18,19]. Most of the earliest smartphone positioning
performance assessments focus on single-frequency (SF) processing, ref. [20] conducted
a single-frequency PPP static experiments, and obtained horizontal and vertical rms of
37 cm and 51 cm, respectively, under the open-sky environments. Similar conclusions
were also drawn by [21]. Following these studies, ref. [22] utilized the ionospheric-
constrained, single-frequency PPP strategy to further improve smartphone positioning,
and results demonstrated that the level of sub-metre accuracy can be reached with the Mate
30 smartphone in static tests.

Thanks to the emergence of multi-constellation, dual-frequency smartphone GNSS
chipsets, it is now possible to utilize more observations and manage the ionospheric delays
by means of, e.g., ionospheric-free combination or ionospheric error estimation. In 2018,
the first dual-frequency (DF) smartphone MI 8 was released with a BCM47755 chip [23]
and in this context, a host of studies demonstrated that the ionospheric-free dual-frequency
MI 8 PPP solutions may achieve decimetre-level accuracy in static environments with real-
time [24] or final products [25]. Continuing this research with dual-frequency processing,
ref. [26] comprehensively compared the PPP performance with four released smartphones
and an average horizontal error of 40 cm can be obtained for dual-frequency MI 8 solu-
tions, which was superior to single-frequency solutions, but the performance degraded
to 6 m in a kinematic test. Recently, a subsequent contribution from [27] demonstrated
that ionospheric-constrained dual-frequency PPP is able to benefit smartphone positioning
significantly compared to low-cost and geodetic-receivers, in particular in suburban envi-
ronments. Meanwhile, ref. [28] conducted a walking experiment and achieve 0.85 m and
1.09 m in horizontal and vertical components, respectively, with the aid of the real-time
ionospheric products.

It is often necessary for PPP or other GNSS techniques to fuse solutions with measure-
ments from additional sensors to maintain a similar level of accuracy during GNSS outages.
For smartphone navigation, there is a stronger need due to poor GNSS measurement quality,
as well as a tendency from users to acquire positioning solutions in obstructed environ-
ments such as urban canyons. Traditionally, it has been shown that during GNSS outages,
low-cost MEMS (Micro-ElectroMechanical System) IMUs have the potential to achieve
decimetre-level accuracy over 60 s when coupled with geodetic-grade GNSS receivers in
PPP mode [29], or at the metre-level for a few seconds with low-cost, single-frequency
GNSS receivers [30]. Fusing more recently available low-cost, dual-frequency GNSS re-
ceivers in PPP with MEMS-IMU produces decimetre-to-metre-level accuracy during 30 s
of outages with four visible satellites, and dual-frequency processing gives a significant
edge of 10 times improvement over single-frequency processing [31]. The emergence of the
latest smartphone-grade, or ultra-low-cost GNSS chipsets has led to studies investigating
a native sensor fusion scheme using the onboard inertial sensors of smartphones [32–34].
However, in smartphone PPP processing, there is little literature which investigates GNSS-
PPP/IMU fusion specific to the ultra-low-cost GNSS receivers and IMUs. An earlier study
by the authors, has shown the potential of bridging solution gaps produced from GNSS
outages, while maintaining a metre-level solution [35] using smartphones strapped on
top of vehicles. It has yet to been seen if a feasible GNSS-PPP/IMU processing scheme
that brings the performance to a similar level in real-world driving environments where
complex obstruction and multipath profiles are involved.

In spite of this remarkable progress, the major limitations restricting the use of smart-
phones for precise navigation applications are their low-quality noisy measurements and
positioning degradation during GNSS outages. Thus, utilizing single- and dual-frequency
(SFDF) observations, as well as IMU information are vital for smartphone navigation.
Ref. [36] proposed to use the single-frequency ionosphere-corrected code measurements
with dual-frequency ionospheric-free code and phase measurements for low-cost GNSS
device position determination, and in this context, ref. [37] proved that this approach
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would benefit smartphone positioning through walking experiments. While single- and
dual-frequency PPP is not a novel concept and there are some studies focusing on SFDF
scheme for low-cost and smartphone devices, it should be noted that this paper uniquely
explores the benefits of SFDF strategy for smartphone not only in benign environments,
but also in realistic (automotive) suburban areas where smartphone GNSS signals tend to
be blocked or affected by multipath effects. For this research, this paper also employed the
native inertial sensor from smartphones and developed a single- and dual-frequency PPP
engine enhanced with ionospheric constraints (PPP-IC). Therefore, the main significant
novelties and contributions of this work aim to answer the following research questions:

1. How does single- and dual-frequency PPP processing improve smartphone GNSS po-
sitioning performance and how does it compare with other PPP processing strategies
(single-frequency PPP and dual-frequency PPP) in GNSS challenged environments?

2. How does smartphone IMU dead-reckoning perform compared to other low-cost
MEMS IMU? How does the inclusion of the smartphone inertial sensor affect
PPP solutions?

3. What is the “best” positioning performance that smartphones can achieve with multi-
GNSS PPP/IMU integration in real-world driving environments?

2. Mathematical Models and Data Processing Strategies

This section introduces the theoretical background behind single- and dual-frequency
PPP-IC and IMU tightly-coupled strategy, as well as the York-PPP user processing engine
parameter settings.

