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Abstract: Circular ground-based SAR (GBSAR) is a new 3D imaging GBSAR with the potential of
acquiring high-quality 3D SAR images and 3D deformation. However, its donut-shaped spectrum
and short radius of antenna rotation cause high sidelobes on 3D curved surfaces, resulting in 3D
SAR images with poor quality. The multi-phase-center circular GBSAR with full array can effectively
suppress sidelobes by filling the donut-shaped spectrum to be the equivalent solid spectrum, but it
requires a larger number of phase centers, increasing system cost and engineering difficulties. In this
paper, a sidelobe suppression method for circular GBSAR 3D imaging based on sparse optimization
of radial phase-center distribution is proposed to suppress high sidelobes at low cost. By deriving the
point spread function (PSF) of multi-phase-center circular GBSAR and taking the peak sidelobe level
(PSL) and integrated sidelobe level (ISL) of the derived PSF as multi-objective functions, we solve
the multi-objective optimization problem to optimize the sparse distribution of radial phase centers.
The advantage of the proposed method is that the solved optimal radial phase-center distribution
can effectively suppress the 3D sidelobes of circular GBSAR with a limited number of phase centers.
Finally, the sidelobe suppression effect of the proposed method is verified via 3D imaging simulations.

Keywords: circular ground-based SAR; 3D imaging; sidelobe suppression; sparse optimization;
multi-objective optimization

1. Introduction

Ground-based Synthetic Aperture Radar (GBSAR) is a low-cost remote sensing instru-
ment for deformation measurement [1]. Due to its outstanding advantages in deformation
monitoring, such as all-day, high-precision, and continuous monitoring over a short pe-
riod, GBSAR has been used in landslide monitoring, open-pit mine monitoring, ground
subsidence monitoring, building monitoring, etc. [2,3]. Traditional linear GBSAR and
ground-based ArcSAR can only acquire 2D images and are unable to acquire 3D im-
ages [4–6]. When they are used to monitor complex scenes such as terrain fluctuations,
there will appear a “layover” phenomenon. The phenomenon restricts the application
of measuring 3D deformation for terrain-fluctuation scenes [7,8]. Thus, research on GB-
SAR systems with fast acquisition of 3D high-quality images has become a hotspot in
the field of deformation monitoring. In recent years, there has been a lot of research on
GBSAR 3D imaging. At present, 3D imaging GBSAR includes multi- baseline linear GB-
SAR, multi-baseline ground-based ArcSAR, and circular GBSAR [9–11]. The multi-baseline
linear GBSAR forms a 2D array aperture in the azimuth-vertical plane to acquire 3D SAR
images [12–14]. The multi-baseline ground-based ArcSAR forms a curved array aperture
on the azimuth-vertical curved surface to realize 3D imaging [15].

Circular GBSAR can obtain 3D imaging data by forming a 2D synthetic aperture
with a single scan [16]. It has the advantages of convenient system structure, short data
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acquisition time, and strong timeliness of deformation monitoring. However, its donut-
shaped spectrum and short radius of antenna rotation can cause high sidelobes on 3D
curved surfaces [17]. In complex monitoring scenes, the high sidelobes of the strong target
may cover the main lobes of nearby weak and small targets in the circular GBSAR image,
resulting in poor image contrast and low image clarity. This problem seriously affects the
3D imaging quality of circular GBSAR.

The traditional methods, such as frequency domain windowing [18], spectrum re-
shaping [19], and spatially variant apodization filtering [20,21], are all based on using
smooth spectrum edge to achieve sidelobe suppression of SAR images [22]. The sparse
representation method is also one of the existing sidelobe suppression methods. It is a
regularization optimization method based on sparse scene, and its point spread function
(PSF) is impulse response [23]. However, none of them can effectively suppress the high
sidelobe caused by the donut-shaped spectrum of circular GBSAR. At present, there are
mainly two methods for sidelobe suppression of circular GBSAR: the circular array SAR
with uniform and continuous spectrum distribution, and the circular GBSAR with sparse
spectrum distribution. The method with uniform and continuous spectrum distribution
broadens the radial width of the donut-shaped spectrum, achieving a slight suppression
of the sidelobes in the array plane [24]. The method with sparse spectrum distribution
optimizes the distribution of concentric donut-shaped spectrum and can achieve an obvious
suppression of the sidelobes in the array plane [25]. However, the above two methods
only consider the sidelobe suppression of circular GBSAR in the 2D plane, and the high
sidelobes of circular GBSAR in the 3D curved surface are not considered.

The short radius of antenna rotation and the donut-shaped spectrum of circular GBSAR
lead to 3D high sidelobes on two equidistant curved surfaces. One is orthogonal to the
normal direction of the plane with antenna rotation, and the other is orthogonal to range.
The multi-phase-center circular GBSAR method can be used to suppress the above high
sidelobes, and the number and distribution of phase centers affect the spatial sampling
density of the GBSAR. The sampling density of the spatial spectrum support domain is
directly related to the sidelobe characteristics of imaging. The greater the density, the easier
to control the sidelobe characteristics. Setting a large number of phase centers in the radial,
the method of radial phase-center distribution with full array can fill the donut-shaped
spectrum to obtain an equivalent solid spectrum, suppressing 3D high sidelobes. However,
the system cost of the distribution with full array is high, and it is difficult to achieve
in engineering.

