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Abstract: Oil storage tank detection and classification in synthetic aperture radar (SAR) images play
a vital role in monitoring energy distribution and consumption. Due to the SAR side-looking imaging
geometry and multibouncing scattering mechanism, dense oil tank detection and classification
tasks have faced more challenges, such as overlapping, blurred contours, and geometric distortion,
especially for small-sized tanks. To address the above issues, this paper proposes YOLOX-TR,
an improved YOLOX based on the Transformer encoder and structural reparameterized VGG-like
(RepVGG) blocks, to achieve end-to-end oil tank detection and classification in densely arranged
areas of large-scale SAR images. Based on YOLOX, the Transformer encoder, a self-attention-based
architecture, is integrated to enhance the representation of feature maps and capture the region of
interest of oil tanks in densely distributed scenarios. Furthermore, RepVGG blocks are employed to
reparameterize the backbone with multibranch typologies to strengthen the distinguishable feature
extraction of multi-scale oil tanks without increasing computation in inference time. Eventually,
comprehensive experiments based on a Gaofen-3 1 m oil tank dataset (OTD) demonstrated the
effectiveness of the Transformer encoder and RepVGG blocks, as well as the performance superiority
of YOLOX-TR with a mAP and mAP0.5 of 60.8% and 94.8%, respectively.

Keywords: YOLOX-TR; oil tank classification; large-scale SAR images; dense oil tanks; Transformer
encoder; RepVGG

1. Introduction

Oil tanks are common energy storage devices for the bulk containment of petroleum
products, such as crude oil, all over the world. The most commonly used ones are the
vertical, cylindrical storage tanks above the ground, which can be divided into floating-
roof tanks and fixed-roof tanks for storing different types of oils. Fixed-roof tanks are
generally used for oil products with a vapor pressure of less than 1.5 Pisa, and floating-roof
tanks are often used for storing crude oil with a stabilized vapor pressure of less than
11.1 Pisa [1]. Detecting the number and types of tanks is of great significance in monitoring
the distribution and energy consumption of regional energy storage systems [2].

Remote sensing has become a convenient and effective way to detect oil tanks,
which appear with typical circular features as artificial targets in captured images. In
optical and thermal infrared images, the contours of oil tanks are relatively clear, and the
detection method has been more mature. Traditional methods mainly based on man-made
features achieve tank detection by extracting features such as shape, color, and texture
through algorithms based on an improved Hough transform [3,4], saliency detection [5,6],
template matching [3], image segmentation [7], etc. In contrast, deep-learning-based
methods can automatically learn advanced features, have better generalization capability,
and enable end-to-end and real-time object detection, which is the mainstream method
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at present. For example, Yu et al. [8] proposed Res2-Unet+ to achieve end-to-end oil
tank detection in large-scale optical images that occupy the whole scene. Jiang et al. [9]
combined an improved fast radial symmetry transform (FRST) algorithm with a CNN to
achieve the accurate localization of oil tanks with floating roofs.

As an alternative means of Earth observation, synthetic aperture radar (SAR) has the
advantage that it can capture images at night and see right through clouds and smoke, such
that it can provide 24 h all-weather Earth observation. However, oil tank detection on SAR
images mostly adopts a similar method as optical images in previous studies. Specifically,
traditional methods mainly focus on the intensity, texture, structure, and distribution of oil
tanks to construct target extractors. Among them, saliency-driven detection methods are
adopted most frequently, which are usually based on other traditional feature extractors
to obtain the visual salient parts such as the intensity specificity and texture distribution
of oil tanks [10–12]. Additionally, methods based on the scattering characteristics of oil
tanks on SAR images are also commonly adopted. Liu et al. [13] proposed a coastal oil
tank detection method via the segmentation of strong scattering targets and the classifier
of H/α in polarimetric SAR images. Villamillopez and Stilla [14] proposed a method for
the automatic estimation of the maximum capacity and classification of a given oil tank
using coherent scatters. Xu et al. [15] proposed a method that combines quasicircular
shadows and highlighting arcs to detect oil tanks with higher precision and fewer false
alarms. However, traditional methods for oil tank detection are only suitable for manually
cropped areas instead of whole-scene images, which greatly limits the practical application
value of these methods.

