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Abstract: After the “5·12” Wenchuan earthquake in 2008, collapses and landslides have occurred
continuously, resulting in the accumulation of a large quantity of loose sediment on slopes or in gullies,
providing rich material source reserves for the occurrence of debris flow and flash flood disasters.
Therefore, it is of great significance to build a collapse and landslide susceptibility evaluation model
in Wenchuan County for local disaster prevention and mitigation. Taking Wenchuan County as the
research object and according to the data of 1081 historical collapse and landslide disaster points,
as well as the natural environment, this paper first selects six categories of environmental factors
(13 environmental factors in total) including topography (slope, aspect, curvature, terrain relief, TWI),
geological structure (lithology, soil type, distance to fault), meteorology and hydrology (rainfall,
distance to river), seismic impact (PGA), ecological impact (NDVI), and impact of human activity
(land use). It then builds three single models (LR, SVM, RF) and three CF-based hybrid models
(CF-LR, CF-SVM, CF-RF), and makes a comparative analysis of the accuracy and reliability of the
models, thereby obtaining the optimal model in the research area. Finally, this study discusses the
contribution of environmental factors to the collapse and the landslide susceptibility prediction of
the optimal model. The research results show that (1) the areas prone to extremely high collapse
and landslide predicted by the six models (LR, CF-LR, SVM, CF-SVM, RF and CF-RF) have an area
of 730.595 km2, 377.521 km2, 361.772 km2, 372.979 km2, 318.631 km2, and 306.51 km2, respectively,
and the frequency ratio precision of collapses and landslides is 0.916, 0.938, 0.955, 0.956, 0.972,
and 0.984, respectively; (2) the ranking of the comprehensive index based on the confusion matrix is
CF-RF>RF>CF-SVM>CF-LR>SVM>LR and the ranking of the AUC value is CF-RF>RF>CF-SVM>CF-
LR>SVM>LR. To a certain extent, the coupling models can improve precision more over the single
models. The CF-RF model ranks the highest in all indexes, with a POA value of 257.046 and an AUC
value of 0.946; (3) rainfall, soil type, and distance to river are the three most important environmental
factors, accounting for 24.216%, 22.309%, and 11.41%, respectively. Therefore, it is necessary to
strengthen the monitoring of mountains and rock masses close to rivers in case of rainstorms in
Wenchuan county and other similar areas prone to post-earthquake landslides.
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1. Introduction

Collapse is a sudden sharp inclination and falling movement of rock-soil mass on a
steep hillside under the action of gravity, while landslide is a process in which the rock-soil
mass on the side slope slides along the weak surface as a whole or dispersedly, under the
action of gravity under the influence of surface water infiltration, river erosion, seismic
activity, human activities, and other factors [1–3]. Unstable slope refers to a slope in a
critical state that is about to lose stability, that is, a slope with the potential for collapse and
landslide. With the development of society, the exploitation of the natural environment by
human activities has continuously intensified, and the frequency of occurrence of collapse
and landslide disasters has become higher and higher. In 2019, the total number of collapse
and landslide disasters in China was 4220, accounting for more than 88% of the total
number of geological disasters, and secondary disasters caused by these also block rivers,
trigger floods, and form debris flows, posing a serious threat to human life and property,
infrastructure, and natural resources [4–7]. Collapses and landslides often occur together
under the same or similar conditions. There are many factors affecting the occurrence of
collapses and landslides, mainly divided into four categories: topography, geological con-
ditions, endogenic and exogenic geological processes, and human activities [8]. Therefore,
it is of great significance for the early prediction, prevention, and mitigation of collapse and
landslide disasters to analyze the impact factors that cause the occurrence of collapse and
landslide disasters, build a regional collapse and landslide disaster susceptibility evaluation
model, and evaluate the susceptibility level of collapse and landslide disasters [9–12].

With the continuous development of remote sensing, geographic information systems,
global positioning systems, and other spatial information technologies and computer hard-
ware equipment, the susceptibility prediction model of collapse and landslide disasters has
developed from a qualitative model to a quantitative model [13,14]. A qualitative model
is mainly driven by knowledge and the quality of the evaluation results is closely related
to the evaluator’s own experience, as in the fuzzy comprehensive evaluation method,
analytical hierarchy process, and so on [14,15]. Driven by data, quantitative models are
widely used evaluation models at present, and their evaluation results are more objective,
as with logistic regression, weight of evidence, frequency ratio, certainty factor, information
value, etc. [16–20]. As the volume of data increases, the complexity of terrain, geology, and
other elements cannot be completely solved by simulation analysis through traditional
mathematical methods. Therefore, some scholars have introduced machine learning meth-
ods to establish collapse and landslide disaster susceptibility prediction models, which
can automatically analyze the input data and connect the nonlinear relationship between
targets and factors, as in neural networks, support vector machines, random forests, and
maxent; there also have high computational efficiency for high-dimensional data [21–28].
In order to improve prediction accuracy, deep learning methods are widely used, such
as convolutional neural networks (CNN) and deep neural networks (DNN) [22,29]. The
coupling model combines two or more models, integrates the collapse and landslide sample
selection, feature selection, and information extraction for collapse and landslide disaster
prediction, and synthesizes the advantages of each model so as to effectively improve the
prediction precision of the models [30–33].

On 12 May 2008, Wenchuan county in the Ngawa Tibetan and Qiang Autonomous
Prefecture of Sichuan Province was struck by an 8.0-magnitude earthquake, which was the
most destructive earthquake in modern China. The earthquake caused a large number of
potential geological disasters, induced about 50,000 collapses and landslides covering an
area of 750 km2, and formed 5.25 billion m3 of loose sediments. Under the inducement
of heavy rainfall, disasters such as flash floods and debris flow can easily occur [34–36].
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Research has shown that the geological disasters after earthquakes show a vibration attenu-
ation trend, with a peak period of 4–5a in 20–25a, and finally recover to the pre-earthquake
level [37]. Therefore, it is of great significance to carry out research on the susceptibility
assessment and prediction of collapse and landslide disasters in Wenchuan County for the
early warning, prevention, and mitigation of collapse and landslide disasters. Previous
studies on landslide susceptibility in Wenchuan County have mostly adopted a single
machine learning model [30–33], there have been few studies on the coupling of statistical
methods and machine learning methods, and there are few opinions on landslide disaster
prevention in Wenchuan County. Taking Wenchuan County as the research object and based
on data of historical collapse and landslide disasters, as well as the natural environment,
this paper selects a total of 13 environmental factors and couples them with certainty factors
with three machine learning methods (namely logistic regression, support vector machine,
and random forest) to build six collapse and landslide susceptibility prediction models to
evaluate the susceptibility of collapse and landslide disasters in Wenchuan County. It then
obtains the laws of the impact of each environmental factor on the development of collapse
and landslide in its attribute intervals.

2. Materials and Methods
2.1. Overview of the Research Area and Collapse & Landslide Information

Wenchuan, a county in the Ngawa Tibetan and Qiang Autonomous Prefecture of
Sichuan Province, China, is located at the northwest edge of the Sichuan basin. It has an east–
west width of 84 km and a north–south length of 105 km, and also a total area of 4084 km2,
with a spatial range between 30◦45′–31◦43′north latitude and 102◦51′–103◦44′east longitude
(Figure 1). In terms of topography, with the Longmen mountains in the northeast and
the Qionglai mountain systems in the southwest, its terrain is mainly high and middle
mountains, with an altitude of 745–5927 m, and its topography inclines from northwest to
southeast. In Wenchuan County, the river system is very developed. There are many rivers
and nearly 200 tributaries, which include the Minjiang river, Zagunao river, Shoujiang river,
Caopo river, etc. Wenchuan County has an average annual air temperature of 13.5 ◦C and
an annual rainfall of 500 mm, and belongs to the sub-humid climate region of the Qinghai
Tibet Plateau, with the climate rising with the topography from southeast to northwest
on the whole, and the rainfall gradually decreasing from south to north. The research
area lies in the Longmen mountain structural belt on the eastern edge of the Qinghai Tibet
Plateau, and there are two major fault zones, that is, Maoxian-Wenchuan fault zone and
Beichuan-Yingxiu fault zone. In terms of stratum lithology, the stratum types are well
developed. The rocks were formed in the Cenozoic Quaternary Period, Mesozoic Jurassic
Period, Cretaceous Period, and Paleozoic Period. The lithology mainly includes magmatic
rocks, granite, diorite, and gabbro.