In this paper, a sidelobe suppression method for circular GBSAR 3D imaging with
sparse optimization of radial phase-center distribution is proposed. The proposed method
considers the 3D sidelobe distribution of circular GBSAR on two equidistant curved sur-
faces. The PSFs of circular GBSAR on two equidistant curved surfaces are derived with the
geometry of circular GBSAR and the imaging signal integral equation of the back-projection
(BP) algorithm. Taking the peak sidelobe level (PSL) and integrated sidelobe level (ISL) of
the PSF as the multi-objective function, we use the nondominated sorting genetic algorithm
II (NSGA-II) to solve the multi-objective optimization problem, so as to optimize the sparse
distribution of radial phase centers. Circular GBSAR based on the solved optimal sparse
distribution is used to acquire the 3D images with the optimal sidelobe distribution under
the condition of a given number of phase centers. Compared with the existing methods
in references [24,25], the proposed method has a better sidelobe suppression effect and
less time consumption by taking the PSL and ISL of the derived PSF as the multi-objective
function and using NSGA-II to solve the optimization problem. The advantages of the
proposed method are that the solved optimal radial phase-center distribution can effec-
tively suppress the high sidelobes in circular GBSAR 3D imaging, further improving the
3D imaging quality of circular GBSAR. Moreover, the benefits of the proposed method are
that it is helpful to obtain high-quality 3D images and accurate deformation of complex
terrain areas.
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The rest of this paper is organized as follows. Section 2 introduces the geometry and
3D sidelobe distribution of circular GBSAR. Section 3 presents the implementation of the
sidelobe suppression method with sparse optimization of radial phase-center distribution.
Section 4 shows some imaging results. Finally, Section 5 concludes the paper.

2. Geometry and 3D Sidelobe Distribution of Circular GBSAR

The geometry of circular GBSAR is shown in Figure 1. The antenna phase center (APC)
a is fixed at the end point A of the rotating arm, and makes a circular motion around the
rotating center O. The antenna beam center points to the normal direction of the plane with
antenna rotation. A 2D circular synthetic aperture orthogonal to range can be formed by
rotating the APC a. The point Pt in Figure 1 is taken as an example. Due to the relatively
small radius of antenna rotation, the point spread function (PSF) of circular GBSAR is
mainly distributed in range, the equidistant curved surface S1 orthogonal to range, and the
equidistant curved surface S2 orthogonal to the APt direction. Because the PSF of circular
GBSAR has the characteristic of circular symmetry, we can use the PSFs in the equidistant
curves Curve1 and Curve2, as shown in Figure 1, to describe the PSFs on the equidistant
curved surfaces S1 and S2, respectively. Thus, we derive the PSFs in range, Curve1 and
Curve2, to analyze the 3D sidelobe distribution of circular GBSAR.
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In Figure 1, r is the rotation radius of the APC a, θ is the instantaneous rotation angle
of the APC a, β is the angle between OPt and APt, and ϕ is the angle between OPt and OP.
Where, Pt is a point target at the scene center, P is a point in Curve1, and R0 is the distance
from the antenna rotation center O to the point target Pt. It can be seen from the geometry
of circular GBSAR that the distance from the APC a to the point target Pt is:

R =
√

R2
0 + r2. (1)

The distance from the APC a to any pixel point P in Curve1 is:

R1(θ, ϕ) =
√

R2
0 + r2 − 2rR0 sin ϕ cos θ. (2)

The distance from the APC a to any pixel point Q in Curve2 is:

R2(θ, α) =
√

R2 + 2r2(1− cos θ) + 2rR sin(α− β)(1− cos θ), (3)

where α is the angle between APt and AQ.
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The PSF of circular GBSAR in range has been derived in literature [26], and it is similar
to the Sinc function. Thus, we only need to derive the PSFs of circular GBSAR in Curve1
and Curve2, to describe its 3D sidelobe distribution. Since the spectrum of circular GBSAR
in Curve1 and Curve2 is not easy to solve, we use the imaging signal integral equation of
the back-projection (BP) algorithm to derive the PSFs of circular GBSAR in Curve1 and
Curve2. Taking the linear frequency modulation (LFM) signal as the transmitted signal, the
preprocessed echo signal can be expressed as:

fe(K) = σ · exp{−jKR}, (4)

where σ is the backscattering coefficient, and σ = 1; K is the wave number of the transmitted
signal, K = 4π f /c, and K ∈ [Kmin, Kmax].

First, we derive the PSF of circular GBSAR in Curve1. The BP imaging signal of
circular GBSAR in Curve1 can be expressed as:

g(ϕ) ≈
x

K exp{−jKR} · exp{jKR1(θ, ϕ)}dθdK. (5)

Substituting Equations (1) and (2) into the above integral equation, we can get the
integral equation:

g(ϕ) ≈
∫ Kmax

Kmin
K
{∫ 2π

0 exp[jK(R1(θ, ϕ)− R)]dθ
}

dK

=
∫ Kmax

Kmin
K
{∫ 2π

0 exp
[

jK
(√

R2
0 + r2 − 2rR0 sin ϕ cos θ −

√
R2

0 + r2
)]

dθ
}

dK.
(6)

Since the integral in Equation (6) contains the radical term, it is difficult to be directly
solved. Thus, we approximate the radical term to facilitate solving the integral. The radical
term in Equation (6) can be expressed as: m1(r) =

√
R2

0 + r2 − 2rR0 sin ϕ cos θ

n1(r) =
√

R2
0 + r2

. (7)

The first-order Taylor series expansion of Equation (7) about r can be approximated as:{
m1(r) = m1(0) + m

′
1(0) · r + O1(r) ≈ R0 − r sin ϕ cos θ

n1(r) = n1(0) + n
′
1(0) · r + O1(r) ≈ R0

. (8)

Substituting the approximation in Equation (8) into the integral of Equation (6), it can
be simplified to:

g(ϕ) ≈
∫ Kmax

Kmin

K
[∫ 2π

0
exp(−jKr sin ϕ cos θ)dθ

]
dK. (9)