It is well-known that oil tanks are densely arranged for transportation and further
processing, bringing more challenges for detection and classification. In high-resolution
(HR) SAR images, oil tanks show more overlapping and discrete strong scattering centers,
and the circumferential contour is inconsistent [16]. An isolated cylindrical tank shows
relatively clear geometric and radiometric characteristics on well-focused SAR images.
However, in densely distributed areas, the imaging features of tanks show high spatial
correlation and are easily interfered with by more factors, such as overlapping, multipath
scattering, side lobes, shadow, etc., which affect the integrity of tanks’ imaging. As a result,
the contour of the oil tank is blurred and the geometry is distorted, making it more
challenging to distinguish and extract the features of oil tanks.

The traditional methods for tanks’ detection in SAR images mentioned above need
to design feature extractors manually, which cannot meet the needs of multiclass and
multiscale oil tank detection in densely distributed areas of large-scale SAR images because
of their low level of automation, poor robustness, and high false alarm rates. In contrast,
deep-learning-based methods can automatically learn the discriminative features of oil
tanks and have been introduced to studies on the oil tank detection of SAR images.
Zhang et al. [17] proposed an improved Unet network based on edge-aware and cross-
coupling attention, which improves the performance of multiscale oil tank detection in
complex backgrounds in SAR images. Ma et al. [18] proposed an improved model based
on an end-to-end Transformer network, achieving the 3D detection of oil tanks with
floating roofs from a single SAR image. The existing studies on oil tank detection mainly
focus on floating-roof oil tanks of a medium and large size, and there is a lack of research
on the automatic classification of different types of oil tanks. It is still a great challenge
to locate and classify oil tanks accurately in densely distributed areas on SAR images,
especially those of a small size, due to the severe scattering overlapping, blurred contours,
and geometry distortion.

In object detection tasks, the YOLO (you only look once) series [19–23] are excel-
lent one-stage detectors that have a good balance between speed and accuracy and are
widely adopted in industrial applications. The baseline YOLOX adopted in this paper
is an anchor-free detector that presents some improvements to the YOLO series, such
as replacing YOLO’s head with a decoupled one and switching YOLO detectors to an
anchor-free manner. Anchor-free-based methods do not need to manually preset the
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scales and aspect ratios of anchors and are more suitable for multiscale oil tank detection.
Moreover, YOLOX has several different standard models, including YOLOXs, YOLOXm,
YOLOXl, etc. The coverage of high-resolution SAR images is relatively small, and the
image resources are limited. The YOLOXs model requires the smallest computational cost
and contains the least number of layers among the standard models of YOLOX. There-
fore, we choose YOLOXs as the baseline to further optimize the whole architecture and
pursue the best detection and classification performance of dense oil tanks in large-scale
SAR images.

In response to the difficulties and problems of localization and classification caused
by the blurred features and geometric distortion of dense oil tanks, a novel framework of
dense oil tank detection and classification in large-scale SAR images named YOLOX-TR,
an improved YOLOX based on the Transformer encoder and RepVGG blocks, is proposed
in this paper. In order to assess the effectiveness and conduct a further experimental
validation of our method, this paper builds a multiscale dataset (OTD) based on the
Chinese Gaofen-3 (GF-3) satellite for oil tank detection and classification in SAR images,
containing the two most common types of tanks. Ablation experiments and comparison
experiments based on the OTD prove that, by taking advantage of the Transformer encoder
and RepVGG blocks, YOLOX-TR can reach the best detection accuracy of dense oil tanks
with a mAP and mAP0.5 of 60.8% and 94.8%, respectively, and can better deal with oil tank
classification tasks.

The main contributions of this paper are summarized as follows:

(1) To enhance the representation of feature maps and focus on the region of interest of oil
tanks, the Transformer encoder is integrated into the YOLOX-TR, which can improve
the localization accuracy of oil tanks in high-density areas.

(2) To augment the extraction of discriminative features between the two types of multi-
scale oil tanks, YOLOX-TR employs structural reparameterized VGG-like (RepVGG)
blocks to reparameterize the backbone with multi-branch typologies without increas-
ing computation in inference time, which can help distinguish the two types of tanks
and improve the classification accuracy.