2.1. Single-Frequency and Dual-Frequency PPP-IC Model

Ionospheric delay is a critical error source for PPP processing. The traditional ionospheric-
free (IF) model is capable of eliminating the first-order ionospheric delay through the
combination of dual-frequency observations [38,39]. Unlike the IF PPP, uncombined PPP
is able to use external ionospheric delay information to benefit positioning performance.
Recently, refs. [40,41] rewrote the uncombined PPP observation equation by decoupling the
receiver DCB with estimated slant ionospheric delay. In this context, ref. [27] suggests that
ionospheric constraints (IC) bring significant benefits to low-cost devices, and this PPP-IC
equation can be written as:
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where Ps
r,i and Φs

r,i are the pseudorange and carrier-phase measurements on frequency
i (i ∈ {1, 2}); ρs

r is the geometric distance between satellite s and GNSS receiver r; c is
speed-of-light in vacuum, and dtr refer to receiver clock offsets; br,PIF and bs

PIF
represents

the receiver and satellite code biases in IF combination, respectively; likewise, br,Φ and bs
Φ

represent, respectively, the receiver and satellite phase biases; Ts
r is the slant troposphere

delay; f refers to the signal frequency, and Is,constrained
r,1 is estimated ionospheric delay
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constrained by external GIM (Global Ionosphere Map) information on first frequency.
Ñr,i is the estimated carrier-phase ambiguity, containing code and phase biases; DCBr is
the estimated receiver DCB; εP and εΦ are, respectively, pseudorange and carrier-phase
unmodelled errors including measurement noise and multipath error.

2.2. Tightly-Coupled PPP/IMU Model

The inertial sensor serves as the dead-reckoning sensor that provides relative displace-
ment information that determines the user’s position based on the previous position. Rather
than absolute, position-fixing measurements such as GNSS, an IMU requires initialization
from known knowledge to compute a navigation solution. GNSS solution suffers from the
inherent disadvantage of a space-based ranging system where challenging environments
degrade or disable position solutions. Fusing the measurements from the native IMU
within smartphones provides (1) a dead-reckoning solution from mechanization equations
and (2) an improved EKF (Extended Kalman Filter) solution that employs sensor fusion.
The section briefly reviews the key ideas in mechanization and EKF fusion with PPP.

Typically, in a GNSS/IMU fused system, the IMU has a higher data rate than GNSS
receivers. In the case of smartphones, typically the GNSS sensor has a one-second sampling
interval and a varying data frequency from IMUs due to internal power-saving or other
factors within the operating system. To unify IMU input, the IMU data are pre-processed
through interpolation to produce a uniform 100 Hz data stream [35].

Mechanization enlists a series of deterministic physical equations to compute the
updated attitude, velocity, and position based on known information and current IMU ac-
celerometer/gyroscope readings. This solution, without GNSS measurements is considered
the IMU-only solution in the subsequent analysis, or the dead-reckoning solution. The IMU
measures specific force f b

ib and angular rate ωb
ib as inputs to the mechanization equations.

Here, the subscript b refers to the IMU body frame, and i refers to the inertial frame. In
this context, the specific force measured f b

ib should be interpreted as measurements in the
body frame with respect to the inertial frame, resolved in the body frame axes. The inertial
solution coasted from the last GNSS observation is carried onto the next available GNSS
epoch for the EKF.

A tightly-coupled integration approach is used in this study. In tightly-coupled GNSS/IMU
integration, the EKF takes in GNSS measurements and updates both IMU and GNSS states
in a centralized approach. The total-state vector is defined as Equation (2) [31,42,43]:

δX = [Xx,y,z Vx,y,z εx,y,z δIs
r δTs

r δt δṫ bax,ay,az bgx,gy,gz Ns] (2)

where Xx,y,z denotes the position states; Vx,y,z denotes the velocity states; εx,y,z denotes the
attitude in local navigation frame; δIs

r and δTs
r denote the slant ionospheric and tropospheric

delay, respectively; δt denotes receiver clock errors; δṫ denotes receiver clock drift; bax,ay,az
and bgx,gy,gz denote bias in accelerometer and gyroscope, respectively; and Ns denotes the
float ambiguity terms.

The design of the PPP/TC EKF is based on a conventional closed-loop model demon-
strated in Figure 1. The raw measurements conditioned through pre-processing are fed
into the mechanization equations to produce an IMU-only solution. Once the next GNSS
observation set becomes available, the GNSS-PPP/IMU EKF runs to produce a solution.
Finally, the bias estimates for accelerometers and gyroscopes are fed back to the IMU data
reading in the closed-loop feedback approach for the next epoch. The feedback is additive
to raw f b

ib and ωb
ib inputs. Since mechanization runs using the state vector inherited from

the previous epoch, an accurate dead-reckoning solution requires an accurate fused prior
epoch estimate. The EKF employs zero-velocity update (ZUPT) to improve solution quality
when the vehicle is stationary.
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Figure 1. Schematic of the tightly-coupled Extended Kalman Filter in York-PPP user processing engine.

2.3. York-PPP Engine and Processing Settings

The York-PPP engine is a well-established software that is able to produce PPP/IMU
tightly-coupled solutions for geodetic, low-cost, as well as smartphone devices. Table 1
highlights relevant engine settings for this current processing with corresponding products.

Table 1. York-PPP setting and corresponding strategies.

York-PPP Settings Products/Value

Satellite orbit and clock GFZ rapid products (GBM) [44]

Tropospheric delays
Hydrostatic: GMF model [45]

Wet: estimated

Ionospheric delays Constrained by GIM (final IGSG products) [46]

Satellite DCB CAS products [47]

Weighting scheme Carrier-to-noise (C/N0) based

Elevation mask 10◦

All smartphone collected raw measurements were processed in the aforementioned
PPP-IC mode with and without IMU integration. Besides correcting the satellite orbits
and clocks with GFZ (Geo-ForschungsZentrum) rapid products, the satellite DCBs are
corrected using CAS (Chinese Academy of Sciences) products. The combined final IGSG
GIM products served as the external constraints for ionospheric error estimation. Mean-
while, a carrier-to-noise (C/N0) based stochastic weighting scheme was adopted since the
smartphone signals contaminated with significant multipath errors tend to have lower
C/N0 ratios [5], and corresponding standard deviation of the code and phase observation
σ can be estimated as Equation (3) [48]:

σ = a + b ∗ 10−
1
2 ∗

C/N0
10 (3)

where coefficient a is 4 m and 6 cm for pseudorange and carrier-phase observations,
respectively. These values are empirically derived from the residuals. In addition, b is
the pseudorange chipping length and carrier-phase wavelength for pseudorange and
carrier-phase measurements, respectively [7].