According to the data of disaster points over the years provided by the Sichuan
Geological Survey, the earliest disaster point was recorded on 1 July 1958, while the latest
disaster point was recorded on 26 June 2020. There are 1081 unstable slopes, collapses and
landslides in the research area, including 454 collapses, 360 landslides, and 267 unstable
slopes, accounting for 42.00%, 33.30%, and 24.70%, respectively.
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Figure 1. Geographical location of the research area and distribution of historical collapses and
landslides.

2.2. Data Sources

The basic geographic data and environmental data used in this research are as follows:
(1) the distribution data of geological disaster points are from the Sichuan Geological Survey
and are mainly used to divide the training set and the validation set; (2) the data of digital
elevation model (DEM) is ASTER GDEM 30m resolution digital elevation data, which is
sourced from the NASA official website (https://search.asf.alaska.edu/#/, accessed on 20
March 2022) and used to obtain slope, aspect, curvature, terrain relief, and topographic
wetness index; (3) the river data comes from the thematic map of the river system in China
from 91 satellite map assistant software, and is used to obtain the distance to river; (4) the
fault data is from the 1:500,000 geological map of 91 satellite map assistant software, and
used to obtain the distance to fault; (5) the rainfall data refers to the spatial interpolation
data set of annual rainfall in China since 1980, and is from the Resource and Environment
Science and Data Center of Chinese Academy of Sciences (http://www.resdc.cn/, accessed
on 18 March 2022); (6) the remote sensing image data is the Landsat 8 OLI image on 9
April 2018, which is from the geospatial data cloud network (http://www.gscloud.cn/,
accessed on 1 March 2022) and is used to obtain the normalized difference vegetation index;
(7) the lithology data comes from the Sichuan Geological Survey; (8) the soil data comes
from the geospatial data cloud (http://www.gscloud.cn/, accessed on 1 March 2022);
(9) data on land use comes from the geospatial data cloud (http://www.gscloud.cn/,
accessed on 2 March 2022); (10) the seismic peak ground acceleration is from the United
States Geological Survey (USGS) (https://earthquake.usgs.gov/, accessed on 2 March 2022).
The details of the data sources are shown in Table 1.

https://search.asf.alaska.edu/#/
http://www.resdc.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
https://earthquake.usgs.gov/
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Table 1. Data sources.

Data Type Data Sources Usage Spatial Resolution

The distribution data of geological
disaster points Sichuan Geological Survey Divide the training set and the

validation set Vector data

The digital elevation model (DEM) NASA official website (https:
//search.asf.alaska.edu/#/)

Obtain slope, aspect,
curvature, terrain relief, and
topographic wetness index

30 m × 30 m

The river data

The thematic map of the river
system in China from 91

satellite map assistant
software

Obtain the distance to river 1:500,000

The fault data
Geological map from 91
satellite map assistant

software
Obtain the distance to fault 1:500,000

The rainfall data

The Resource and
Environment Science and

Data Center of Chinese
Academy of Sciences

(http://www.resdc.cn/)

Obtain average annual rainfall 1000 m × 1000 m

The Landsat 8 OLI image on 9
April 2018

The geospatial data cloud
network

(http://www.gscloud.cn/)

Obtain the normalized
difference vegetation index 30 m × 30 m

The lithology data Sichuan Geological Survey Obtain the lithology 30 m × 30 m

The soil data
The geospatial data cloud

network
(http://www.gscloud.cn/)

Obtain the soil 30 m × 30 m

Land use Geospatial data cloud
(http://www.gscloud.cn/) Obtain the data of land use 30 m × 30 m

The seismic peak ground
acceleration

The United States Geological
Survey (USGS) (https:

//earthquake.usgs.gov/)

Obtain seismic peak ground
acceleration Vector data

2.3. Data Description of Environmental Factors

Collapse and landslide disaster is a natural phenomenon of earth activities on the
earth’s surface. The main environmental factors that induce such disasters include terrain,
geology, land cover, ecology, hydrology, meteorology, earthquake, and human engineering
activity. Therefore, the effective selection of environmental factors is the basis for estab-
lishing a susceptibility evaluation system for collapse and landslide disasters, which has
a great impact on the reliability and accuracy of evaluation results. In combination with
the field survey data and the occurrence of historical geological disasters in the research
area, this paper selects six categories of environmental factors (13 environmental factors in
total) including topography, geological structure, hydrology, seismic impact, ecology, and
human activity as the susceptibility evaluation index of collapse and landslide disasters;
the reasons for the selection of environmental factors are shown in Table 2. Grid data with
a resolution of 30 m × 30 m and a projection of WGS1984 and UTM-Zone48 are converted
in ArcGIS 10.5 software, as shown in Figure 2.

https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
http://www.resdc.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
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Table 2. Reasons for the selection of environmental factors.

Data Type Factors Reason for Selecting the Parameters

Topographic

Slope

Slope affects water flow direction and soil development, which is one of the important
reasons for slope instability [20]. The more the slope increases, the more concentrated
the shear stress in the slope is, and the greater the possibility of occurrence of collapse

and landslide disasters will be [23].

Aspect
The influence of aspect on collapse and landslide is the regular difference of microclimate

and water heat ratio of hillside. The sunshine duration, solar radiation intensity, and
daily temperature difference are different on slopes with different aspects [38].

Curvature

Curvature is defined as the change rate of the slope and the shape of the earth’s surface,
which has a great impact on the transportation of collapse and landslide materials [39].
The greater the concave–convex degree of the slope is, the more unstable the slope is,

and the more likely it is that collapse and landslide will occur [40]. Negative curvature,
zero curvature, and positive curvature represent concave surfaces, plane surfaces, and

convex surfaces, respectively.

Terrain relief

The terrain relief reflects the difference between the highest point and the lowest point of
altitude in a specific area, and controls the gravitational potential energy that can cause
collapse and landslide disasters [41]. The greater the terrain relief is, the more fractured
the terrain is, the higher the instability of the surface soil layer and slope is, and the more

likely it is that collapse and landslide disasters will occur.

Topographic wetness index (TWI)

The topographic wetness index refers to the influence of the scale and terrain of the
saturated runoff zone on the region, and is used to quantify the control of terrain on

hydrological processes. By comprehensively considering the impact of terrain and soil
characteristics on soil moisture distribution, Beven and Kirkby proposed [42] the
calculation formula TWI= ln AS

tanβ , where AS represents the drainage area and β

represents the slope angle.

Geological

Lithology

The rock-soil type and structural characteristics control the stress distribution, strength,
and deformation and failure characteristics [43] of the rock-soil mass of the slope. Slopes

with different lithology have different shear strength and stability, and also have
different probability of occurrence of collapse and landslide disasters.

Soil type Different soil types have different shear strength and hydraulic conductivity, which
affect the stability of slopes [31].

Distance to fault The rock mass is broken, the rock has poor erosion and weathering resistance, and the
slope has poor stability near the fault zone [44].

Hydrological

Rainfall

Rainfall infiltration not only softens the rock-soil mass of the slope, but also increases the
seepage pressure. The formed surface runoff will scour and erode the slope, resulting in
the instability of the slope. The average annual rainfall affects the slope and its ecological

environment, thus affecting the occurrence of collapse and landslide disasters [24].

Distance to river

The softening, scouring, and erosion caused by river erosion have a serious impact on
the stability of the slope. Slopes located in the coastal area of a river are eroded by the
river and infiltrated by water, which leads to changes in internal stress and a greater

probability of occurrence of collapses and landslides [45].

Seismic Peak ground acceleration (PGA)

As an important dynamic factor to measure the impact of earthquakes on collapse and
landslide, seismic peak ground acceleration reflects the overall vibration intensity of the
earth’s surface after an earthquake. The intense activity of the earth’s surface reduces the
stability of the rock-soil mass and increases the possibility of occurrence of collapse and

landslide disasters [46].

Ecological Normalized difference vegetation
index (NDVI)

As an important index that can reflect the growth status and coverage of vegetation,
NDVI can inhibit the occurrence of collapses and landslides to a certain extent [47]. The

calculation formula is NDVI = IR−R
IR+R , where IR represents the reflectance in

near-infrared wavelength and R represents the reflectance in red light wavelength.