By solving the integral in Equation (9), we can derive the PSF of circular GBSAR in Curve1.

g(ϕ) ≈
∫ Kmax

Kmin
K · J0(Kr sin ϕ)dK

≈ 2
K2

max−K2
min
· Kmax J1(Kmaxr sin ϕ)−Kmin J1(Kminr sin ϕ)

r sin ϕ .
(10)

Next, we derive the PSF of circular GBSAR in Curve2. The BP imaging signal of
circular GBSAR in Curve2 can be expressed as:

h(α) ≈
x

K exp{−jKR} · exp{jKR2(θ, α)}dθdK. (11)

Equation (3) is substituted into Equation (11) to solve the integral equation.
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h(α) ≈
∫ Kmax

Kmin
K
{∫ 2π

0 exp[jK(R2(θ, α)− R)]dθ
}

dK

=
∫ Kmax

Kmin
K
{∫ 2π

0 exp
[

jK
(√

R2 + 2r2(1− cos θ) + 2rR sin(α− β)(1− cos θ)− R
)]

dθ
}

dK.
(12)

To facilitate solving the integral equation, we approximate the radical term in Equation (12).
The radical term can be expressed as:

m2(r) =
√

R2 + 2r2(1− cos θ) + 2rR sin(α− β)(1− cos θ), (13)

where β = arctan(r/R0), the rotation radius r is much smaller than the target distance
R0, so the angle β can be approximated to zero. The first-order Taylor series expansion of
Equation (13) about r can be approximated as:

m2(r) = m2(0) + m
′
2(0) · r + O1(r) ≈ R + r sin α(1− cos θ). (14)

Substituting the approximation in Equation (14) into Equation (12), it can be simplified to:

h(α) ≈
∫ Kmax

Kmin

K
{∫ 2π

0
exp[jKr sin α(1− cos θ)]dθ

}
dK. (15)

By solving the integral about θ in Equation (15), the 1-D integral equation of circular
GBSAR in Curve2 can be further derived as:

h(α) ≈
∫ Kmax

Kmin

K · J0(Kr sin α) · exp{jKr sin α}dK. (16)

The analytical expression of the integral in Equation (16) is difficult to solve, and the
computational efficiency of simulating PSF using the integral in Equation (16) is extremely
low. Thus, we use the numerical method to derive the numerical solution of the PSF of
circular GBSAR in Curve2.

h(α) ≈
Nk

∑
i=1

Ki · J0(Kir sin α) · exp{jKir sin α} · dK, (17)

where Nk is the sampling points of the wave number K. dK is the sampling interval,
dK = (Kmax − Kmin)/Nk. Ki is the wave number of the i-th sampling point.

According to the simulation parameters in Table 1, we use Equations (10) and (17)
to simulate the PSFs as shown in Figure 2, to observe the sidelobe distribution of circular
GBSAR in Curve1 and Curve2.

Table 1. Simulation parameters.

Parameter Value

Center frequency (GHz) 17.55
Bandwidth (MHz) 900

Rotation radius (m) 1
Azimuth beam width (◦) 30
Vertical beam width (◦) 30

Figure 2a,b show the overall sidelobe trend of the PSFs in Curve1 and Curve2. Fig-
ure 2c,d show the sidelobe distribution near the main lobe of the above PSFs.

It can be seen from Figure 2a,b that the PSF of circular GBSAR in Curve1 is similar to
the first-order Bessel function of the first kind, and the sidelobe away from the main lobe of
the PSF in Curve2 shows a trend with slowly oscillating attenuation. It can be seen from
Figure 2c,d that the PSFs of circular GBSAR in Curve1 and Curve2 have high sidelobes, and
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their maximum sidelobes are up to −8 dB. In summary, the 3D high sidelobes of circular
GBSAR are mainly concentrated on the equidistant curved surfaces. Thus, the high sidelobe
of circular GBSAR 3D imaging can be suppressed by suppressing the sidelobes of the PSFs
in Curve1 and Curve2.
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Figure 2. PSFs of circular GBSAR in Curve1 and Curve2: (a) PSF in Curve1 above −40 dB; (b) PSF in
Curve2 above −40 dB; (c) PSF in Curve1 above −20 dB; (d) PSF in Curve2 above −20 dB.

3. Sidelobe Suppression Method for Circular GBSAR 3D Imaging

In the second section, the geometry of circular GBSAR has been introduced, and
its 3D sidelobe distribution has also been analyzed. For the high sidelobes of circular
GBSAR are mainly concentrated on the equidistant surface, based on the geometry of multi-
phase-center circular GBSAR, we fill the hollow spectrum with frustum shaped of circular
GBSAR to realize the 3D sidelobe suppression. Firstly, the point spread function (PSF) of
multi-phase-center circular GBSAR on the equidistant curve is derived. Then, we solve the
multi-objective optimization problem to obtain the optimal phase-center distribution with
better 3D sidelobe suppression effect. Finally, we analyze the generality of the proposed
method with different number of phase centers.

3.1. PSF of Multi-Phase-Center Circular GBSAR

To derive the PSF of multi-phase-center circular GBSAR, we present the geometry of
multi-phase-center circular GBSAR in Figure 3. The antenna array a1, a2, . . . , aN is fixed on
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the rotating arm at a certain interval, rotating around the rotation center O. Their antenna
beam centers point in the normal direction of the plane with antenna rotation. Taking
the point Pt in Figure 3 as an example, the synthetic aperture of the antenna array is a
set of concentric rings, so its spectrum support domain is a set of hollow spectrums with
frustum shaped. Therefore, the PSF of multi-phase-center circular GBSAR can be obtained
by superposing the PSFs of multiple single-phase-center circular GBSAR.
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In Figure 3, r1, r2, . . . , rN are the rotation radius of the antenna array a1, a2, . . . , aN , θ
is the instantaneous rotation angle of the antenna array a1, a2, . . . , aN , Pt is a point target
at the scene center. β1, β2, . . . , βN are the angles between OPt and the direction from the
antenna array to the point target Pt, and R1, R2, . . . , RN are the distance from the antenna
array to the point target Pt.