In terms of measurement quality control, the satellite elevation cutoff angle is chosen
as 10◦and, on average, 0.7 satellites are rejected per epoch for four constellations. This
selection ensures that low-elevation satellites will be removed owing to their high noise and
multipath. Additionally, the PPP engine is automatically configured to screen out satellites
with post-fit residuals tenfold larger than the standard deviations of measurements to
mitigate the impacts of outliers.

3. Measurement Campaigns

Real-world experiments were designed to imitate daily driving scenarios where the
user places their phone on the vehicle’s dashboard. This section elaborates on the exper-
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imental procedures used to provide background material for explaining and analyzing
positioning results.

3.1. Equipment Setup

The experimental setup contains two rover sensor collections: (1) the reference sensors
and (2) the smartphones, as well as an RTK base station as illustrated in Figure 2.

Figure 2. Schematic of equipment setup for measurement Campaigns.

The hardware used are a collection of geodetic and automotive-grade GNSS and IMU
sensors to produce a reference positioning solution and raw measurement comparisons.
The sensors are mounted on and in a box on top of the vehicle as shown in Figure 3. A
NovAtel SPAN geodetic receiver + IMU combination and geodetic antenna is utilized, and
a NovAtel base station is located on an open rooftop within a 5 km baseline to generate a
post-processed, smoothed RTK/IMU tightly-coupled reference solution using the Inertial
Explorer software. An Xsens MTi-7 automotive-grade IMU is also used to provide a
low-cost inertial sensor alternative to the smartphone IMUs.

Figure 3. Photos of strapped reference sensors used in measurement campaigns.

Two phone models are used in this study, the Xiaomi Mi 8 and Samsung Galaxy S21+.
Both support multi-constellation (GPS+GLONASS+Galileo+BeiDou) tracking, as well as
dual-frequency signals (L1 and L5). The GnssLogger (Google) and Geo++ Rinex Logger



Remote Sens. 2022, 14, 3286 7 of 21

(Geo++) apps are used concurrently to log raw IMU measurements and GNSS observations,
respectively. To mimic real-world driving, the phones are attached on the dashboard
instead of placing on the vehicle roof. This study assumes the IMU frame to remain
stationary relative to the vehicle frame throughout the experiment. The smartphones are
equipped with consumer-grade inertial sensors. Their factory specifications are detailed in
Table 2 in comparison with the automotive/industrial-grade Xsens MTi-7 example used
alongside. The former class of inertial sensors usually cost less than 10 USD, whereas the
latter class can cost up to 1000 USD. The specifications show a general weaker performance
of smartphone IMUs. Traditionally, it is expected that GNSS-denied navigation outages
using an automotive/industrial grade IMU will be less than one minute. By extension,
smartphone IMUs should fill shorter GNSS-denied navigation outage periods. For the IMU
model in Galaxy S21+, in-run bias is not found in factory datasheet or in the literature, and
future work can include static IMU testing to compute Allan variance.

Table 2. Factory specifications of the inertial sensors used in experiment [34,42,49–51].

Phone Models Xiaomi MI 8 Samsung Galaxy S21+ Xsens MTi-7

IMU Model InvenSense ICM-20690 ST-Microelctronics LSM6DSO N/A

Gyroscope

In-run bias stability (°/h) >1000 - 10

Noise density (°/s/
√

Hz) 0.004 0.004 0.003

Standard full range (±°/s ) 2000 2000 2000

Accelerometer

In-run bias stability (mg) 40 - 0.03

Noise density (µg/
√

Hz) 100 110 70

Standard full range (±g) 16 16 16

3.2. Environmental Consideration

Since this study aims to mimic daily driving, a route including open parking lots with
vegetation, suburban roads and mixed underpasses was chosen. Examples of Google Street
View photos is shown in Figure 4. Road tests were performed on three separate days using
an identical route around York University, Toronto, Canada, and a total five datasets from
the two phones were collected. The route takes 26, 16, and 24 min for each road tests over a
total driving distance of approximately 10 km.

Figure 4. Google Street View of experimental environments.
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Based on the example collected on 30 November 2021, the effects of outages are briefly
discussed with a more detailed quantitative analysis to follow. Outage A is caused by a
railway bridge overpass with a width of approximately 6 m over an arterial road. The
overpass caused a reduction in the number of visible satellites for over 3 s, approximately
5 min from the start of data collection. Outage B is a more complicated underpass below
a major highway and two on/off ramps, consisting of three separate complete outages
over 100 m with two small gaps, each approximately 10 m. The duration of Outage B
is ∼10 s at an elapsed time of 15 min from the beginning of the drive. The complexity
increases the difficulty in producing a good GNSS solution as momentary GNSS signal
re-acquisition produce poor quality measurements and the filter has little time to converge
before subsequent outages.

4. Results Analysis

In Section 4.1, the dead-reckoning performance behaviour is first demonstrated, fol-
lowed in Section 4.2 by the assessment and analysis of proposed processing strategies. The
findings are then further summarised with statistics presented in Section 4.3. Finally, in
Section 4.4, single- and dual-frequency PPP/IMU solutions under different scenarios are
investigated.