Human activity Land use The type of land use not only affects soil moisture and surface runoff, but also indirectly
affects the development of landslides and collapses [48].
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Figure 2. Cont.
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Figure 2. Schematic diagram of environmental factors: (a) slope, (b) aspect, (c) curvature, (d) terrain
relief, (e) TWI, (f) lithology, (g) soil type, (h) distance to fault, (i) rainfall, (j) distance to river, (k) PGA,
(l) NDVI, (m) land use.

2.4. Research Methods
2.4.1. Research Technical Routes

The idea of this research is to couple the certainty factor with three machine learning
methods (namely logistic regression, support vector machine, and random forest) to build
six collapse and landslide susceptibility prediction models, compare and analyze the
performance of the single model and the coupling model to obtain the optimal model, and
finally discuss the contribution of each environmental factor to the collapse and landslide
susceptibility prediction of the optimal model. The main technical flow of this paper is
shown in Figure 3 and includes the following steps:

Step 1 is to collect data related to collapse and landslide disasters in the research
area, including data of historical collapse and landslide disaster points and environmental
impact factors;

Step 2 is to carry out an independence test of environmental impact factors through
Pearson correlation coefficient and multi-collinearity diagnostics;

Step 3 is to obtain the certainty factor value of each environmental factor by the
certainty factor methods, and obtain the laws of the impact of each environmental factor
on the development of collapse and landslide in its attribute intervals;



Remote Sens. 2022, 14, 3259 9 of 32

Step 4 is to obtain a training set and validation set by dividing historical collapse and
landslide disaster points and randomly selecting non-collapse and landslide points at a
ratio of 7:3, build six collapse and landslide susceptibility prediction models (LR, CF-LR,
SVM, CF-SVM, RF, and CF-RF), and draw the collapse and landslide susceptibility mapping
based on GIS;

Step 5 is to use the validation set to evaluate the models based on the confusion matrix,
ROC curve, and AUC value, and compare and analyze the model performance to obtain
the optimal model;

Step 6 is to discuss the importance of each environmental factor based on the opti-
mal model, rank the contribution of environmental factors to the model, and obtain the
important trigger factors of collapse and landslide disasters in the research area.

Figure 3. Technical flow.

2.4.2. Screening of Environmental Factors

The environmental factors that affect the occurrence of collapse and landslide disasters
are diverse and complex, and each factor has a certain correlation. The high correlation
between factors leads to complexity of the model. Therefore, it is very important to perform
an independence test of each factor and eliminate factors with high correlation for the
subsequent modeling [30]. For this reason, the Pearson correlation coefficient (PCC),
variance inflation factor (VIF), and tolerance (TOL) are adopted for independence test in
this research.

(1) Correlation analysis of the factors:
PCC can measure the similarity between collapse and landslide susceptibility environ-

mental factors, with a value range of −1 to 1. The closer the absolute value is to 1, the more
similar the samples are; the closer the absolute value is to 0, the less similar the samples are.
When the correlation coefficient is within the range of 0.8–1, it indicates that the factors have
extremely high correlation; 0.6–0.8 indicates high correlation, 0.4–0.6 indicates moderate
correlation, 0.2–0.4 indicates weak correlation, and 0.0–0.2 indicates no correlation [49]. The
calculation formula is:

PCC =

n
∑

i=1
(xi − x)

n
∑

j=1

(
yj − y

)
√

n
∑

i=1
(xi − x)2 n

∑
j=1

(
yj − y

)2
(1)
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where PCC represents the correlation coefficient between samples xi and yj, xi and yj
represent the variable values of Xi and Yj respectively, x and y represent the average values
of Xi and Yj, respectively.

(2) Multi-collinearity test
Multi-collinearity means that there is a high correlation between two or more predic-

tive variables in a multiple regression model. Tolerance (TOL) and variance inflation factor
(VIF) are commonly used in collinearity diagnostics. When the TOL value is less than 0.1
or the VIF value is greater than 10, it indicates that there is serious collinearity among the
factors. When the TOL value is less than 0.2 or the VIF value is greater than 5, it indicates
that there is strong collinearity [50] among the factors. The calculation formula is:

VIFi =
1

1−R2
i
=

1
TOL

(i = 1, 2, 3 . . . . . . k) (2)

where R2
i represents the certainty factor between the ith independent variable Xi and other

k − 1 independent variables.

2.4.3. Processing of the CF-Based Environmental Factors

The certainty factor (CF) is a piecewise probability function, which was first proposed
by E.H. Shortliffe and B.G. Buchanan [51] and later improved by Heckerman [52]. It is an
index used to analyze the susceptibility of various factors that can affect the occurrence
of collapses and landslides, and its calculation formula is shown in Formula (3). It can
also establish the quantitative relationship between landslide activities and control factors.
At present, the certainty factor model has been used in many studies for evaluating the
susceptibility of regional collapse and landslide disasters [53–56]. After the CF-coupled
machine learning model is used for collapse and landslide susceptibility modeling, this
paper divides the selected basic environmental factors into eight attribute intervals (of which
lithology, soil type, and land use type are divided according to natural attributes) by natural
discontinuity method, and obtains the certainty factor values of each environmental factor in
the attribute intervals. The value of the certainty factor reflects the probability of occurrence
of collapse and landslide disasters for environmental factors in this attribute interval.

CFi
α =


PPi

α−PPs
PPi

α(1−PPs)
, PPi

α < PPs

PPi
α−PPs

PPs(1−PPi
α)

, PPi
α ≥ PPs

(3)

where CFi
α is the certainty factor of the influence factor i at the jth level; PPi

α is the condi-
tional probability of occurrence of collapse and landslide disaster of the influence factor i at
the jth level. The number of collapse and landslide disaster points of the influence factor i
at the jth level is used to replace the ratio of the number of grids of the influence factor i
at the jth level in the research area. PPs is the prior probability of occurrence of collapse
and landslide disasters in the research area. The CF has a value range of −1 to 1. If it is
greater than 0, it means that the probability of occurrence of collapse and landslide disaster
is high in this factor interval; if it is less than 0, it means that the probability of occurrence of
collapse and landslide disaster is low in this factor interval; if it is equal to 0, it means that the
probability of occurrence of collapse and landslide disaster is uncertain in this factor interval.

2.4.4. Machine Learning Model

(1) Logistic regression
A logistic regression (LR) model is a regression model that describes binary-classification

dependent variables and a series of independent variables [32]. In collapse and landslide
disaster susceptibility modeling, LR model is used to find the optimal fitting function to
describe the relationship between the occurrence of collapses and landslides and a group
of independent indexes such as slope, lithology, etc. The independent variables in the
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model are the influence factors for the occurrence of collapses and landslides, while the
binary-classification dependent variables represent the occurrence (represented as 1 in the
model) or non-occurrence (represented as 0 in the model) of collapses and landslides. LR
represents the relationship between the occurrence probability of collapses and landslides
and the independent variables, as shown in Formula (4).

P =
eY

1 + eY (4)

where P represents the occurrence probability of collapses and landslides. Y represents the
fitting function of multiple factors, which is expressed in the following Formula (5).

Y = B + A1X1 + A2X2 + . . . + AnXn (5)

where B represents the constant term obtained by logistic regression, Ai represents the
logistic regression coefficient of each independent variable, and Xi represents the influence
factors for the occurrence of collapses and landslides.

(2) Support vector machine
As a supervised learning method based on the principle of mathematical statistics and

structural risk minimization method, SVM is used for classification and regression, and was
first proposed by Vapnik [57]. Its working principle is to maximize the distance between the
nearest sample points on both sides by constructing an optimal separating hyperplane. It
has the advantages of high accuracy, strong popularization, and good generalization ability
in processing high-dimensional invisible data [58]. In this research, the training set is set as
T = {(xi, yi)}

M
i=1; x is the input vectors, including slope, aspect, curvature, terrain relief,

TWI, lithology, soil type, distance to fault, rainfall, distance to river, PGA, NDVI, and land
use. In the formula yi ∈ {0, 1}, 1 and 0 represent collapse and non-collapse, respectively.
SVM classification aims to find an optimal separating hyperplane that can distinguish
between collapse and non-collapse from the above training set. The prediction accuracy of
support vector machine depends on the choice of kernel function. There are four commonly
used kernel functions, that is, linear, polynomial, radial basis function (RBF), and sigmoid,
of which RBF is widely used in the susceptibility prediction of collapses and landslides due
to its advantages of few parameters, strong flexibility, and good performance. Therefore,
the RBF kernel function is used in this research to build the SVM model, as shown in
Formula (6). For the RBF kernel function, the regularization parameter ϑ and the gamma
parameter γ are parameters that need to be determined. The greater the regularization
parameter is, the less error is allowed, because once error occurs, it is easy to have over-
fitting, otherwise, it is easy to have under-fitting. The gamma parameter γ controls the
degree of nonlinearity of the model.