The 3D high sidelobes of circular GBSAR are mainly distributed on the equidistant
curved surface, and the PSF on the equidistant curved surface is circularly symmetric.
Thus, we only need to derive the PSF of multi-phase-center circular GBSAR in Curve1 and
Curve2. The PSF of multi-phase-center circular GBSAR in Curve1 is:

gm(ϕ) =
N

∑
n=1

g(rn, ϕ) ≈ 2
K2

max − K2
min
·

N

∑
n=1

Kmax J1(Kmaxrn sin ϕ)− Kmin J1(Kminrn sin ϕ)

rn sin ϕ
, (18)

where rn is the rotation radius of the APC an.
The PSF of multi-phase-center circular GBSAR in Curve2 is:

hm(α) =
N

∑
n=1

h(rn, α) ≈
N

∑
n=1

Nk

∑
i=1

Ki · J0(Kirn sin α) · exp{jKirn sin α} · dK. (19)

In summary, the PSFs in Curve1 and Curve2 of multi-phase-center circular GBSAR are
both related to the phase-center distribution r1, r2, . . . , rN of the antenna array a1, a2, . . . , aN .
Thus, under the condition of a given number of phase centers, the sidelobe distribution of
multi-phase-center circular GBSAR in Curve1 and Curve2 can be changed by optimizing
radial phase-center distribution.
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3.2. Sparse Optimization Method of Radial Phase-Center Distribution

According to Sections 2 and 3.1, the 3D high sidelobes of multi-phase-center circular
GBSAR in Curve1 and Curve2 vary with the radial phase-center distribution. In this
section, a sparse optimization method of radial phase-center distribution is introduced to
optimize the sidelobe distribution of multi-phase-center circular GBSAR. Peak sidelobe
level (PSL) and integrated sidelobe level (ISL) are two parameters used to describe the
sidelobe distribution. If only the PSL is used as the objective function of optimization,
it will lead to the higher ISL and the grating lobes. Thus, we construct a multi-objective
optimization problem by taking the maximum PSL and ISL of the PSFs in Curve1 and
Curve2 as the two objective functions and taking phase-center distribution as the decision
variable. The nondominated sorting genetic algorithm II (NSGA-II) is used to solve the
above multi-objective optimization problem, so as to optimize the phase-center distribution
of circular GBSAR. Under the condition of a given number of phase centers, the method
can obtain the optimal phase-center distribution with better sidelobe distribution, to realize
the sidelobe suppression of circular GBSAR 3D imaging.

First, taking the maximum PSL and ISL of multi-phase-center circular GBSAR in
Curve1 and Curve2 as the optimized objective functions, we construct the mathematical
model of the minimization multi-objective optimization problem with 2 objective functions
and N − 1 decision variables.

miny = F(r) = (F1(r), F2(r))
T

s.t. 0 < r < 1
(20)

where r is the decision variable, and r = (r1, r2, . . . , rN−1) ∈ X. y is the optimized multi-
objective function, and y = (y1, y2) ∈ Y. X is the decision space, and Y is the objective
space. F1(r) is the maximum PSL of the PSFs in Curve1 and Curve2, and F2(r) is the
maximum ISL of the PSFs in Curve1 and Curve2.{

F1(r) = max{PSLc1(r), PSLc2(r)}
F2(r) = max{ISLc1(r), ISLc2(r)}

, (21)

where PSLc1(r) is the PSL of the PSF in Curve1, and PSLc2(r) is the PSL of the PSF in Curve2.
ISLc1(r) is the ISL of the PSF in Curve1, and ISLc2(r) is the ISL of the PSF in Curve2.{

PSLc1(r) = 20 log10
{

max
∣∣[gm(ϕ)− gmain(ϕ)]/Pg

∣∣}
PSLc2(r) = 20 log10{max|[hm(α)− hmain(α)]/Ph|}

(22)

{
ISLc1(r) = 10 log10

{[
∑ g2

m(ϕ)−∑ g2
main(ϕ)

]
/∑ g2

main(ϕ)
}

ISLc2(r) = 10 log10
{[

∑ h2
m(α)−∑ h2

main(α)
]
/∑ h2

main(α)
} , (23)

where gmain(ϕ) and hmain(α) are the main lobes of gm(ϕ) and hm(α), respectively. Pg and
Ph are the main lobe peak values of gm(ϕ) and hm(α), respectively.{

gmain(ϕ) = gm(ϕ) · rect(ϕ/ϕ0)
hmain(α) = hm(α) · rect(α/α0)

, (24)

where ϕ0 and α0 are the first zero crossing of gm(ϕ) and hm(α), respectively.
Then, the sparse optimization method of radial phase-center distribution based on

NSGA-II is used to optimize the maximum PSL and ISL of multi-phase-center circular
GBSAR. That is to solve the minimization multi-objective optimization problem in Equation
(20). The NSGA-II includes initial population generation, Pareto sorting, and population
evolution [27]. The proposed sparse optimization method of radial phase-center distribu-
tion based on NSGA-II is shown in Figure 4.
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According to the sidelobe suppression principle of multi-phase-center donut-shaped
spectrum filling, the larger number of phase centers, the greater spectrum filling density,
and the better sidelobe suppression effect. However, the larger number of phase centers
will increase the system complexity and data size and reduce the system work efficiency.
To obtain the optimal phase-center distribution with relatively good sidelobe suppression
effect at low cost and high efficiency, under the condition of the number of phase centers
N = 3, we construct the minimization multi-objective optimization problem with two
objective functions and two decision variables. Then, we use the sparse optimization
method of radial phase-center distribution based on NSGA-II to solve the optimal phase-
center distribution. The optimization execution steps are summarized as follows.