4.1. IMU Dead Reckoning Performance

An extreme, but realistically meaningful scenario is complete GNSS outages such
as driving in tunnels. This study first attempts to produce IMU-only solutions over two
separate 60 s GNSS outages where the positioning solution is generated solely from IMU
inputs. To simulate such outages, outages A and B are extended by not including GNSS
measurements during the 60 s. The solution states are first initialized using a reference
solution produced by SPAN, with lever arm correction to the smartphone frame. The
horizontal errors are compared against the SPAN reference solution in post-processed
RTK/TC with full access to all available measurements in Figure 5.

(a) (b)

(c) (d)

Figure 5. Position estimates based on dead-reckoning of Xsens and MI 8 IMUs only within 60 s.
(a) IMU dead-reckoning horizontal errors within 60 s at Outage A. (b) Google Earth view of IMU
mechanization trajectories at Outage A. (c) IMU dead-reckoning horizontal errors within 60 s at
Outage B. (d) Google Earth view of IMU mechanization trajectories at Outage B.
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The results show diverging tracks from the reference solution in the Google satellite
views, and quantitatively demonstrated by strictly increasing horizontal errors with time.
The time series and table show higher horizontal errors from Mi 8 (blue) than from Xsens
(red) for the complete duration of Outage A and after 20 s for Outage B. The Xsens has a
slower diverging rate, suggesting a less noisy raw IMU performance. In general, the result
suggests robust ultra-low-cost IMU performance for an outage less than 10 s comparable to
that of automotive-grade IMUs such as the Xsens.

Another key observation is that the IMU-only solution shows better accuracy through
Outage B compared to during Outage A. Theoretically, IMU error propagation is com-
plicated and influenced by a range of factors including initialization errors, IMU timing
discrepancy, finite iteration rates, and noises. Measurement biases, mainly from gyroscope
also play a critical role in impacting IMU dead-reckoning solutions, and the positioning
errors δX in the respective axis can be represented as Equation (4) [42]:

δXa ≈
1
2

bat2

δXg ≈
1
6

bggt3
(4)

where δXa and δXg are the position errors caused by accelerometer and gyroscope biases
(ba and bg), respectively; g is gravity and t is the IMU mechanization time. In other words,
a 10−4 m/s2 accelerometer bias and a 10−3 rad/s gyro bias theoretically produce position
errors of 0.5 cm and 1.6 m, respectively, in 10 s.

Further analysis of these IMU biases is presented in Figure 6. The experiments were
conducted in kinematic environments that started with a straight path. The initial biases
are set as zero and it takes time for both of IMUs’ biases to converge. The engine has run
for 5 min prior to Outage A compared to 15 min prior to Outage B. From Figure 6, it can be
observed that the bias states are better converged at the 15-min mark than the 5-min mark,
potentially giving a better bias estimation. In addition, the Xsens IMU has more stable bias
estimation which converges faster than for the smartphone IMU. For the accelerometers,
the Mi 8 IMU does not show a clear converging pattern. For the gyroscopes, the Mi 8 IMU
takes almost 10 min more to reach a stable state compared to the Xsens. This comparative
performance is expected owing to lower-cost and performance of the smartphone IMU. As
a consequence of these two reasons, the early unconverged estimated biases lead to the
lower dead-reckoning performance at Outage A compared to Outage B.

Figure 6. Times series of estimated IMU accelerometer and gyroscope biases with along three axes.
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4.2. Kinematic Performance Assessment with Different Processing Strategies

Following the demonstration of IMU-only performance induced outages, this study
returns to different combinations of PPP-IC smartphone processing and fusion with native
IMU. In assessing the benefits of including more observations, the accuracy of three different
combinations of GNSS signals processing, namely the single-frequency PPP (SF-PPP),
dual-frequency PPP (DF-PPP), as well as single- and dual-frequency PPP (SFDF-PPP) are
evaluated based on the time series using one of the five datasets (30 November 2021—Mi
8). All datasets are summarised afterwards to broaden the conclusions. It is important to
note that GPS + GLONASS + Galileo + BeiDou (GREC) four constellations are processed
both in SF-PPP and SFDF-PPP combinations, but the latter also considers the GPS L5 and
Galileo E5a signals, which captures the benefits of dual-frequency PPP (GE).

4.2.1. Single-Frequency PPP-IC/IMU Processing

Figure 7a illustrates the horizontal error (with respect to the reference solution) com-
parison for SF-PPP (GREC) processing. To better appreciate the impact of the IMU measure-
ments, the positioning solutions processed with PPP-only, tightly-coupled PPP/MI8 IMU,
and PPP/Xsens IMU integration are represented as red, blue, and green lines, respectively,
and the EKF horizontal position precision estimates are included in comparison to the real
horizontal position errors with the same time series. The two black rectangles mark the
two aforementioned outages (A and B). As expected, the horizontal errors relying on GNSS
alone for GNSS PPP (red line) increase sharply when the vehicle passes through these
sky obstructions. Correspondingly, it can be observed from Figure 7b that the horizontal
precision estimated by the EKF increases significantly at elapsed times 5.5 and 15.4 min,
proving that the EKF estimated precision is sensitive to the GNSS outages. However, the
magnitude of the precision level from the outages was significantly higher compared to the
actual errors, reflecting that the estimated precision cannot serve as the representative of
actual position error.

(a) (b)

Figure 7. Horizontal error with respect to the reference trajectory and filter estimated precision com-
parison for single-frequency PPP processing using smartphone GNSS measurements, GNSS + IMU
measurements, and GNSS and Xsens IMU measurements. (a) Horizontal position error. (b) Horizontal
precision estimate.