k(xi, xj) = exp
(
−γ ‖ xi − xj ‖2

)
(6)

where xi and xj are the input vectors and γ is the gamma parameter.
(3) Random forest
As an integrated classification and regression model composed of multiple decision

trees, RF obtains the optimal classification results according to the voting results of each
decision tree. It was first proposed by Breiman [59] and its working process is divided into
three steps. The first step is to draw K samples from the original training set in a manner of
sampling with replacement by bootstrap sampling, and the characteristic number of each
sample is the same as that of the original training set. The second step is to build decision
tree models for each K sample, randomly select the mtry characteristics at each node of
the decision tree as the splitting characteristics, and calculate the optimal node partition
according to Gini standard (Formula (7)) to generate child nodes. Then, the whole K tree
forms a random forest model. The third step is to vote according to the K classification
results to determine the final classification. The randomness of the RF model is reflected



Remote Sens. 2022, 14, 3259 12 of 32

in the randomness of the training set and the optimal attribute of node splitting, which
can avoid model over-fitting and enhance its stability. The main characteristic of random
forest is that it can provide the Gini index of the corresponding input variables, that is, the
importance ranking of each input variable.

Gini = 1−
2

∑
i=1

p2
i (7)

where pi represents the probability that the observed sample falls in category i.

2.4.5. Performance Evaluation of the Models

(1) Confusion matrix
Model validation and performance evaluation are important steps in the process of

collapse and landslide susceptibility evaluation. A confusion matrix is often used for per-
formance evaluation of the binary-classification models. A confusion matrix includes the
following four parameters (see Table 3). True positive (TP) is the number of collapse and
landslide points predicted by the model that are actual collapse and landslide points. False
negative (FN) is the number of non-collapse and non-landslide points predicted by the model
that are actually collapse and landslide points. False positive (FP) is the number of collapse
and landslide points predicted by the model that are actually non-collapse and non-landslide
points. True negative (TN) is the number of non-collapse and non-landslide points predicted
by the model that are actually non-collapse and non-landslide points. On this basis, the
performance evaluation of each model is carried out in this research with 7 statistical indexes,
including precision, recall, accuracy, kappa coefficient (KC), MCC, F1-score, and performance
overall (POA) [60]. The description of each index is as shown in Table 4.

Table 3. Confusion matrix of prediction results.

Prediction Situation
Actual Situation

Positive Sample Negative Sample

Positive sample True positive (TP) False positive (FP)
Negative sample False negative (FN) True negative (TN)

Table 4. Description of characteristics of statistical indexes based on confusion matrix.

Index Statistical Definition Usage

Precision TP
TP+FP Evaluating the proportion of the TP sample in all predicted positive samples

Recall TP
TP+FN Quantifying the proportion of the TP sample in all true positive samples

Accuracy TP+TN
TP+FP+FN+TN Quantifying the proportion of correctly predicted samples

KC

P0−Pe
1−Pe

P0 = TP+TN
TP+FN+FP+TN

Pe =
(TP+FN)(TP+FP)+(TN+FN)(FP+TN)

(TP+FN+FP+TN)2

Checking consistency and measuring classification precision

MCC TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Describing the correlation coefficient between the actual classification and the predicted
classification, with a value range of −1 to 1. When the value is 1, it indicates the perfect
prediction of the receiver; when the value is 0, it indicates that the predicted result is not

as good as the randomly predicted result; when the value is −1, it indicates that the
predicted classification is completely inconsistent with the actual classification.

F1-
score

2×Precision×Recall
Precision+Recall Representing the harmonic mean of accuracy and recall, with a value range of −1 to 1.

POA Accuracy + MCC + F1− score
Representing the sum of the accuracy, the Matthews correlation coefficient and the

harmonic mean; the comprehensive performance index can quantify the overall
performance of the model.
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(2) ROC curve and AUC value
The receiver operating characteristic (ROC) curve is a useful technology to verify the

performance of the probability model and is also a common method to verify collapse
and landslide susceptibility models [21]. In the ROC curve, the specificity is taken as the
abscissa (that is, the percentage of the number of collapse and landslide points predicted
by the model that are actually non-collapse and non-landslide points to the number of all
non-collapse and non-landslide points actually determined by the model), the susceptibility
is taken as the ordinate, and the integral (namely the area enclosed by the curve and the
x-axis) of the curve in the value range of 0 to 1 is the AUC value (area under curve). The
closer the ROC curve is to the upper left corner, the greater the AUC value is, which
indicates that the occurrence of collapse and landslide disasters will be predicted more
successfully and the accuracy of the model will be higher.

3. Experimental Results
3.1. Independent Test of Environmental Factors
3.1.1. Correlation Analysis of the Factors

The correlation coefficient matrix among 13 environmental factors is obtained by using
the “Band Collection Statistics” tool of the ArcGIS toolbox, and R4.1.3 is used for visualiza-
tion to obtain Figure 4. In the figure, red indicates positive correlation and blue indicates
negative correlation. The redder the color is, the stronger the correlation between the two
factors. The size of the circle directly reflects the magnitude of correlation coefficients. From
the figure, it can be observed that the correlation coefficient of all factors is less than 0.6,
and the correlation degree is weak, so the degree of interaction between all factors is small.

Figure 4. Pearson correlation values between factors.

3.1.2. Multi-Collinearity Test

The TOL and VIF values of each collapse and the landslide susceptibility evaluation
factor are obtained through collinearity analysis by SPSS software, as shown in Table 5. The
tolerance (TOL) of all factors is above 0.4, much higher than the threshold value of 0.1; the
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VIF value is less than 2.2, significantly lower than the threshold value of 5 or 10, indicating
that there is no multi-collinearity among the selected factors and verifying the rationality
of the evaluation index again.

Table 5. Collinearity diagnostic results of influence factors.

Factors TOL VIF

Slope 0.630 1.586

Aspect 0.951 1.052

Curvature 0.952 1.051

Terrain relief 0.606 1.651

TWI 0.829 1.206

Lithology 0.824 1.214

Soil type 0.753 1.328

Distance to fault 0.494 2.026

Rainfall 0.554 1.805

Distance to river 0.691 1.448

PGA 0.459 2.179

NDVI 0.783 1.278

Land use 0.833 1.201

3.2. Attribute Interval Classification and Certainty Coefficient Calculation of Environmental Factors

The ratio of the total number of collapse and landslide disaster points (1081) to the total
number of grids (4,565,153) in the research area is used as a replacement in this research.
The attribute interval classification and certainty coefficient value of environmental factors
are shown in Table 6. The certainty coefficient values of each environmental factor in its
attribute intervals are visualized by Origin, as shown in Figure 5. The law of the occurrence
possibility of collapse and landslide disasters in the research area based on various factors
is as follows. (1) Topography factor: when the slope is 0–10◦, the probability of occurrence
of collapses and landslides is the highest, and the CF value is 0.739; the southeast and
northwest aspects are most favorable for the occurrence of collapses and landslides. When
the curvature is−2–1, the probability of occurrence of collapses and landslides is the highest;
with the increase of terrain relief, the probability of occurrence of collapses and landslides
decreases gradually. When the terrain relief is 65–380, the probability of occurrence of
collapses and landslides is the highest and the CF value is 0.764. When the TWI is 10.9–13.2,
it is not conducive to the development of collapses and landslides, while when the TWI
is 14.5–22.8, the probability of occurrence of collapses and landslides is the highest and
the CF value is greater than 0.8. (2) Geological structure factor: the areas with neutral
igneous rock and basic plutonic rock lithology are most conducive to the occurrence of
collapses and landslides and the CF value is greater than 0.5. The areas with soil types of
yellow-red soils, yellow soils, neutral skeletal soils, dark yellow brown soils, calcareous
cinnamon soils, drag soils, and yellow limestone soils are conducive to the occurrence of
collapses and landslides and the CF value is greater than 0.5. In the areas with soil type of
drag soils, the probability of occurrence of collapses and landslides is the highest and the
CF value is 0.931. With the increase of distance to fault, the probability of occurrence of
collapses and landslides decreases gradually. When the distance to fault is less than 2 km,
the probability of occurrence of collapses and landslides is the highest and the CF value is
greater than 0.5. (3) Hydrological factor: when the rainfall is 750–820 mm, the probability
of occurrence of collapses and landslides is higher and the CF value is greater than or equal
to 0.5. With the increase of distance to river, the probability of occurrence of collapses and
landslides gradually decreases. When the distance to river is less than 1 km, the probability
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of occurrence of collapses and landslides is higher and the CF value is greater than or
equal to 0.7. (4) Seismic factor: the probability of occurrence of collapses and landslides
is the highest when the PGA is 1.5–1.8, and the CF value is 0.813. (5) Ecological factor:
with the increase of NDVI, the probability of occurrence of collapses and landslides will
increase first and then decrease. The probability of occurrence of collapses and landslides
is higher in areas with NDVI value of −0.04–0.14, and the CF value is greater than 0.5.
(6) Human activity factor: the areas with land use types of paddy field, dry land, waters,
and residential land are conducive to the occurrence of collapses and landslides and the CF
value is greater than or equal to 0.8.