Step 1: Generate the genes and chromosomes of initial populations.
After setting optimization parameters such as the individual number of the initial

population, the initial population genes are generated by random numbers. The initial
population chromosomes are generated by converting a set of binary numbers representing
population genes into decimal numbers representing population chromosomes.

Step 2: Calculate the multi-objective function value of each individual in the current
population, and perform Pareto sorting and crowding sorting.

According to the objective function in Equation (21), the multi-objective function val-
ues of population individuals can be calculated. Then, according to the Pareto dominance
criterion, the population individuals corresponding to the above multi-objective function
values are Pareto sorted, to obtain the Pareto optimal solution set of the initial population.

After obtaining the Pareto sorting result of the current population, the crowding dis-
tance between individuals with the same Pareto rank is calculated, and then the crowding
degree is sorted with the crowding distance to maintain the diversity of individuals during
the population evolution.

Step 3: Select, cross and mutate the genes of the parent population to generate the
child population.

The selection operation randomly selects half the number of individuals from the
parent population, and obtains the gene, Pareto rank and crowding degree information of
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the selected individuals. Then, the individual with the highest Pareto rank and the largest
crowding distance is selected in turn, to replace an individual in the parent population.

The crossover operation randomly selects two gene positions of an individual and
sorts them in ascending order. Then, the above genes are exchanged with the genes at the
same positions of the latter individual.

The mutation operation randomly generates an array of the same dimension as the
population genes and extracts the index positions of the zero element in the array. Next,
we invert the binary values of the selected and crossed child population at the above index
positions to achieve mutation.

Step 4: Fuse the parent and child populations, and evaluate the fused population.
Firstly, we fuse the genes of parent population and child population, and generate

the chromosomes of the fused population through binary to decimal conversion. Then,
the multi-objective function value of chromosomes in the fusion population is calculated.
Finally, we perform Pareto sorting and crowding sorting on the fused population.

Step 5: Update the genes and chromosomes of the child population.
To retain the best individuals in the population and avoid the loss of excellent individ-

uals in the selection process, we adopt the elite selection strategy of combining the parent
and child populations. When the individual index of a Pareto rank reaches the population
individual number, the crowding sorting of this Pareto rank is performed in descending
order, and the individuals with larger crowding distance are selected to enter the new
child population.

Step 6: Determine whether the maximum generation is reached.
If the maximum generation is not reached, the updated child population of the pre-

vious generation will be used as the parent population of the next generation, and steps
1 to 4 will be performed on it. If the maximum generation has been reached, the Pareto
optimal solution set of the current population will be output, it is also known as the Pareto
front. Then, the solution in the Pareto optimal solution set, whose PSF closest to the
weighted Sinc function is selected as the optimal solution of the multi-objective optimiza-
tion problem. Finally, the output optimal solution is the optimal phase-center distribution
of multi-phase-center circular GBSAR.

For the multi-objective optimization problem of Equation (20), the population indi-
vidual number is set to 200, and the individual chromosome number is set to 2. When
the minimum interval of the phase-center distribution is 0.01 and the value range of the
phase-center distribution is (0, 1), a 7-bit binary number is required to represent the genes
of each chromosome. If the decimal number converted from the 7-bit binary number is
greater than 1, it will be set to 1 to limit the value range of the chromosome. In addition,
the selection proportion, crossover probability and mutation probability of population
individuals in each generation are set to 0.5, 0.95 and 0.05, respectively. Moreover, the
maximum generation is set to 100, and the algorithm will keep iterating until the maximum
generation is reached. The distribution of the Pareto optimal solution set obtained with the
above parameters is as shown in Figure 5a. Where, the blue circle represents the Pareto
optimal solution set. The horizontal axis is the phase center r1, and the vertical axis is the
phase center r2.

Figure 5a shows that the distribution range of r1 in the Pareto optimal solution set is
[0.44, 0.48], and the distribution range of r2 is [0.65, 0.74]. To select the optimal solution
of the multi-objective optimization problem from the Pareto optimal solution set, the
Pareto front distributions of two objective functions are as shown in Figure 5b. Where, the
green points connected by dotted lines constitute the Pareto front of the initial population,
and the black points connected by solid lines are the Pareto front of the final population.
The horizontal axis is the objective function F1(r), and the vertical axis is the objective
function F2(r).
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Figure 5. Distributions of Pareto optimal solution set and Pareto front with N = 3: (a) Pareto optimal
solution set; (b) Pareto front.

Figure 5b shows that the Pareto front of the final population is better than that of the
initial population. It indicates that the sparse optimization method of radial phase-center
distribution is effective. To find the optimal phase-center distribution with better sidelobe
suppression effect from Pareto optimal solution set, we analyze the similarity between
the PSFs of all solutions in Pareto front and the weighted Sinc function by solving their
correlation coefficients. Where, the weighted Sinc function is obtained by weighting the
standard Sinc function with a −15 dB Taylor window function. Figure 6 shows the rela-
tionship between the Pareto optimal solution set and the obtained correlation coefficients.
The larger correlation coefficient, the higher similarity with the weighted Sinc function.
The Pareto optimal solution corresponding to the PSF with the highest similarity to the
weighted Sinc function is the optimal phase-center distribution.
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Figure 6. Correlation coefficients of Pareto optimal solutions with N = 3.