In contrast, the tightly-coupled PPP/IMU processing approach significantly mitigates
the positioning errors during the outages, especially with the aid of Xsens IMU and to a
lesser extent with the smartphone IMU. In addition, 4% improvements from estimated
precision can be observed as well when integrating IMUs. Table 3 provides the horizontal
error summary statistics from the different sensor fusion combinations. The horizontal
position standard deviation (about the mean) error statistics shows the repeatability of
the estimates, which are reduced from 6.0 m with just GNSS PPP measurements to under
1 m when either IMU’s measurements are incorporated. Importantly, the rms (i.e., the
accuracy) of SF-PPP solution is improved from 6.3 m to 1.7 m and 1.6 m by integrating the
smartphone and Xsens IMU, respectively. The IMU provides little gain for 95th percentile
error as the tightly-coupled PPP/IMU solutions depend heavily on GNSS in open-sky
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environments, implying the fusion strategy did no harm to the PPP solutions when visible
satellites are sufficient. However, the IMU significantly constrains the maximum error
(100 percentile) when GNSS measurement limitations are most sensitivity to position es-
timation. In addition, Table 4 quantifies the error growth with respect to the outage time
during Outage B. Owing to insufficient satellites, the horizontal positioning performance
of traditional SF-PPP degrades significantly and the error exceeds 100 m when the elapsed
time is 925 s. In contrast, maximum horizontal errors of 5.8 m and 2.4 m can be observed
when the vehicle passed through Outage B with the aid of smartphone and Xsens IMUs, re-
spectively. Refs. [25,26] show similar smartphone SF-PPP positioning performance through
kinematic vehicle experiments, but solutions are improved significantly by integrating
IMUs in this study.

Table 3. Horizontal errors with different sensor fusion combinations for single-frequency PPP processing.

Processing Strategy Std Dev (m) Rms (m) 95th Percentile Error (m) Maximum Error (m)

SF-PPP 6.0 6.3 2.7 104.1

SF-PPP/IMU (MI8) 0.7 1.7 2.6 5.8

SF-PPP/IMU (Xsens) 0.6 1.6 2.6 3.8

Table 4. Horizontal errors growth with different sensor fusion combinations for single-frequency
PPP over Outage B.

Elapsed Time (s) 917 918 919 920 921 922 923 924 925

SF-PPP Horizontal errors (m) 13.3 25.6 37.4 48.5 59.9 71.9 81.9 95.6 104.1

SF-PPP/IMU (MI8) horizontal errors (m) 1.8 2.3 2.9 3.8 4.5 4.8 4.9 5.1 5.8

SF-PPP/IMU (Xsens) horizontal errors (m) 1.3 1.4 1.4 1.5 1.6 1.7 1.8 2.0 2.4

4.2.2. Dual-Frequency PPP-IC/IMU Processing

Similarly, Figure 8 shows the time series of horizontal errors and EKF estimated
precision when processing DF-PPP (GE) with different IMU sensors. It is anticipated that
the DF-PPP performance is not as stable as SF-PPP due mainly to the limited number of
tracked dual-frequency constellations and satellites. Thus, numerous fluctuations occurred
not only during the two outages A and B, but also in some unexpected scenarios such as C
on a highway, which may be owing to dual-frequency signal blockage by passing trucks.

(a) (b)

Figure 8. Horizontal error with respect to the reference trajectory and filter estimated precision
comparison for dual-frequency PPP processing using smartphone GNSS measurements, GNSS+IMU
measurements, and GNSS and Xsens IMU measurements. (a) Horizontal position error. (b) Horizontal
precision estimate.

In spite of the lack of dual-frequency signals, it is somewhat surprising that with the
aid of an IMU, the standard deviation of horizontal errors are improved from 6.0 m to the
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sub-metre level, and the horizontal positioning error is mitigated from 8.3 m to 2.4 m and
2.3 m with MI8 and Xsens IMU, respectively (see Table 5). Similarly, Table 6 shows the
horizontal error growth for dual-frequency PPP over Outage B. Furthermore, by leaving out
the largest 5% of position outliers, the 95th percentile level of horizontal error indicates that
the DF-PPP/IMU combination is capable of providing almost the same level of positioning
accuracy as the SF-PPP/IMU solution, showing the benefits of the sensor fusion.

Table 5. Horizontal errors with different sensor fusion combinations for dual-frequency PPP processing.

Processing Strategy Std Dev (m) Rms (m) 95th Percentile Error (m) Maximum Error (m)

DF-PPP 7.8 8.3 6.7 139.2

DF-PPP/IMU (MI8) 1.6 2.4 3.3 23.3

DF-PPP/IMU (Xsens) 1.5 2.4 3.2 23.5

Table 6. Horizontal errors growth with different sensor fusion combinations for dual-frequency PPP
over Outage B.

Elapsed Time (s) 917 918 919 920 921 922 923 924 925

DF-PPP Horizontal errors (m) 37.8 49.5 60.7 72.0 82.1 95.2 109.2 123.9 139.2

DF-PPP/IMU (MI8) horizontal errors (m) 1.0 1.4 1.9 2.5 3.2 4.1 5.3 6.7 8.2

DF-PPP/IMU (Xsens) horizontal errors (m) 0.9 1.1 1.1 1.2 1.3 1.6 2.0 2.5 3.1

To explicitly appreciate the benefits of added L5/E5a signals, Figure 9 compares the
smartphone horizontal positioning performance produced from single-frequency PPP (red
line) and dual-frequency PPP (blue line) processing with same dual-frequency satellites. Dual-
frequency PPP outperforms single-frequency PPP, and the latter approach cannot provide
stable positioning performance with accuracy lower than 20 m during the elapsed time
between 15 and 20 min, owing to insufficient and inaccurate single-frequency measurements.

Figure 9. Horizontal error with respect to the reference trajectory for single-frequency PPP and
dual-frequency PPP processing with same satellites.