Table 6. Attribute interval classification and certainty factor value of environmental factors.

Factors Classes Number of Collapse
and Landslide Points

Number of Grids in
the Interval Area

PPa
(×104)

PPs
(×104) CF

Slope

0–10 99 108,985 9.084 2.368 0.739
10–20 203 407,289 4.984 2.368 0.525
20–30 293 1,087,132 2.695 2.368 0.121
30–35 145 851,185 1.704 2.368 −0.281
35–40 132 859,690 1.535 2.368 −0.352
40–50 169 977,535 1.729 2.368 −0.27
50–60 36 236,575 1.522 2.368 −0.357
60–90 4 36,765 1.088 2.368 −0.541

Aspect

Flat (−1) 0 207 0 2.368 −1
North (0–22.5, 337.5–360) 85 551,252 1.542 2.368 −0.349

Northeast (22.5–67.5) 112 509,589 2.198 2.368 −0.072
East (67.5–112.5) 177 643,946 2.749 2.368 0.139

Southeast (112.5–157.5) 209 665,656 3.140 2.368 0.246
South (157.5–202.5) 97 552,841 1.755 2.368 −0.259

Southwest (202.5–247.5) 105 559,647 1.876 2.368 −0.208
West (247.5–292.5) 120 521,380 2.302 2.368 −0.028

Northwest (292.5–337.5) 176 560,635 3.139 2.368 0.246

Curvature

−84–−5 6 42,253 1.420 2.368 −0.4
−5–−2 86 457,015 1.882 2.368 −0.205
−2–−1 207 696,140 2.974 2.368 0.204
−1–0 340 1,177,275 2.888 2.368 0.18
0–1 292 1,106,230 2.640 2.368 0.103
1–3 130 895,326 1.452 2.368 −0.387
3–6 15 169,212 0.886 2.368 −0.626

6–108 5 21,702 2.304 2.368 −0.027

Terrain relief

65–380 320 319,281 10.023 2.368 0.764
380–490 344 786,325 4.375 2.368 0.459
490–585 199 1,008,688 1.973 2.368 −0.167
585–670 120 945,998 1.269 2.368 −0.464
670–770 64 823,541 0.777 2.368 −0.672
770–895 29 496,861 0.584 2.368 −0.754
895–1280 5 183,238 0.273 2.368 −0.885

1280–1745 0 1221 0 2.368 −1

TWI

1.9–5 255 1,234,257 2.066 2.368 −0.128
5–7.8 357 1,497,445 2.384 2.368 0.007

7.8–10.9 317 1,227,863 2.582 2.368 0.083
10.9–13.2 70 470,993 1.486 2.368 −0.372
13.2–14.5 33 107,219 3.078 2.368 0.231
14.5–16.2 18 12,781 14.083 2.368 0.832
16.2–18.6 20 10,820 18.484 2.368 0.872
18.6–22.8 11 3775 29.139 2.368 0.919



Remote Sens. 2022, 14, 3259 16 of 32

Table 6. Cont.

Factors Classes Number of Collapse
and Landslide Points

Number of Grids in
the Interval Area

PPa
(×104)

PPs
(×104) CF

Lithology

Mixed sedimentary rock 373 1,842,775 2.024 2.368 −0.145
Basic igneous rock 0 23,850 0 2.368 −1

Siliceous clastic rock 169 515,300 3.280 2.368 0.278
Acid plutonic rock 99 641,152 1.544 2.368 −0.348

Neutral igneous rock 176 300,428 5.858 2.368 0.569
Silicate sedimentary rock 205 817,660 2.507 2.368 0.056

Basic plutonic rock 14 22,126 6.327 2.368 0.626
Neutral plutonic rock 0 3137 0 2.368 −1

Metamorphic rock 44 395,842 1.112 2.368 −0.531
Pyroclastic rock 1 2883 3.469 2.368 0.317

Soil type

Rock 0 40,521 0 2.368 −1
Yellow-red soils 117 217,479 5.380 2.368 0.56

Yellow soils 127 57,096 22.243 2.368 0.894
Albic dark brown soils 0 7 0 2.368 −1
Brown coniferous soils 0 6806 0 2.368 −1

Grayish brown
coniferous soils 0 25,873 0 2.368 −1

Neutral skeletal soils 56 84,700 6.612 2.368 0.642
Dark yellow brown soils 171 225,969 7.567 2.368 0.687

Brown soils 205 1,139,431 1.799 2.368 −0.24
Dark brown soils 0 657,341 0 2.368 −1
Cinnamon soils 0 26,458 0 2.368 −1

Calcareous cinnamon
soils 252 504,598 4.994 2.368 0.526

Leached chernozem 1 35,339 0.283 2.368 −0.881
Sierozems 0 20,783 0 2.368 −1
Felted soils 0 153,662 0 2.368 −1
Drab soils 134 39,080 34.289 2.368 0.931

Yellow limestone soils 18 22,031 8.170 2.368 0.71
Dark felty soils 0 1,056,976 0 2.368 −1

Brown-black felt 0 8942 0 2.368 −1
Frigid frozen soils 0 242,061 0 2.368 −1

Distance to
fault

0–2 751 1,511,153 4.970 2.368 0.524
2–5 237 1,050,165 2.257 2.368 −0.047
5–8 75 742,206 1.011 2.368 −0.573

8–13 18 519,422 0.347 2.368 −0.854
13–17 0 227,833 0 2.368 −1
17–23 0 218,938 0 2.368 −1
23–29 0 174,581 0 2.368 −1
29–38 0 120,855 0 2.368 −1

Rainfall

750–790 535 353,745 15.124 2.368 0.844
790–820 343 731,798 4.687 2.368 0.495
820–845 149 821,064 1.815 2.368 −0.234
845–870 53 834,612 0.635 2.368 −0.732
870–900 1 641,016 0.016 2.368 −0.993
900–930 0 527,244 0 2.368 −1
930–970 0 461,923 0 2.368 −1
970–1050 0 193,751 0 2.368 −1
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Table 6. Cont.

Factors Classes Number of Collapse
and Landslide Points

Number of Grids in
the Interval Area

PPa
(×104)

PPs
(×104) CF

Distance to
river

0–1 756 854,540 8.847 2.368 0.733
1–2 167 767,860 2.175 2.368 −0.082
2–4 77 1,197,286 0.643 2.368 −0.728
4–6 46 718,322 0.640 2.368 −0.73
6–8 19 478,968 0.397 2.368 −0.833

8–10 10 299,504 0.334 2.368 −0.859
10–13 6 162,894 0.368 2.368 −0.844
13–19 0 85,779 0.000 2.368 −1

PGA

0.2–0.4 71 1,252,569 0.567 2.368 −0.761
0.4–0.6 72 830,025 0.867 2.368 −0.634
0.6–0.8 322 584,544 5.509 2.368 0.570
0.8–1 306 816,726 3.747 2.368 0.368
1–1.1 36 342,609 1.051 2.368 −0.556

1.1–1.3 57 426,004 1.338 2.368 −0.435
1.3–1.5 171 276,284 6.189 2.368 0.618
1.5–1.8 46 36,392 12.640 2.368 0.813

NDVI

−0.89–0.33 1 12,760 0.784 2.368 −0.669
−0.33–0.16 6 313,938 0.191 2.368 −0.919
−0.16–0.04 54 351,964 1.534 2.368 −0.352
−0.04–0.05 222 602,824 3.683 2.368 0.357
0.05–0.14 421 1,046,104 4.024 2.368 0.412
0.14–0.23 209 853,744 2.448 2.368 0.033
0.23–0.34 140 868,752 1.612 2.368 −0.319
0.34–0.61 28 515,067 0.544 2.368 −0.770