It can be seen from Figure 6 that the optimal phase-center distribution obtained by
the proposed method is r1 = 0.47, r2 = 0.68, and r3 = 1 under the condition of N = 3. The
optimal PSL of circular GBSAR with the optimal phase-center distribution is −15.30 dB,
and its optimal ISL is −6.16 dB. The above analysis shows that the proposed method can
effectively suppress the high sidelobes of circular GBSAR.
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3.3. Generality Analysis

In this section, to verify the applicability of the proposed method for sidelobe sup-
pression of circular GBSAR with different number of phase centers, we mainly analyze the
sidelobe suppression effect of the proposed method under the condition of the number
of phase centers N = 4. The problem of optimizing the phase-center distribution with
N = 4 can be transformed into a minimization multi-objective optimization problem with
2 objective functions and 3 decision variables. In addition to changing the individual
chromosome number to 3, other parameters remain unchanged. Figure 7a shows the Pareto
optimal solution set distribution after 100 generations. As we can see from Figure 7a that
the range of r1 in the Pareto optimal solution set is [0.33, 0.42], the range of r2 is [0.54, 0.63],
and the distribution range of r3 is [0.69, 0.83]. Figure 7b shows that the Pareto front has
about two objective functions F1(r) and F2(r).
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It can be seen from Figure 7b that the Pareto optimal solution set of the final population
is also better than that of the initial population, under the condition of N = 4. It indicates
that the proposed method is also suitable for optimizing the phase-center distribution with
different number of phase centers. By calculating the correlation coefficient between the
PSFs of the Pareto optimal solution set with N = 4 and the weighted Sinc function, we
can obtain the relationship between the Pareto optimal solution set and the calculated
correlation coefficients as shown in Figure 8.
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Figure 8 shows that the optimal phase-center distribution obtained by the proposed
method is r1 = 0.42, r2 = 0.63, r3 = 0.82, and r4 = 1, under the condition of the number of
phase centers N = 4. The optimal PSL of circular GBSAR with the optimal phase-center
distribution is −15.08 dB, and its optimal ISL is −7.71 dB. The results show that, for multi-
phase-center circular GBSAR with the different number of phase centers, the proposed
method can also suppress its high sidelobes in 3D imaging.

To analyze the generality of the proposed method under the conditions of different
number of phase centers, we compare the sidelobe suppression effects of multi-phase-center
circular GBSAR with N = 2, 3, 4, 5, taking the sidelobe of circular GBSAR with N = 1 as the
original sidelobe. Table 2 shows the optimal PSL and ISL solved by the proposed method
under the conditions of the different number of phase centers. In addition to number of
phase centers, other parameters are unchanged.

Table 2. Comparison of the sidelobe suppression effects.

Number of Phase Centers Distribution (m) PSL (dB) ISL (dB)

N = 1 {1} −7.91 −0.86
N = 2 {0.59, 1} −13.07 −4.02
N = 3 {0.47, 0.68, 1} −15.30 −6.16
N = 4 {0.42, 0.63, 0.82, 1} −15.08 −7.71
N = 5 {0.31, 0.50, 0.63, 0.78, 1} −19.75 −8.91

It can be seen from Table 2 that the larger number of phase centers, the better sidelobe
suppression effect. The optimal PSL and ISL of multi-phase-center circular GBSAR can be
suppressed close to the sidelobe level of the weighted Sinc function, when the number of
phase centers is set more than 3. However, a large number of phase centers will increase
the system complexity and data size. Therefore, a compromise value should be chosen
to satisfy good sidelobe suppression effect at low system cost. In summary, the proposed
method can be applied to circular GBSAR with different number of phase centers, and the
number can be adjusted in different applications.

4. Simulations

To verify the imaging quality and sidelobe suppression effect of the proposed method
in circular GBSAR 3D imaging, we use the 3D back-projection (BP) algorithm to simulate
the 3D imaging results of multiple point targets, with the simulation parameters shown in
Tables 1 and 3.

Table 3. Distribution parameters of phase centers and point targets.

Parameters Value

Range (m) 400~600
Azimuth (m) −60~60
Vertical (m) −60~60

Single phase center (m) r = 1
Sparse multiple phase centers in [25] (m) r = {0.42, 0.56, 1}

Optimal sparse multiple phase centers (m) r = {0.47, 0.68, 1}
Multiple phase centers with equivalent solid spectrum (m) r = [0.37, 1], Ns = 40

In this section, taking the number of phase centers N = 3 as an example, we analyze
the sidelobe suppression effect of the proposed method in circular GBSAR 3D imaging by
comparing the imaging performance of point targets at different positions using circular
GBSAR with four different distributions. These distributions include single-phase-center
distribution, sparse multi-phase-center distribution in [25], optimal sparse multi-phase-
center distribution, and multi-phase-center distribution with equivalent solid spectrum.
Figure 9 shows the distribution of multiple point targets in 3D space. Figure 10 shows
the 3D BP imaging results of multiple point targets by circular GBSAR with the above
phase-center distributions.
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It can be seen from the 3D BP imaging results of circular GBSAR with four different
distributions that the multiple point targets can be accurately focused on the target positions
as shown in Figure 9. In Figure 10, the 3D BP imaging results of circular GBSAR with four
different distributions have the nearly same range resolution, and their azimuth resolutions
have the same trend. The farther range, the worse azimuth resolution. Figure 10a shows
that the 3D imaging results of circular GBSAR based on single-phase-center distribution
is affected by high sidelobes. Figure 10b–d show that the 3D imaging results of circular
GBSAR based on the three multi-phase-center distribution are all better than that of single-
phase-center distribution. It indicates that they can all improve the 3D imaging quality of
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circular GBSAR. However, there are some differences in the 3D image quality of circular
GBSAR based on the above distribution.