The solution shows the kinematic DF-PPP accuracy without sensor fusion is improved
by 1–2 m as per the literature in similar experimental settings [26]. The pattern of higher
DF-PPP errors than SF-PPP errors due to the lack of dual-frequency signals is also found
in existing literature [25]. The solution shows accuracy degradation of DF-PPP solution
of about 3 m compared to similar settings with phones on top of vehicle, whereas the
discrepancy in fused horizontal accuracy is within ±1 m [35].

4.2.3. Single- and Dual-Frequency PPP-IC/IMU Processing

Single- and dual-frequency PPP (SFDF-PPP) processing is the main focus of this study,
which utilizes not only GPS L1, GLONASS L1, Galileo E1, BeiDou B1 signals, but also GPS
L5 and Galileo E5a signals if they are available, as well as ionospheric constraints from



Remote Sens. 2022, 14, 3286 13 of 21

GIM. Figure 10 displays the time series of horizontal errors and precision for SFDF-PPP
(GREC) processing strategies. In general, SFDF-PPP processing inherits the advantages
of the aforementioned two processing strategies with more observations and good GNSS
geometry, resulting in more stable positioning.

(a) (b)

Figure 10. Horizontal error with respect to the reference trajectory and filter estimated precision
comparison for single- and dual-frequency PPP processing using smartphone GNSS measurements,
GNSS + IMU measurements, and GNSS and Xsens IMU measurements. (a) Horizontal position error.
(b) Horizontal precision estimate.

Table 7 summarises the horizontal error statistics for SFDF-PPP processing with and
without IMUs. On the one hand, accessible L1 and L5/E5a signals increases smartphone
positioning overall performance, namely 5.0 m and 5.2 m of horizontal error standard devi-
ation and rms can be observed, respectively, which are the best solutions among pure GNSS
PPP strategies. On the other hand, the integration of IMUs further improves positioning
accuracy and resilience, especially for all scenarios that suffer from GNSS outages (outliers,
see Table 8). Compared to SFDF-PPP processing, 92% and 79% improvements are observed
by integrating smartphone native IMU in terms of horizontal standard deviation and rms,
respectively. In addition, use of the Xsens IMU enables improved horizontal solutions.
Though slight improvement can be found for 95th percentile error, the benefits of IMUs
mainly contribute by mitigating the GNSS outliers and the maximum horizontal errors
reduce from 90.3 m to under 10 m.

Table 7. Horizontal errors with different sensor fusion combinations for single- and dual-frequency
PPP processing.

Processing Strategy Std Dev (m) Rms (m) 95th Percentile Error (m) Maximum Error (m)

SFDF-PPP 5.0 5.2 1.7 90.3

SFDF-PPP/IMU (MI8) 0.4 1.1 1.5 7.9

SFDF-PPP/IMU (Xsens) 0.3 1.0 1.5 4.8

Table 8. Horizontal errors growth with different sensor fusion combinations for single- and dual-
frequency PPP over Outage B.

Elapsed Time (s) 917 918 919 920 921 922 923 924 925

SFDF-PPP Horizontal errors (m) 10.3 19.5 28.9 38.5 48.0 58.1 68.9 79.0 90.3

SFDF-PPP/IMU (MI8) horizontal errors (m) 0.9 1.3 1.7 2.2 2.8 3.6 4.7 6.2 7.9

SFDF-PPP/IMU (Xsens) horizontal errors (m) 0.8 0.9 1.1 1.3 1.5 1.7 2.0 2.3 2.7

4.3. General Kinematic Performance Statistics

Road tests are subject to a series of factors impacting positioning performance which
cannot be controlled. These factors include various traffic conditions, passing of large vehi-
cles, satellite availability, and tropospheric/ionospheric conditions at the time. Therefore,
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this study summarises four more datasets based on three days of road tests, while also
presenting additional performance results using a Samsung Galaxy S21+. The additional
datasets are collected on identical routes (with identical buildings), but due to specific
traffic levels and traffic lights they do not have identical duration. Table 9 summarising all
five datasets. The collection of all five datasets illustrates the repeatability of the analyzed
results and provides added confidence in the performance statistics.

Table 9. Summary of all road tests.

Road Test # Phone Model GPS Date of Collection (2021) Duration

M1 MI 8 8 August 01:52–02:18

S1 S21+ 8 August 01:52–02:18

M2 MI 8 12 October 00:44–01:00

S3 S21+ 30 November 02:04–02:28

M3 MI 8 30 November 02:04–02:28

The following set of time series illustrates in Figure 11 shows the horizontal errors
through each road test. Road test M3 was analyzed in Figures 7a, 8a and 10a, so its error
analysis will not be repeated. Similarly, the SFDF-PPP solution (in green) shows the highest
accuracy and stability by mitigating the majority of error peaks. In comparison to the S1 PPP
solutions, inconsistent performance can be noticed for dual-frequency PPP-only processing
for the S3 dataset (see Figure 11d) owing to insufficient dual-frequency satellites, which are
reduced from, on average, 7.6 (S1) to 5.4 (S3). The inclusion of multiple datasets bring more
challenges in smartphone native PPP/IMU solutions owing to the low-cost IMU hardware.
Correspondingly, some smartphone PPP/IMU outliers can be observed such as jumps in
M1 at elapsed time ∼8 min. In spite of these dataset variations, PPP/IMU solutions have
more accurate performance compared to PPP GNSS-only solutions for most epochs.