(3) To realize end-to-end detection in large-scale SAR images automatically, a slicing
detection module based on sliding window detection and non maximum suppression
(NMS) is employed to the detect layer of YOLOX-TR, which facilitates the deployment
of the model in practical applications.

The remaining sections of this paper are organized as follows: Dataset construction
and the proposed framework are introduced in Section 2. Section 3 shows the experi-
mental results. A discussion follows in Section 4. Finally, our conclusions are drawn
in Section 5.

2. Materials and Methods

For dense oil tank detection and classification in large-scale SAR images, the frame-
work used in this study is shown in Figure 1, which includes four parts: (1) the construction
of the oil tank dataset (OTD); (2) data augmentation for training; (3) the architecture of
YOLOX-TR; (4) end-to-end inference of large-scale SAR images.
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Figure 1. Framework showing the overall methods used in this study.

2.1. Dataset Construction

In order to realize oil tank classification and evaluate the effectiveness of the proposed
model, we construct a multiscale oil tank dataset (OTD) from 27 scenes of Gaofen-3 SAR
images with 1 m resolutions in spotlight (SL) mode from China, the United States, and
Japan. Their incidence angles range from about 22◦ to 48◦, with 8 ascending orbit images
and 19 descending orbit images. Samples in the OTD contain two types of vertical and
cylindrical oil tanks of various sizes: floating-roof tanks and fixed-roof tanks.

Oil storage tanks come in all sizes. Gross capacities range from 100 barrels (bbl) to over
1.5 MMbbl in a single storage tank. Corresponding tank sizes range from approximately
3 m to over 125 m in diameter and from 3 m to 15 m high. As shown in Figure 2, the
scattering characteristics of oil tanks of different sizes are diverse in SAR images. The
contours of the small-size oil tanks in Figure 2(a3,b3) are blurred, making them difficult to
detect, especially in densely arranged areas. The largest oil tank scattering area in the OTD
occupies approximately 200 × 200 pixels on GF-3 1 m SAR images, which is smaller than
the size of the slices in the OTD, 640 × 640. When preparing the dataset, to maintain the
robustness of our model in feature learning, incomplete oil tanks in the edge areas of the
slices are marked as oil tank objects when the area in the slice exceeds 30% of the entire
area of that oil tank. It should be mentioned that, since the geometric features of oil tanks
with diameters smaller than 10 m almost completely disappear on GF-3 1 m SAR images
and appear only as a strong scattering point, oil tanks with diameters less than 10 m are
not considered in this paper.
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Figure 2. (a1–a3) The appearance of floating-roof tanks in different diameters of GF-3 1 m SAR
images; (b1–b3) The appearance of fixed-roof tanks in different diameters of GF-3 1 m SAR images.

Floating-roof tanks and fixed-roof tanks exhibit varied scattering characteristics on
SAR images. As shown in Figure 3(a1–a3), for an isolated oil tank with a fixed roof, its
components can be recognized. The highlighted and discontinuous circular structure as
well as the strong scattering points A1, A2, and B1 are formed by the edge of the tank top
and the edge of the tank bottom, and the circular shadow is formed by the tank body, which
blocks the SAR signal. As shown in Figure 3(b1–b3), floating-roof tanks are designed with
a roof that floats on the top of the liquid. The floating roof moves up and down as the liquid
storage volume changes, forming a unique circle containing discrete scattering centers. The
highlighted and discontinuous circular structures as well as the strong scattering points
A1, A2, B1, and B2 are formed by the single reflection and multipath reflection of the top
circumferential edge, the floating roof, and the bottom circumferential edge.

As shown in Figure 3(a2,b2), the isolated oil tank shows relatively clear geometric and
radiometric characteristics on well-focused SAR images. However, because of the side-
looking imaging geometry and multibouncing scattering mechanism, it is more challenging
to locate and classify consecutive oil tanks in densely arranged areas. The majority of the
slices of our dataset show a dense distribution of oil tanks. As we can see in Figure 4(a1,b1),
there is a lot of side lobes interference on the GF-3 SL SAR images, and the unique SAR
imaging technique causes more overlapping and geometric distortion among the adjacent
tanks, which significantly increases the difficulty of locating and classifying oil tanks.