Land use

Paddy field 11 9514 11.562 2.368 0.795
Dry land 240 125,190 19.171 2.368 0.877

Woodland 387 2,639,503 1.466 2.368 −0.381
Lawn 367 1,736,151 2.114 2.368 −0.107

Waters 50 30,997 16.131 2.368 0.853
Residential land 24 19,453 12.337 2.368 0.808

Unused land 2 4345 4.603 2.368 0.486

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Distribution of the number of collapse and landslide points and the CF value in the attribute
interval of environmental factors.
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3.3. Modeling Results
3.3.1. LR and Coupling Models

In this research, the original value and certainty factor value (CF) of each environ-
mental factor of the training sample were input into SPSS 25 software for binary logistic
regression calculation to obtain the regression coefficient and constant term of each en-
vironmental factor, as shown in Table 7. The R2 of the CF-LR model is 0.760, and the R2

of the LR model is 0.672, so the fitting degree of the CF-LR model is better than that of
single the LR model. Then, the obtained regression coefficient and constant term are put
into Formula (4) and calculated by using the grid calculator of ArcGIS 10.5 to predict the
probability of occurrence of collapses and landslides for each grid unit.

Table 7. Coefficients and constant terms for LR and CF-LR.

Environmental Factor LR CF-LR

Slope 0.113 −0.209

Aspect 0 1.482

Curvature 0.367 0.286

Terrain relief 0.531 1.408

TWI 0.167 1.11

Lithology 0.104 0.585

Soil type 0.269 1.505

Distance to fault 0 1.171

Rainfall 0.460 1.661

Distance to river 1.209 0.928

PGA 0.482 0.277

NDVI 0.669 0.994

Land use 0.140 0.634

Constant −6.188 −0.416

3.3.2. SVM and Coupling Models

In this research, the training set and test set data were imported into R4.1.3, the “e1071”
and “caret” packages were installed, and the tune function was called to adjust the regular-
ization parameter ϑ and the gamma parameter value of the RBF kernel function by grid
search method and five-fold cross-validation method. The regularization parameter ϑ of
the single SVM model is 20 and the gamma parameter is 0.1, while the regularization pa-
rameter ϑ of the CF-SVM model is 0.4, and the gamma parameter is 0.1. The regularization
parameter ϑ value of the SVM model is higher than that of the CF-SVM model, indicating
that the error tolerance of the single SVM model is less than that of the CF-SVM model and
that the CF-SVM model has better generalization capacity. Then, the trained models were
used for collapse and landslide susceptibility prediction of 4,565,153 point objects in the
whole research area, and the susceptibility values of all points were imported into ArcGIS
10.5 and converted to 30 × 30 m grid units.

3.3.3. RF and Coupling Models

In this research, the training set and test set data were imported into R4.1.3 and the
“randomForest” and “caret” packages were installed. The two parameters ntree and mtry in
random forest have an important impact on the accuracy of the model. Ntree is the number
of decision trees. The prediction performance of the RF model increases with the increase
of ntree, but the amount of calculations in the model gradually increases and the modeling
time becomes longer and longer. Research has showed that when ntree increases to 300 [61],
the prediction performance of the RF is stable. Therefore, ntree was selected as 300 to
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establish the RF model for collapse and landslide disaster prediction in this research. Mtry
is the number of characteristic nodes of each tree. When Mtry is small, the correlation
between decision trees decreases and the classifier fitting is poor. When Mtry is large, the
running speed of the model will slow down. On the basis that the value of ntree is equal
to 300, this research takes the highest accuracy as the standard and ivtaubs the optimal
Mtry value by grid search method and five-fold cross-validation method. The Mtry value
of both RF model and CF-SVM model is 5. Then, the trained models were used for collapse
and landslide susceptibility prediction of 4,565,153 point objects in the whole research area
and the susceptibility values of all points were imported into ArcGIS 10.5 and converted
to 30 × 30 m grid units.

3.4. Collapse and Landslide Susceptibility Prediction Mapping

According to the probability values of collapse and landslide disasters predicted by
the six models, the research area was divided into five intervals—very low, low, moderate,
high, and very high—by natural discontinuity method (see Figure 6). The statistical results
of susceptibility evaluation are shown in Table 8. It can be seen from Figure 6 that the areas
with high and very high probability of disaster occurrence are mainly distributed in the
middle, northwest, and southeast of Wenchuan County, and extend from north to south in
strips, while the areas with low and very low probability of disaster occurrence are mainly
distributed around the west and southwest of Wenchuan County. Table 7 shows that the ar-
eas with very low, low, moderate, high, and very high probability of collapse and landslide
disaster occurrence predicted by the LR model have areas of 1943.382 km2, 807.659 km2,
298.507 km2, 328.496 km2, and 730.595 km2, accounting for 47.3%, 19.658%, 7.265%, 7.995%,
and 17.782%, respectively. The areas with very low, low, moderate, high, and very high
probability of collapse and landslide disaster occurrence predicted by the CF-LR model
have areas of 2577.819 km2, 583.316 km2, 320.097 km2, 249.885 km2, and 377.521 km2,
accounting for 62.741%, 14.197%, 7.791%, 6.082%, and 9.188%, respectively. The areas
with very low, low, moderate, high, and very high probability of collapse and landslide
disaster occurrence predicted by the SVM model have areas of 2047.961 km2, 904.71 km2,
469.662 km2, 324.533 km2, and 361.772 km2, accounting for 49.845%, 22.020%, 11.431%,
7.899%, and 8.805%, respectively. The areas with very low, low, moderate, high, and very
high probability of collapse and landslide disaster occurrence predicted by the CF-SVM
model have areas of 2887.869 km2, 454.71 km2, 206.651 km2, 186.43 km2, and 372.979 km2,
accounting for 70.288%, 11.067%, 5.030%, 4.538%, and 9.078%, respectively. The areas
with very low, low, moderate, high, and very high probability of collapse and landslide
disaster occurrence predicted by the RF model have areas of 2712.996 km2, 447.601 km2,
328.298 km2, 301.112 km2, and 318.631 km2, accounting for 66.032%, 10.894%, 7.990%,
7.329%, and 7.755%, respectively. The areas with very low, low, moderate, high, and very
high probability of collapse and landslide disaster occurrence predicted by the CF-RF
model have areas of 2790.878 km2, 443.463 km2, 314.755 km2, 253.031 km2, and 306.51 km2,
accounting for 67.927%, 10.793%, 7.661%, 6.159%, and 7.460%, respectively.

In order to validate the reliability and accuracy of the susceptibility mapping level,
the frequency ratio FR (that is, the ratio of the percentage of the number of collapse and
landslide points at each susceptibility level to the percentage of the area at each level)
was calculated. The frequency ratios of the areas with very low, low, moderate, high, and
very high probability of collapse and landslide disaster occurrence predicted by the LR
model are 0.01, 0.118, 0.395, 0.694, and 4.994, respectively. The frequency ratios of the areas
with very low, low, moderate, high, and very high probability of collapse and landslide
disaster occurrence predicted by the CF-LR model are 0.006, 0.078, 0.641, 2.282, and 8.668,
respectively. The frequency ratios of the areas with very low, low, moderate, high, and
very high probability of collapse and landslide disaster occurrence predicted by the SVM
model are 0.011, 0.126, 0.364, 0.878, and 9.718, respectively. The frequency ratios of the areas
with very low, low, moderate, high, and very high probability of collapse and landslide
disaster occurrence predicted by the CF-SVM model are 0.009, 0.134, 0.386, 1.733, and 9.701,
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respectively. The frequency ratios of the areas with very low, low, moderate, high, and very
high probability of collapse and landslide disaster occurrence predicted by the RF model
are 0.004, 0.051, 0.313, 1.931, and 10.640, respectively. The frequency ratios of the areas
with very low, low, moderate, high, and very high probability of collapse and landslide
disaster occurrence predicted by the CF-RF model are 0.001, 0.043, 0169, 1.277, and 12.103,
respectively. In all collapse and landslide susceptibility mapping, the frequency ratio FR
ranges from 0.01 to 12.103. Most collapses and landslides occur in areas with very high
probability of disaster occurrence, while only a small number of collapses and landslides
occur in areas with very low and low probability of disaster occurrence. With the increase
of collapse and landslide susceptibility level, the frequency ratio in each level gradually
increases, which verifies the accuracy of the model. The frequency ratio precision of the
collapse and landslide susceptibility results can be obtained by dividing the frequency
ratios of the areas with high and very high probability of disaster occurrence by the sum
of all frequency ratios. The frequency ratio precisions of the results predicted by the LR,
CF-LR, SVM, CF-SVM, RF, and CF-RF models are 0.916, 0.938, 0.955, 0.956, 0.972, and 0.984
respectively, indicating that the prediction accuracy of each model is high and that they can
predict the occurrence of collapse and landslide disasters. The frequency ratio precision
of the RF model is higher than that of the LR and SVM models, which indicates that the
collapse and landslide susceptibility predicted by the RF model better reflects the spatial
aggregation characteristics and distribution rules of regional collapses and landslides. In
addition, the frequency ratio precision of the coupling model is higher than that of the
single model, which indicates that the CF-based coupling model can improve prediction
accuracy. In particular, the CF-RF model predicts that the area with high and very high
probability of disaster occurrence has the lowest area ratio, but the frequency ratio precision
reaches 0.984, indicating that the CF-RF model is the optimal model.