(a) (b)

(c) (d)

Figure 11. Horizontal error with respect to the reference trajectory comparison for different datasets
processed by single-frequency, dual-frequency, single- and dual-frequency PPP and PPP/IMU strate-
gies. (a) Horizontal position error for dataset M1. (b) Horizontal position error for dataset S1.
(c) Horizontal position error for dataset M2. (d) Horizontal position error for dataset S3.
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To generalise the findings from all collected datasets in comparing the three PPP-
processing strategies and the impact of IMU fusion, the horizontal rms errors are concluded
in Figure 12a and 95th percentile errors are concluded in Figure 12b. Statistically, all six
combinations of the processing strategies are presented in Table 10. Figure 12a emphasizes
the effect from IMU fusion through all epochs during the road tests, thus covering various
error peaks and the corner cases encountered. There is a reduction of standard deviation (of
horizontal errors) from 6.5 m to 1.0 m, and 6.8 m to 1.9 m of rms with SFDF-PPP processing.
Similar observations can be made for SF-PPP and DF-PPP processing. The results show a
potential key role of IMU fusion in generating a more stable smartphone navigation solution
in real-world scenarios. For higher-cost GNSS receiver/IMU combinations, the result is
well expected. However, as the results are produced from ultra-low-cost smartphone
hardware, this results demonstrate the sense of necessity of sensor fusion to achieve more
demanding user requirements with given cost constraints.

(a) (b)

Figure 12. Overall horizontal errors from different processing strategies. (a) Overall horizontal rms
comparison. (b) 95th percentile horizontal errors comparison.

Table 10. Overall statistics for different processing strategies.

Processing Strategy Std Dev (m) Rms (m) 95th Percentile Error Maximum Error (m)

SF-PPP 7.3 7.8 4.4 175.5

SF-PPP/IMU 2.2 3.2 4.3 70.6

DF-PPP 6.6 7.3 6.6 139.2

DF-PPP/IMU 1.5 2.5 3.4 57.5

SFDF-PPP 6.5 6.8 3.2 138.6

SFDF-PPP/IMU 1.0 1.9 2.9 19.9

Figure 12b emphasizes the majority case for all road tests, showing 95th percentile
horizontal error. As in Figure 12a, the fusion with the native IMU shows improvement
over PPP-only solutions, despite being less significant in SF and SFDF-PPP processing.
As expected, without IMU fusion, DF-PPP displays lower solution quality compared to
SF-PPP and SFDF-PPP due to inconsistencies in tracking dual-frequency satellites from the
vehicle dashboard. However, by fusing GNSS measurements with IMU measurements,
DF-PPP/IMU combination shows a reduction of 95th percentile error from 4.3 m to 3.4 m
compared to SF-PPP/IMU in contrast to PPP-only processing where there is an increase
from 4.4 m to 6.6 m, indicating that though DF-PPP on smartphones suffer from inconsis-
tent measurements, it can still provide better solutions than SF-PPP when inertial sensors
are used. The SFDF-PPP strategy shows the most robust accuracy among all three PPP
processing strategies. In addition, compared to the existing literature, such as [28] which
achieved approximately 0.85 m horizontal rms in open-sky walking environments, the
smartphone native SFDF-PPP/IMU solutions are capable of providing comparable posi-
tioning performance in real-world driving scenarios, showing great potential for vehicle
and other smartphone-based applications.
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4.4. Correlation Analysis of Single- and Dual-Frequency PPP Horizontal Accuracy under Different
Environments

The previous results have highlighted the importance of PPP processing with SFDF
observations. To better appreciate the benefit of this combination strategy, metrics such as
the number of satellites and observations, as well as PDOP (position dilution of precision)
are compared for the three chosen PPP processing strategies. The kinematic dataset M3
collected on 30 November 2021 (DOY 331) with the MI 8 is used for the analysis (see
Figure 13).

(a) (b)

(c) (d)

(e) (f)

Figure 13. Time series of the number of satellites, observations, and PDOP in three processing
strategies. (a) Time series of the number of satellites and observations in SF processing. (b) Time
series of PDOP in SF processing. (c) Time series of the number of satellites and observations in DF
processing. (d) Time series of PDOP in DF processing. (e) Time series of the number of satellites and
observations in SFDF processing. (f) Time series of PDOP in SFDF processing.

As illustrated in Figure 13, it is expected that the number of processed satellites of
SF (16.6), and SFDF (16.1) strategies far outweigh the DF (6.1) processing. Accordingly,
the SF-PPP PDOP (1.7) is almost identical to the PDOP for SFDF-PPP (1.7), as opposed
to the DF-PPP PDOP (4.7) owing to the limited number of tracked satellites. The SFDF
method, nevertheless, is able to track an average of 43.6 observations including phase and
code measurements, which is significantly larger than the other two approaches, leading to
better positioning performance. From Figure 13c,d, the number of observations and PDOP
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fluctuate significantly not only at the outages A and B, but in some scenarios where the
dual-frequency satellites are not sufficient owing to buildings or trucks blockage, such as C
(marked by the black rectangle), indicating that the DF-PPP is more sensitive and vulnerable
to multipath effects and signal outages, particularly in challenging environments.

The impact on horizontal errors from the number of observations and PDOP can be
seen in Figure 14. Figure 14a shows the correlation between horizontal errors and the
number of observations based on all datasets for SFDF-PPP processing, and by increasing
the number of observations that the filter can draw on, a negative correlation (−0.37) is
observed with horizontal positioning accuracy. However, excessive observations (more
than 40) only provide marginal improvement on positioning, due mainly to the limitation
of satellite geometry. Meanwhile, a positive but relatively low correlation coefficient of
0.28 is observed between PDOP and positioning accuracy in Figure 14b, which suggests
PDOP may not serve as an ideal indicator for smartphone PPP performance. It is worth
mentioning that the scenarios where insufficient or no satellites observed are excluded
from this correlation analysis.

(a) (b)

Figure 14. Correlation of the horizontal errors on the mean number of observations and PDOP.
(a) Correlation of the horizontal errors on the number of observations. (b) Correlation of the horizontal
errors on PDOP.