Based on the properties of the oil tanks on the SAR images, we construct an OTD with
a diverse sample set, containing 1231 slices with a total of 7236 labeled dense oil tanks, to
explore the potential of deep learning in dense oil tank detection and classification.
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Figure 3. The appearance of a single oil tank with a fixed roof. (a1) An optical image from Google
Earth, (a2) an SAR image acquired with the GF-3 SL mode showing the strong scattering centers
A1, A2, and B1, and (a3) the SAR geometric imaging mode of the tank. The appearance of a single
oil tank with a floating roof (b1) An optical image from Google Earth, (b2) an SAR image acquired
with the GF-3 SL mode showing the strong scattering centers A1, A2, B1, and B2, and (b3) the SAR
geometric imaging mode of the tank.

Figure 4. The appearance of oil tank slices of the OTD in densely distributed areas. (a1,b1) The SAR
images acquired with the GF-3 SL imaging mode and (a2,b2) the optical images from Google Earth.

2.2. Construction of the YOLOX-TR Model

The entire architecture of YOLOX-TR is illustrated in Figure 1. We modify the original
YOLOX to make it specialized for the detection and classification of dense oil tanks in
large-scale SAR images. Compared to the original YOLOX, in order to improve the feature
extraction in densely arranged areas, we applied the Transformer encoder to the backbone
and the neck to enhance the representation of feature maps and the ability to find the
region of interest of dense oil tanks in large region coverage. Then, to augment the discrim-
inative feature extraction between the two types of multiscale oil tanks, in the backbone
part we replace the original convolutional base layers with structural reparameterized
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VGG-like (RepVGG) blocks to convert the model to a decoupling of training time and
inference time architecture, which enables the training-time model to have a multibranch
topology without increasing computations of the inference-time model. We name the new
backbone network RepCSP. Lastly, to realize the end-to-end detection of large-scale SAR
images automatically, we employ a slicing detection module to the detect layer of the
proposed model.

2.2.1. Overview of YOLOX-TR

The architecture of YOLOX-TR can be divided into three parts: (1) a RepCSP backbone
for feature extraction; (2) a path aggregation feature pyramid network (PAFPN) [24] neck for
feature aggregation; and (3) a decoupled YOLOX head [23] for prediction and regression.

As shown in Figure 1, the complete training process of our model mainly contains
three parts. Firstly, input images with a size of 640 × 640 to the RepCSP backbone for
feature extraction to obtain three effective feature layers with resolutions of 80× 80, 40× 40,
and 20 × 20 from dark3, dark4, and dark5, respectively. Then, input the three effective
feature layers with different levels to the PAFPN neck for feature fusion to obtain the
enhanced effective feature layers P3, P4, and P5 with resolutions of 80 × 80, 40 × 40, and
20 × 20, respectively. Specifically, the PAFPN realizes feature fusion by upsampling and
downsampling the feature maps of different sizes, which can effectively enhance the ability
of our network to capture the features of small-size oil tanks. Finally, the enhanced feature
layers, P3, P4, and P5, obtained from the PAFPN are passed into the YOLOX head to obtain
the prediction results.

The decoupled head divides the classification and localization into two parts, which
are integrated together in the final prediction step. As shown in Figure 5, for each feature
layer, we can obtain three prediction results, i.e., reg, obj, and cls. Specifically, reg represents
the regression parameters of predictions, and the position of the bounding box can be
obtained from regression parameters. Obj denotes the probability of containing objects
of each predicted bounding box. Cls represents the probability of objects in predictions
belonging to a certain class. YOLOX-TR uses the leading label optimal transport assignment
(SimOTA) [23] strategy to match the positive and negative samples dynamically for loss
calculation. Firstly, SimOTA calculates the loss for each prediction–ground truth (GT) pair,
after which it selects the top predictions with the least loss within a fixed center region as its
positive samples. Finally, the corresponding grids of those positive predictions are assigned
as positives, while the rest of the grids are negatives. We use binary cross entropy (BCE)
loss for training the cls and obj branches in addition to Intersection over Union (IoU) loss
for training the reg branch. After obtaining the final prediction results, score ranking and
the non maximum suppression (NMS) algorithm [22] are utilized to filter out the prediction
box that satisfies the confidence score and remove duplicative bounding boxes.