Figure 6. Cont.
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Figure 6. Collapse and landslide susceptibility mapping of different models: (a) LR, (b) CF-LR,
(c) SVM, (d) CF-SVM, (e) RF, (f) CF-RF.
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Table 8. Distribution of collapses and landslides at all susceptibility levels with different models.

Model Geohazard
Level

Area
(km2)

Area
Percentage (%)

Number of Collapse and
Landslide Points

Ratio of Collapse
and Landslide (%)

Frequency
Ratio (FR)

LR

Very low 1943.382 47.300 5 0.463 0.010

Low 807.659 19.658 25 2.313 0.118

Moderate 298.507 7.265 31 2.868 0.395

High 328.496 7.995 60 5.550 0.694

Very high 730.595 17.782 960 88.807 4.994

CF-LR

Very low 2577.819 62.741 4 0.370 0.006

Low 583.316 14.197 12 1.110 0.078

Moderate 320.097 7.791 54 4.995 0.641

High 249.885 6.082 150 13.876 2.282

Very high 377.521 9.188 861 79.648 8.668

SVM

Very low 2047.961 49.845 6 0.555 0.011

Low 904.710 22.020 30 2.775 0.126

Moderate 469.662 11.431 45 4.163 0.364

High 324.533 7.899 75 6.938 0.878

Very high 361.772 8.805 925 85.569 9.718

CF-SVM

Very low 2887.869 70.288 7 0.648 0.009

Low 454.710 11.067 16 1.480 0.134

Moderate 206.651 5.030 21 1.943 0.386

High 186.430 4.538 85 7.863 1.733

Very high 372.979 9.078 952 88.067 9.701

RF

Very low 2712.996 66.032 3 0.278 0.004

Low 447.601 10.894 6 0.555 0.051

Moderate 328.298 7.990 27 2.498 0.313

High 301.112 7.329 153 14.154 1.931

Very high 318.631 7.755 892 82.516 10.640

CF-RF

Very low 2790.878 67.927 1 0.093 0.001

Low 443.463 10.793 5 0.463 0.043

Moderate 314.755 7.661 14 1.295 0.169

High 253.031 6.159 85 7.863 1.277

Very high 306.510 7.460 976 90.287 12.103

3.5. Precision Evaluation of the Models
3.5.1. Evaluation of Precision Validation Parameters

See Table 9 for the results of confusion matrix and statistical indexes; each index is shown
in Figure 7. In terms of precision, as seen from CF-RF>RF>CF-LR>CF-SVM>SVM>LR, the
precision of the CF-RF model is highest, indicating that the CF-RF model has the strongest
ability to distinguish negative samples. In terms of recall, as seen from LR>CF-SVM>CF-
RF>RF>CF-LR>SVM, the recall of the LR model is highest, indicating that the CF-RF
model has the strongest ability to distinguish positive samples. As precision and recall
are contradictory measurements (when precision is high, recall is often low; when recall is
high, precision is often low), the F1-score index is introduced, which takes both precision
and recall into account. The F1-score value of each model is greater than 0.8; the order
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of each model according to the F1-score value is CF-RF>RF>CF-SVM>CF-LR>SVM>LR,
indicating that all models can reflect the collapse and landslide susceptibility in the research
area, and the performance of the CF-RF model is relatively high. In terms of accuracy,
as seen from CF-RF>RF>CF-SVM>CF-LR>SVM>LR, the accuracy of the CF-RF model is
highest, which indicates that the RF model can better predict the occurrence of collapse
and landslide disasters than the SVM and LR models, and the coupling model can improve
the prediction accuracy of the model. In terms of KC, the KC values of the six models
for susceptibility evaluation are greater than 0.6, indicating that the models have high
consistency, i.e., the difference between the prediction results and the actual classifica-
tion results of the model is small and the classification accuracy is high. As seen from
CF-RF>CF-SVM>CF-LR>RF>SVM>LR, the coupling model can improve the classification
accuracy. In terms of MCC, the MCC value in all models is greater than 0.6 and the order is
CF-RF>RF>CF-LR>CF-SVM>SVM>LR, showing that the models can predict the occurrence
of collapse and landslide disasters and the coupling model can improve the classification
accuracy. Some models have both good and bad indexes. A single index cannot measure all
the advantages and disadvantages of a model. Therefore, the POA index is introduced. It
is a comprehensive performance index to quantify the overall performance of a model. The
model with the highest POA has the highest overall performance. The order of each model
according to the POA value is CF-RF>RF>CF-SVM>CF-LR>SVM>LR. The POA value of
the CF-RF model is highest (2.570), followed by the POA value of the RF model (2.552),
showing that in the research of collapse and landslide susceptibility in Wenchuan County,
the RF model has higher prediction precision than the SVM and LR models; the SVM model
ranks second and the LR model has the lowest prediction precision. The coupling model
can improve the precision of the model over the single model. The top ranking of the CF-RF
model in all indexes shows that it has the highest accuracy and reliability in this research,
and is the optimal model.

Figure 7. Precision comparison of the models (a) precision, recall, accuracy, KC, MCC, and F1-score;
(b) POA of the models.
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Table 9. Analysis of prediction ability of different models by validation samples.

LR CF-LR SVM CF-SVM RF CF-RF

TP 306 300 288 305 301 304

TN 233 270 269 268 273 273

FP 91 54 55 56 51 51

FN 18 24 36 19 23 20

Precision (%) 77.078 84.746 83.965 84.488 85.511 85.634

Recall (%) 94.444 92.593 88.889 94.136 92.901 93.827

Accuracy (%) 83.179 87.963 85.957 88.426 88.580 89.043

KC (%) 64.400 76.000 71.800 77.800 75.000 78.000

MCC (%) 68.109 76.254 72.038 77.358 77.516 78.446

F1-score (%) 84.882 88.496 86.357 89.051 89.053 89.543

POA (%) 236.170 252.712 244.338 254.835 255.216 257.046

3.5.2. Comparison of ROC and AUC Results

The ROC curve of the prediction probability of the validation sample is drawn by SPSS
software, and the ROC curve and AUC value of the six modes for susceptibility evaluation are
shown in Figure 8. The AUC values of LR, SVM, and RF models are 0.905, 0.918, and 0.935,
respectively, while the AUC values of CF-LR, CF-SVM, and CF-RF models are 0.929, 0.933, and
0.946, respectively. The AUC value of the CF-RF model is the highest. It can be seen that the
precision of all models is high and that among all single models, the RF model has the highest
precision, followed by the SVM model; the LR model has the lowest precision. The AUC
value of the CF-based models is greater than that of the single models, which further indicates
that the coupling model is helpful in improving the ability to predict collapse and landslide
disaster. The CF-RF model in this research has the best performance, which is consistent with
the precision test conclusion based on the confusion matrix.

Figure 8. Cont.
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Figure 8. ROC curves with associated AUC values versus validation set: (a) CF-LR and LR;
(b) CF-SVM and SVM; (c) CF-RF and RF.