Table 11 compares the pre-fit and post-fit residuals for L1/E1/B1 (GREC) and L5/E5a
(GE) signals in SFDF-PPP processing strategy and interestingly, both the pre-fit pseudorange
and carrier-phase residuals exceed 10 m. The L5/E5a residuals are significantly lower
than for L1/E1/B1, namely 3.7 cm and 2.7 cm of post-fit carrier-phase residual rms can be
observed for L1/E1/B1 and L5/E5a signals, respectively. The aforementioned correlation
and residual rms analysis provide insight into how SFDF-PPP solutions benefit from the
extra observations with more accurate L5/E5a frequencies.

Table 11. Pre-fit and post-fit residual rms for single- and dual-frequency PPP processing.

Frequency L1/E1/B1 (GREC) L5/E5a (GE)

Measurement Pseudorange Carrier-Phase Pseudorange Carrier-Phase

Pre-fit residual rms (m) 11.7 11.2 10.3 10.1

Post-fit residual rms (m) 3.5 0.037 0.8 0.027

To explore the reason behind the unexpected magnitude of pre-fit residual rms,
Figure 15 illustrates the time series of estimated GPS clock offset and clock difference
of two adjacent epochs. Some fluctuations in smartphone estimated GPS receiver clock
offset are due to their very low-cost oscillators compared to, e.g., geodetic GNSS receivers
embedded with voltage-control or more stable oscillators. Such unstable estimated clock
offsets lead to the same variations of their clock difference. In other words, the relatively
large rms of pre-fit residuals is caused by the inaccurate EKF prediction utilizing the esti-
mated receiver clock offset from the previous epoch, which cannot reflect the current or true
estimated clock offset. These differences range from −8 m to 20 m, as seen in Figure 15b.
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Figure 15. Time series of estimated GPS clock offset and corresponding clock difference. (a) Estimated
GPS clock offset. (b) Estimated GPS clock difference of adjacent epochs.

To specify the benefits of incorporating smartphone IMU measurements under dif-
ferent environments, Figure 16 presents the horizontal rms with the number of satellites
used in SFDF-PPP processing. On account of buildings and tunnels limiting portions of the
sky, the minimum 4 satellites are not always available for smartphone GNSS positioning in
suburban driving. Observing both Table 12 and Figure 16, the smartphone IMU can bridge
these positioning gaps and significantly mitigate positioning errors when visible satellites
are insufficient, e.g., a significant level of 98% and 87% horizontal positioning improve-
ments is observed with the aid of the smartphone IMU measurements when the number
of satellites are reduced to 4 and 5, respectively. The smartphone PPP/IMU solution is
capable of providing stable and continuous positioning solutions, and the sensor fusion
solution maintains the same grade of accuracy performance even with fewer satellites. The
possible reason is that smartphone PPP/IMU solutions not only rely on GNSS satellite
measurements, but also are relevant to predicted state covariance, previous estimated states,
and IMU raw measurement quality.

Figure 16. Correlation of the horizontal errors on the number of satellites.

Table 12. Statistics of horizontal errors with processed satellites for single- and dual-frequency processing.

Processed Satellites per Processing Strategy 0 1 2 3 4 5 6 7 8 9 >9

SFDF-PPP - - - - 67.7 63.6 34.9 4.6 6.3 4.7 1.7

SFDF-PPP/IMU 3.5 7.0 5.7 5.0 1.5 8.1 2.9 6.4 2.6 2.7 1.6

5. Conclusions and Future Work

This paper presents several noteworthy contributions by integrating single- and dual-
frequency GNSS observations with inertial measurements from native smartphone sensors.
A total of five datasets were collected from three days of road tests in suburban driving
environments were analyzed and based on these investigations, this paper addresses the
posed questions:
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1. How does single- and dual-frequency PPP processing improve smartphone GNSS positioning
performance and how does it compare with other PPP processing strategies (single-frequency
PPP and dual-frequency PPP) in GNSS challenged environments? Verified by kinematic
experiments, single- and dual-frequency PPP (SFDF-PPP) processing captures the
essence of single-frequency and dual-frequency PPP processing strategies as all single-
frequency signals (GREC), as well as dual-frequency signals including GPS L5 and
Galileo E5a are utilized. SFDF-PPP processing with an average of 43.6 observations
from all GREC constellations lead to an overall 6.8 m horizontal rms and 3.2 m of 95th
percentile horizontal error, which outperforms other PPP strategies.

2. How does smartphone IMU dead-reckoning perform compared to other low-cost MEMS IMU?
And how does the inclusion of the smartphone inertial sensor affect PPP solutions? Through
the dead-reckoning experiments, it was found that the smartphone IMU is capable
of providing metre-level positioning accuracy for an outage of less than 10 s with
good bias estimation, which is comparable to that of the more capable Xsens IMU.
Furthermore, the inclusion of the smartphone inertial sensor can reduce GNSS out-
liers and provide continuous and accurate navigation solutions in GNSS challenged
environments. In addition, significant levels of 59%, 66%, and 72% improvement in
overall horizontal rms can be observed from single-frequency PPP, dual-frequency
PPP, as well as single- and dual-frequency PPP, respectively.

3. What is the “best” positioning performance that smartphones can achieve with multi-GNSS
PPP/IMU integration in real-world driving environments? Based on these investigations,
single- and dual-frequency PPP/IMU integration is an optimal solution among other
strategies for smartphone positioning. The general suburban performance statistics
show that smartphones can achieve 1.9 m overall horizontal rms with 1.0 m standard
deviation in real-world driving scenarios with the consideration of multiple multipath
profiles, which have not been seen in previous studies.

Future work will utilize additional holonomic and non-holonomic constraints for
vehicle motion and explore the impacts of vehicle-smartphone relative motion when drivers
move the phone. Furthermore, this work will be extended to more complex and obstructed
environments with an adaptive EKF and fusion with additional sensors.
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