Figure 5. The structure of the decoupled head in YOLOX-TR.

In order to realize the end-to-end detection of large-scale SAR images automatically,
we add a slicing detection module based on sliding window detection and NMS to the end
of the detect layer of YOLOX-TR. As shown in the inference module of Figure 1, firstly,
the large-scale SAR image that occupies the whole scene is cropped into slices by a slicing



Remote Sens. 2022, 14, 3246 8 of 19

window with an overlapping ratio. The overlapping slicing can prevent the side influence
of incomplete oil tanks on the edges of slices. Then, the slices are detected in turn with the
trained YOLOX-TR model and the detection results are recorded. Lastly, NMS is utilized to
eliminate the redundant detection boxes in the overlapping areas of all slices.

2.2.2. Transformer Encoder

By analyzing the oil tank dataset and the detection performance of the baseline YOLOX,
we find that the missing targets are mainly densely distributed small-sized tanks with fixed
roofs. Inspired by the successes of vision Transformer in image classification tasks [25] as
well as the current Transformer-based detectors in pushing the accuracy SOTA (state of the
art) in objection recognition [26], we replace some CSPLayer [22] blocks with a sequence of
three Transformer encoders, the self-attention-based architecture, to the original version of
YOLOX. The Transformer encoder can capture global information and abundant contextual
information [27]. It can also enhance the representation of feature maps and capture the scat-
tering distribution relationships between oil tanks with the self-attention mechanism [28].

The Transformer encoder depicted in Figure 6 consists of alternating layers of a multi-
head self-attention (MSA) mechanism and a fully connected feed-forward network. We
employ residual connections around each of the two sublayers to avoid the danger of gra-
dient disappearance. The multimechanism is used to capture the distribution relationship
between oil tank features. The feed-forward network, which is practically equivalent to
multilayer perceptron (MLP), is applied to each position separately and identically for
further encoding information learning.

Figure 6. The architecture of the Transformer encoder. It has two sub-layers, a multihead self-attention
mechanism, and a multilayer perceptron block.

Given a feature map, X ∈ RH×W×C, from the SPP module in dark5 or the P4 module
in the PAFPN neck, we first reshape it to a 1D sequence, Xp ∈ RN×C, where (H, W) is the
resolution of the feature map, N = H ×W, and C is the number of channels. Then, we
use standard learnable 1D position embedding [29] to add a position vector (PV) to each
input element, considering the inputs as a sequence, and the resulting sequence of the
embedding vector serves as an input, Z, to the Transformer encoder:

Z =
[

x1
p + PV1, x2

p + PV2, . . . , xN
p + PVN

]
∈ RN×C (1)
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The PV contains the relative position information of oil tanks in SAR images and
keeps the spatial information after reshaping the dimension. For each element in the input
sequence Z ∈ RN×C, we calculate the query, key, and value metrics by multiplying them
by the weight metrics. Then, we obtain a triple of (Q, K, V) ∈ RN×d:

Q = ZWQ, K = ZWK, V = ZWV (2)

where WQ, WK,WV ∈ RC×d denote the learnable linear transformation parameters of the
d dimension triplet (Q, K, V). The self-attention function of MSA can be described as
mapping a query and a set of key–value pairs to an output. We compute the outputs of the
self-attention layers as:

SA(Z) = So f tmax
(

QKT
√

d

)
V (3)

This paper utilizes multihead self-attention to further expand the model’s ability
to focus on different features of multiscale oil tanks with different roofs. Additionally,
multiheaded attention provides the attention layer with multiple representation subspaces.
We use four attention heads for each Transformer encoder. MSA is calculated by:

MSA(Z) = [SA1(Z); SA2(Z); · · · ; SAh(Z)]WO (4)

where WO ∈ RhN×d stands for the learnable weights metrics of h self-attentions. Then, the
result of MSA adds the original input, Z, and goes through the feed-forward layer:

Z′l = MSA(Z) + Zl−1 (5)

Zl = MLP(Z′l) + Z′l (6)

where MLP contains two layers with a ReLU nonlinearity. As shown in Figure 6, consider-
ing the high computation and memory cost of the Transformer encoder, we only apply this
module to the end of the backbone and the end of the neck of the baseline YOLOX. Specifi-
cally, the layers combined with Transformer encoders are high-level, low-resolution feature
maps that contain richer global and semantic information and require less computation
and memory costs.