To further compare the 3D imaging quality of circular GBSAR based on the above
distributions, we quantitatively analyze the imaging quality of point targets at different
positions. Point A (500, 0, 0) and point B (600, 40, 40) are selected to represent the point
target at the scene center and the point target at the scene edge, respectively. In Figure 9,
Point A is marked with a green circle, and Point B is marked with a blue circle. Figure 11
shows the 3D BP imaging results of point A by circular GBSAR based on single-phase-center
distribution, sparse multi-phase-center distribution in [25], optimal sparse multi-phase-
center distribution, and multi-phase-center distribution with an equivalent solid spectrum.
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As we can see from Figure 11 that the optimal sparse multi-phase-center distribution
solved by the proposed method has better 3D imaging quality than the sparse multi-phase-
center distribution in [25] and single-phase-center distribution. Since the PSF results of
circular GBSAR are mainly distributed in range and the equidistant curved surface, and
the PSF results on the equidistant curved surface are distributed symmetrically, we can
analyze the 3D imaging quality with the PSF results in range and the equidistant curve. To
further analyze the sidelobe suppression effect of the proposed method on the point target
at the scene center, Figures 12–14 show the PSF results of circular GBSAR in range, Curve1,
and Curve2, respectively.

As shown in Figure 12, the PSF results in range by circular GBSAR with the four
different distributions are almost identical, and they are all similar to the Sinc function.
Figures 13a and 14a show that the sidelobes in Curve1 and Curve2 by circular GBSAR with
single-phase-center distribution are high. It can be seen from Figures 13b,c and 14b,c that
the sidelobes in Curve1 and Curve2 by circular GBSAR with optimal sparse multi-phase-
center distribution are lower than that of the sparse multi-phase-center distribution in [25].
In addition, there are grating lobes in the PSF results of the sparse multi-phase-center distri-
bution in [25], while the PSF results of the optimal sparse multi-phase-center distribution
have better sidelobe distribution. As shown in Figures 13d and 14d, the sidelobes in Curve1
and Curve2 by circular GBSAR based on multi-phase-center distribution with equivalent
solid spectrum are generally lower, while its decay rate is faster. Its PSF results in Curve1
and Curve2 are close to the form of the Sinc function, so it can be used as a reference for
imaging quality analysis.

Table 4 shows the 3D imaging quality parameters of point A by circular GBSAR,
including peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and 3 dB impulse
response width (IRW). It can be seen from Table 4 that the 3D imaging quality and the
sidelobe suppression effect of circular GBSAR based on optimal sparse multi-phase-center
distribution obtained by the proposed method.
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Figure 12. PSF results of point A in range: (a) Single-phase-center distribution; (b) Sparse multi-phase-
center distribution in [25]; (c) Optimal sparse multi-phase-center distribution; (d) Multi-phase-center
distribution with equivalent solid spectrum.
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Figure 13. PSF results of point A in Curve1: (a) Single-phase-center distribution; (b) Sparse multi-
phase-center distribution in [25]; (c) Optimal sparse multi-phase-center distribution; (d) Multi-phase-
center distribution with equivalent solid spectrum.
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Figure 14. PSF results of point A in Curve2: (a) Single-phase-center distribution; (b) Sparse multi-
phase-center distribution in [25]; (c) Optimal sparse multi-phase-center distribution; (d) Multi-phase-
center distribution with equivalent solid spectrum.

Table 4. The 3D imaging quality analysis of point A.

Array Distribution Parameters Range Curve1 Curve2

Single-phase-center distribution
IRW (m) 0.16 1.53 1.53

PSLR (dB) −13.22 −7.91 −7.92
ISLR (dB) −9.26 −1.19 −1.38

Sparse multi-phase-center
distribution in [25]

IRW (m) 0.15 2.22 2.22
PSLR (dB) −13.23 −13.08 −13.16
ISLR (dB) −9.26 −5.59 −6.22

Optimal sparse
multi-phase-center distribution

IRW (m) 0.16 2.07 2.07
PSLR (dB) −13.22 −15.31 −15.32
ISLR (dB) −9.26 −6.12 −6.42

Multi-phase-center distribution
with equivalent solid spectrum

IRW (m) 0.15 2.17 2.17
PSLR (dB) −13.23 −13.43 −13.45
ISLR (dB) −9.26 −11.69 −11.75
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As shown in Table 4, the PSLR and ISLR in Curve1 and Curve2 by circular GBSAR
with optimal sparse multi-phase-center distribution are both lower than that of the circular
GBSAR with the single-phase-center distribution. This shows that the proposed method
can effectively suppress the high sidelobes on the 3D curved surface by circular GBSAR.
We can see from Table 4 that in Curve1 and Curve2, the PSLR, ISLR and IRW of optimal
sparse multi-phase-center distribution are all better than that of the sparse multi-phase-
center distribution in [25]. This shows that the proposed method has better 3D sidelobe
suppression effect than the method in [25]. Meanwhile, compared with the PSLR and ISLR
of multi-phase-center distribution with equivalent solid spectrum, the proposed method
can suppress the PSLR value on the 3D curved surface to be lower than the PSLR reference
value under the condition of a limited number of phase centers. However, although the
proposed method can obviously suppress the ISLR value on the 3D curved surface, it is
still slightly higher than the ISLR reference value. This is a disadvantage of circular GBSAR
with a fewer number of phase centers.