4. Discussion

In this study, we built three single models (LR, SVM and RF) and three CF-based hybrid
models (CF-LR, CF-SVM and CF-RF) to generate six collapse and landslide susceptibility
maps in Wenchuan County, and compared the prediction accuracy of the six models. The
results show that the machine learning models based on the certainty factor have higher
prediction accuracy than the single models. Among them, CF-RF model has the highest
performance, which is consistent with the research results of Xiao Wang et al. [2]. Previous
studies on landslide susceptibility mapping in Wenchuan County mostly used a single model.
Yulin Su et al. built a DNN model for earthquake-geological disaster chain study, which is
discussed with the support vector machine (SVM) model, logistic regression (LR) model,
and random forest (RF) model [30]. Shuai Li et al. studied the change of geological hazard
sensitivity and its driving mechanism ten years after the Wenchuan earthquake by using a
random forest model [31]. Juan Cao et al. compared the prediction accuracy of logistic regres-
sion (LR) and random forest (RF) models in sensitivity mapping of Wenchuan and Lushan
earthquake landslides [32]. Xie, P. et al. made earthquake landslide susceptibility maps in
Wenchuan County by using a neural network model and a logistic regression model [33]. In
recent years, in order to improve the prediction accuracy of landslide susceptibility mapping,
deep learning methods have been widely used. Zhang, S. et al. compared the capabili-
ties of advanced convolutional neural networks (CNN) and traditional machine learning
methods [26]; Zheng, H.Y. et al. combined this with a deep neural network (DNN) to build
a spatial prediction model of landslide disasters [27]. Compared with the single model,
machine learning models based on a certainty factor have higher prediction accuracy and
are simpler to build than deep learning models. They play an important role in predicting
potential landslides in the future and can provide a decision-making basis for the early
warning and prevention of landslides in Wenchuan County.

4.1. Importance Ranking of Environmental Factors

In Section 3.2, through the preliminary analysis of the correlation between each envi-
ronmental factor and the occurrence of collapses and landslides, the intervals of each factor
relating to collapses and landslides are obtained, but the contribution of each factor to the
collapse and landslide susceptibility prediction are not reflected. From the Section 3.5, it
can be seen that the CF-RF is the optimal model in the research area, so the importance
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of environmental factors is discussed based on the CF-RF model. In the RF tree, optimal
segmentation is measured with impurity, and the importance of basic environmental factors
is calculated by the reduced value of Gini index of the environmental factor when the node
is divided. In this research, the importance of environmental factors is measured by the
percentage of the average Gini index decrease to the sum of average Gini index decrease of
all environmental factors. The 13 environmental factors in the CF-RF model are analyzed by
RStudio4.1.3 and the importance ranking of each factor is obtained by origin2018 software
(Figure 9). It can be seen from Figure 9 that the ranking of the 13 environmental factors
according to their importance proportion, is rainfall>soil type>distance to river>terrain
relief>PGA>land use>NDVI>distance to fault>lithology>aspect>slope>TWI>curvature.
As the three most important environmental factors among the 13 environmental factors,
rainfall, soil type and distance to river have importance proportions of 24.216%, 22.309%,
and 11.41%, respectively, and make the highest contributions to the model, showing that
these three environmental factors are important trigger factors of collapse and landslide
disasters in the research area, and cannot be ignored in the susceptibility evaluation of
collapses and landslides. However, slope, TWI, and curvature account for the lowest
importance proportions—3.159%, 3.02%, and 2.813%, respectively—indicating that these
three environmental factors have little impact on the susceptibility evaluation of collapses
and landslides in the research area.

Figure 9. Importance Ranking of Environmental Factors of the CF-RF Model.

4.2. Division of Evaluation Units

The accuracy of collapse and landslide susceptibility evaluation is closely related to
the evaluation unit. Common evaluation units are the grid unit, terrain unit and slope
unit [62–64]. After the evaluation unit is determined, the value of each environmental
factor can be allocated to each unit. A grid unit divides the research area into regular
squares of predefined size for storage and calculation; this is widely used in collapse
and landslide susceptibility mapping, but cannot fully reflect the terrain relief and the
geological and hydrogeological elements of the research area [65]. With the morphology of
the earth’s surface based on DEM, a terrain unit takes the concave–convex earth’s surface
as the boundary to divide the areas; the curvature is the key to extract the concave–convex
boundary [23]. A slope unit is a watershed area delimited by the drainage line (valley
line) and the water boundary (ridge line), as well as the basic terrain and landform unit of
geological disasters [66]. The evaluation unit used in this research is the 30 m×30 m grid
element, but in future research, terrain units and slope units can be used to analyze the
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collapse and landslide susceptibility, and the similarities and differences between terrain
units, slope units, and grid units can be analyzed and compared.

4.3. Uncertainty of Hybrid Models

The hybrid model of machine learning and the statistical method are widely used
in the research of collapse and landslide susceptibility, and can effectively improve the
prediction precision of models. These statistical methods are an important link between the
collapse and landslide susceptibility index and its environmental factors; their connection
performance is very important to the precision of machine learning models. At present,
commonly used statistical methods include certainty factor (CF), weight of evidence (WOE),
information value (IV), index of entropy (IOE), and frequency ratio (FR) [32,67–70]. There
is no specific evaluation of which statistical methods can improve the precision of machine
learning models, and different statistical methods bring great uncertainty to the prediction
of susceptibility to collapses and landslides by machine learning models. In this research,
the certainty factor is coupled with three machine learning methods: logistic regression,
support vector machine, and random forest. In future research, other statistical methods
and machine learning methods can be mixed to build collapse and landslide suscepti-
bility models, allowing the exploration of the uncertainty law of collapse and landslide
susceptibility prediction by machine learning models based on different statistical methods.

5. Conclusions

This paper takes the historical collapse and landslide disaster points in Wenchuan
County as the data source, selects appropriate environmental factors, builds three single
models (LR, SVM and RF) and three CF-based hybrid models (CF-LR, CF-SVM and CF-RF),
completes the susceptibility mapping of collapse and landslide disasters in Wenchuan
County, evaluates the accuracy and reliability of the models, obtains the laws of the
impact of each environmental factor on the development of collapse and landslide in its
attribute intervals, and explores the contribution of environmental factors to the collapse
and landslide susceptibility prediction of the optimal model. The research shows that:

(1) The six models LR, CF-LR, SVM, CF-SVM, RF, and CF-RF can evaluate the sus-
ceptibility of collapse and landslide disasters in Wenchuan County. The areas with high
and very high probability of disaster occurrence are mainly distributed in the middle,
northwest, and southeast of Wenchuan County, and extend from north to south in strips,
while the areas with low and very low probability of disaster occurrence are mainly dis-
tributed around the west and southwest of Wenchuan County. The areas with very high
probability of collapse and landslide disaster occurrence predicted by the models have an
area of 730.595 km2, 377.521 km2, 361.772 km2, 372.979 km2, 318.631 km2, and 306.51 km2,
accounting for 17.782%, 9.188%, 8.805%, 9.078%, 7.755%, and 7.460%, respectively. The
frequency ratio precision of collapses and landslides is 0.916, 0.938, 0.955, 0.956, 0.972,
and 0.984, respectively, which validates the accuracy of the models. The frequency ratio
precision of the RF model is higher than that of the LR and SVM models, and the coupling
models have higher frequency ratio precision than the single models;

(2) The precision of each model is evaluated based on the validation samples. The
ranking of the comprehensive POA index based on the confusion matrix is CF-RF>RF>CF-
SVM>CF-LR>SVM>LR, while the ranking of the AUC value is CF-RF>RF>CF-SVM>CF-
LR>SVM>LR. The RF model has the highest precision. The coupling model can improve
the precision of the models over the single models. The highest ranking of the CF-RF model
in all indexes shows that it has the highest accuracy and reliability in this research, and is
therefore the optimal model.

(3) The importance of environmental factors is explored based on the CF-RF model;
the ranking of the 13 environmental factors according to their proportion of importance
is rainfall>soil type>distance to river>terrain relief>PGA>land use>NDVI>Distance to
fault>lithology>aspect>slope>TWI>curvature. As the three most important environmental
factors among the 13 environmental factors, rainfall, soil type and distance to river have
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importance proportions of 24.216%, 22.309%. and 11.41%, respectively. Rainfall is the most
important trigger factor for collapse and landslide disasters in the research area, while
the importance of curvature accounts for 2.813% and contributes the least to the model.
Therefore, during disaster prevention and mitigation in Wenchuan region, it is necessary to
strengthen the monitoring of mountains and rock masses close to rivers under rainstorm
conditions.
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