2.2.3. Reparameterized Backbone RepCSP

Enhancing the distinguishable feature extraction of multiscale dense oil tanks is the
key to improving detection and classification performance. To achieve this goal, we
reparameterize the convolutional base layers of the backbone with multibranch typologies
by RepVGG. RepVGG is a simple but powerful VGG-style ConvNets that decouples the
training time multibranch topology and inference time architecture of the model using
structural reparameterization. It has an excellent performance on ImageNet classification
and shows a favorable speed–accuracy trade-off [30]. Inspired by the reparameterization
technique, we replace the convolutional base blocks of each dark with RepVGG blocks in
the original CSPdarknet53 backbone and name the redesigned backbone RepCSP.

As shown in Figure 7, the training time RepVGG uses the identity and the 1 × 1
branches for each 3 × 3 convolutional layer, which is inspired by ResNet, but in a different
way the branches can be removed by structural reparameterization in inference time.
Therefore, the training time information flow of the RepVGG block is y = x + g(x) + f (x),
where g(x) is a convolutional shortcut implemented by a 1× 1 convolutional layer, and f (x)
is a ResNet-like identity. In the inference process, transformation is performed to convert
the multibranch structure to a single-path structure consisting of only 3 × 3 convolutional
layers and SiLU layers.
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Figure 7. The structure of the RepCSP backbone and RepVGG block. RepVGG contains a multibranch
structure in training time and a single-path structure in inference time.

Formally, we use Conv3 ∈ R
C2×C1×3×3

to denote the kernel of a 3× 3 convolutional layer
with C1 input channels and C2 output channels, and Conv1 ∈ R

C2×C1 for the kernel of a 1× 1
branch. We use µ3, σ3, γ3, and β3 as the accumulated mean, standard deviation, and learned
scaling factor and bias, respectively of the batch normalization (BN) layer following 3 × 3
convolutional layer; µ1, σ1, γ1, and β1 for the BN layer following a 1 × 1 convolutional
layer; and µ0, σ0, γ0, and β0 for the identity branch. Let Mout ∈ RN×C2×H2×W2 and
Min ∈ RN×C1×H1×W1 be the output and input of a trained RepVGG block, respectively, and
∗ be the convolution operator. If C1 = C2, H1 = H2, and W1 = W2, we have:

Mout = bn
(

Min ∗ Conv3, µ3, σ3, γ3, β3)
+bn

(
Min ∗ Conv1, µ1, σ1, γ1, β1)+ bn

(
Min, µ0, σ0, γ0, β0) (7)

where bn is the batch normalization function, formally:

bn(M) = γ ∗ (M− µ)

σ
+ β (8)

We convert every batch normalization layer and its preceding conv layer into a conv
with a bias vector. Let

{
Conv f used, b f used

}
be the kernel and the bias be converted from

{Conv, µ, σ, γ, β}; we have:

Conv f used =
γ

σ
Conv, b f used = −µγ

σ
+ β (9)

bn(M ∗ Conv) =
(

M ∗ Conv f used

)
+ b f used (10)
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This transformation also applies to the identity branch because an identity matrix can
be viewed as a 1 × 1 Conv with an identity matrix as the kernel. RepVGG only has one
single type of operator: a 3 × 3 Conv followed by batch normalization and an activation
function, which makes RepVGG fast, memory-economical and flexible.

Moreover, although YOLOXs is the smallest model among the standard models of
YOLOX, there are still redundant channels in YOLOXs for the task of oil tank detection,
since the magnitude and shape of oil tanks are relatively stable on SAR images. Channel
pruning [31] is performed to remove the redundant channels to make our model more
memory-economical and efficient.

3. Experiments and Results

To evaluate the effectiveness of the Transformer encoder and RepVGG blocks in
YOLOX-TR, we implemented a series of ablation experiments. Furthermore, the detection
performance of YOLOX-TR is compared with other commonly used object detectors.