To verify the applicability of the proposed method for point targets in the whole
observation scene, we select the point target B at the scene edge, analyzing its image quality.
Figure 15 shows the 3D BP imaging results of point B by circular GBSAR based on single-
phase-center distribution, sparse multi-phase-center distribution in [25], optimal sparse
multi-phase-center distribution, and multi-phase-center distribution with an equivalent
solid spectrum.
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Figure 15. Three-dimensional BP imaging results of point B by circular GBSAR with different distri-
butions: (a) Single-phase-center distribution; (b) Sparse multi-phase-center distribution in [25]; (c)
Optimal sparse multi-phase-center distribution; (d) Multi-phase-center distribution with equivalent
solid spectrum.

It can be seen from Figure 15 that, compared with the method in [25], the proposed
method is more effective to suppress the 3D high sidelobes of circular GBSAR for point
targets at the scene edge. To further analyze the sidelobe suppression effect of the proposed
method on the point target at the scene edge, we analyze its 3D imaging quality through
the PSF results in range and the equidistant curve. Figures 16–18 show the PSF results of
circular GBSAR in range, Curve1, and Curve2, respectively.
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Figure 16. PSF results of point B in range: (a) Single-phase-center distribution; (b) Sparse multi-phase-
center distribution in [25]; (c) Optimal sparse multi-phase-center distribution; (d) Multi-phase-center
distribution with equivalent solid spectrum.
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Figure 17. PSF results of point B in Curve1: (a) Single-phase-center distribution; (b) Sparse multi-
phase-center distribution in [25]; (c) Optimal sparse multi-phase-center distribution; (d) Multi-phase-
center distribution with equivalent solid spectrum.
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Figure 18. PSF results of point B in Curve2: (a) Single-phase-center distribution; (b) Sparse multi-
phase-center distribution in [25]; (c) Optimal sparse multi-phase-center distribution; (d) Multi-phase-
center distribution with equivalent solid spectrum.

As we can see from Figure 16, the PSF results of point targets at scene edge by circular
GBSAR with the four different distributions are also almost identical in range. As shown
in Figures 17a and 18a, for point target B, the sidelobes in Curve1 and Curve2 by circular
GBSAR with single-phase-center distribution are also high. Figure 17b,c and Figure 18b,c
show that the sidelobes of the optimal sparse multi-phase-center circular GBSAR in Curve1
and Curve2 are lower than those of the sparse multi-phase-center distribution in [25]. This
shows that the better sidelobe suppression effect of the proposed method is also applicable
to point targets at scene edge. It can be seen from Figures 17d and 18d that the PSF results
of point B by circular GBSAR based on multi-phase-center distribution with equivalent
solid spectrum are almost consistent with those of point A. Table 5 shows the 3D imaging
quality parameters of point B by circular GBSAR.

Table 5. The 3D imaging quality analysis of point B.

Array Distribution Parameters Range Curve1 Curve2

Single-phase-center distribution
IRW (m) 0.15 1.85 1.85

PSLR (dB) −13.24 −7.93 −7.95
ISLR (dB) −10.49 −1.19 −1.38

Sparse multi-phase-center
distribution in [25]

IRW (m) 0.15 2.68 2.68
PSLR (dB) −13.23 −13.08 −13.16
ISLR (dB) −10.45 −5.62 −6.23

Optimal sparse
multi-phase-center distribution

IRW (m) 0.15 2.50 2.50
PSLR (dB) −13.24 −15.32 −15.35
ISLR (dB) −10.46 −6.15 −6.44

Multi-phase-center distribution
with equivalent solid spectrum

IRW (m) 0.15 2.65 2.64
PSLR (dB) −13.24 −13.22 −13.25
ISLR (dB) −10.46 −11.74 −11.79

As shown in Table 5, for point target B, the PSLR and ISLR in Curve1 and Curve2 by
circular GBSAR with optimal sparse multi-phase-center distribution are also lower than
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those of circular GBSAR with single-phase-center distribution and the sparse multi-phase-
center distribution in [25]. The PSLR and ISLR of point B by circular GBSAR with four
different distributions are very close to those of point A. This indicates that the proposed
method also has a better sidelobe suppression effect on point targets at the scene edge.

5. Conclusions

In this paper, we have examined the sidelobe suppression for circular GBSAR 3D
imaging. To suppress the high sidelobes of circular GBSAR at low cost, we proposed a
sidelobe suppression method for circular GBSAR 3D imaging based on sparse optimiza-
tion of radial phase-center distribution. By sparsely optimizing the radial phase-center
distribution of circular GBSAR, the proposed method can obtain the optimal 3D sidelobe
suppression effect of circular GBSAR under the condition of a given number of phase
centers. In the example of the number of phase centers N = 3, the PSL on the 3D curved
surface by circular GBSAR with the optimal sparse phase center distribution obtained
by the proposed method has been suppressed to below −13.2 dB, and its ISL has been
suppressed to below −6 dB. The results illustrate that the proposed method can effectively
suppress the 3D sidelobes of circular GBSAR under the conditions of a limited number of
phase centers, further improving the 3D imaging quality of circular GBSAR. In addition,
the 3D BP imaging results of the point target show that the 3D imaging quality of circular
GBSAR based on optimal sparse phase-center distribution is close to that of circular GBSAR
based on phase-center distribution with an equivalent solid spectrum. This shows that the
proposed method can obtain 3D SAR images with high quality at low cost and is helpful for
measuring accurate deformation of complex terrain areas. Moreover, the applicability of the
proposed method to any point targets in the observation scene has been validated by the
3D imaging results of multiple point targets. However, it takes quite a long time to use the
BP algorithm for circular GBSAR 3D imaging. The proposed method involves imaging the
echo data received from multiple antenna phase centers. Therefore, the proposed method
has potentially poor timeliness in practical applications. For further research, we should
focus on the 3D fast imaging algorithm for circular GBSAR to improve the timeliness in
potential 3D deformation monitoring applications.
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