3.1. Dataset and Setting

The OTD has 1231 positive samples with a size of 640 × 640, including a total of
2704 labeled floating-roof tanks and 4532 labeled fixed-roof tanks. The linear stretching
process is applied to the over-dark and over-bright images to adjust the luminance of the
image slices before training. The dataset is divided into a training set, a validation set, and
a test set in the ratio of 8:1:1. To enhance the generalization and robustness of the model
in complex scenes, this paper employs a bag of effective data augmentation strategies to
extend the diversity of the training samples.

Oil tanks are usually densely arranged in specific areas such as ports, so the back-
ground information contained in the sample slices is similar. As a result, when the inputs
are large-scale SAR images instead of manually cropped areas, some artificial targets, such
as circular buildings and small reservoirs, easily disturb the detection performance, in-
creasing the false alarm ratio. Therefore, adding negative sample sets containing complex
backgrounds can greatly suppress false alarms. Specifically, in this paper, negative samples
containing objects of various shapes, such as buildings, vegetation, and water bodies from
GF-3 1 m SAR images, are added to the training set to reduce the false alarms. In addi-
tion to random scaling, cropping, panning, and rotation, two special data augmentation
techniques are provided in YOLOX-TR: mosaic [22] and mixup [32]. The mosaic technique
randomly crops four images and splices them into one image to enrich the background and
indirectly increase the batch size. The mixup technique generates a weighted combination
of random image pairs from the training data to reduce the memorization of corrupt labels,
increasing the robustness of adversarial examples.

In YOLOX-TR, we use a combination of adding negative samples, mosaic, mixup, and
some traditional geometry transformations in data augmentation for training.

3.2. Implementation Details

In the training process, our settings are mostly consistent from the baseline to our
proposed model. We train the YOLO models for a total of 300 epochs with 3 warmup
epochs based on the OTD. We use stochastic gradient descent (SGD) for training. We use
a learning rate of an initial lr = 0.01 and the cosine lr schedule. The weight decay is 0.0005
and the SGD momentum is 0.9. The batch size is 32. The main comparison experiments
with other object detection algorithms are based on the mmdetection platform (https:
//github.com/open-mmlab/mmdetection, accessed on 15 April 2022). All experiments
in this article are performed on an operating system equipped with an NVIDIA GeForce
RTX 3090 and Ubuntu 18.4. During the inference phase, the large-scale SAR image is firstly
cropped into slices by a sliding window of 1028 × 1028 pixels with an overlap ratio of
0.3. The outputs of all slices are stitched together with a confidence threshold of 0.5 and
NMS with an IoU threshold of 0.5 is operated to obtain the final result of the large-scale
SAR image.

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
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3.3. Evaluation Metric

We use several widely adopted metrics, such as precision, recall, F1 score, and mean
average precision (mAP) [33], to evaluate the detection performance quantitatively.

The precision measures the model’s accuracy in classifying a sample as positive, which
is calculated as the ratio between the number of positive samples correctly classified to the
total number of samples classified as positive:

P =
Tp

Tp + Fp
(11)

where P represents precision, Tp represents the number of positive samples correctly
classified and Fp represents the number of negative samples misclassified as positive.

The recall measures the model’s ability to detect positive samples, which is calculated
as the ratio between the number of positive samples correctly classified as positive to the
total number of positive samples:

R =
Tp

Tp + Fn
(12)

where R represents precision and Fn represents the number of positive samples misclassified
as negative.

The F1 score measures the balance between the precision and recall appropriately. The
higher the F1 score, the better the balance is between the precision and recall. F1 score is
defined as follows:

F1 = 2
P× R
P + R

(13)

The mean average precision compares the GT bounding box to the detected box and
returns a score; the higher the score, the more accurate the model is in its detections. To
perform the calculation of average precision (AP) for object detection, Intersection over
Union (IoU) needs to be calculated first. Intersection over Union is defined as the ratio of
the area of the intersection and the area of the union of the predicted bounding box and the
GT bounding box:

IoU =
Area(Bpre ∩ Bgt)

Area(Bpre ∪ Bgt)
(14)

where Bpre and Bgt represent the predicted bounding box and ground truth bounding box,
respectively. The general definition of average precision is the area under the precision–
recall curve.

AP =
∫ 1

0
P(R)d(R) (15)

The precision and recall are always between 0 and 1. Therefore, the AP also falls
within 0 and 1. The mean average precision is the mean of the AP for all classes.

mAP =
1
n

k=n

∑
k=1

APk (16)

where APk is the average precision of class k and n is the number of classes. In our experi-
ments, the mAP is the COCO [34] mAP0.5:0.95, which corresponds to the average AP for IoU
from 0.5 to 0.95 with a step size of 0.05. mAP0.5 means a mAP with an IoU = 0.5. Moreover,
we use the floating point operations per second (FLOPS) to measure the computational
performance of models.

3.4. Ablation Experiments

To evaluate the performance of the proposed model and analyze the influence of
each designed component, we performed four sets of ablation experiments; the results
are shown in Tables 1 and 2. Without specific notes, all of the experiment settings were
the same.
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Table 1. Results of the ablation experiments.

RepCSP Transformer mAP% mAP0.5% Precision% Recall% F1% GFLOPS

× × 58.35 92.12 92.18 89.22 90.68 26.6√
× 59.53 93.78 93.85 90.61 92.20 25.3

×
√

59.96 94.13 94.97 90.89 92.89 27.3√ √
60.80 94.82 95.64 91.91 93.74 26.1

Table 2. Classification results of the ablation experiments.

RepCSP Transformer
AP0.5% AP0.5:0.95%

Floating Fixed Floating Fixed

× × 96.4 87.8 68.3 48.4√
× 97.2 90.4 68.7 50.4

×
√

97.4 90.9 68.6 51.1√ √
97.7 91.9 69.1 52.5

Effect of the Transformer encoder: The third row of Table 1 and the third row of Table 2
show the performance of the baseline with the Transformer encoder. The Transformer
encoder has a gain of 1.61% in mAP and 2.01% in mAP0.5. In terms of classification
performance, the Transformer encoder has a gain of 3.1% in AP0.5 and 2.7% in AP0.5:0.95 for
fixed-roof oil tanks.

Furthermore, we conducted an ablation experiment to evaluate the influence of adding
the Transformer encoder into different positions of our network. Since the Transformer
encoder would increase the computation and memory costs and applying the Transformer
encoder to low-resolution feature maps can decrease the expensive computation and
memory costs, we only tested the performance of adding the Transformer encoder to the
end of the backbone and the end of the neck. The experimental results are shown in Table 3.
Adding the Transformer encoders to both the end of the backbone and the end of the
neck improves mAP by 0.76% compared to adding transformer encoders at the end of the
backbone only. Although adding the Transformer encoder increases the computation and
memory costs of the network, the detection performance of the network is improved.

Table 3. Results of the ablation experiments of the Transformer encoder added in different parts.

Backbone Neck mAP% mAP0.5% Parameters (M) GFLOPS

× × 58.35 92.12 8.94 26.6√
× 59.20 93.81 10.12 27.0√ √

59.96 94.13 11.30 27.3

Effect of RepVGG blocks: The second row of Table 1 and the second row of Table 2
show the result of the baseline combining RepVGG blocks. The RepVGG block has a gain
of 1.18% in mAP, 1.66% in mAP0.5, and a gain of 2.6% in AP0.5 and 2% in AP0.5:0.95 for
fixed-roof oil tanks.

Overall, both the Transformer encoder and the RepVGG block have effectively im-
proved the detection performance of dense oil tanks. YOLOX-TR reaches 60.80% mAP,
an improvement of 2.45% compared to the baseline YOLOX. Furthermore, in Table 2, the
AP0.5:0.95 of floating-roof tanks of the baseline YOLOX is 68.3%, which is higher than that
of fixed-roof tanks by about 20%. Therefore, in our dataset, it is more challenging to detect
fixed-roof tanks than floating-roof oil tanks. The proposed model, YOLOX-TR, which
improves the AP0.5:0.95 of fixed-roof tanks by about 4%, can better deal with the task of
detecting oil tanks in densely arranged areas.
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To further investigate the performance of the proposed model, YOLOX-TR, a large-
scale SAR image test is carried out to visualize the detection improvements of the proposed
model. The test image is a GF-3 SL SAR image of Yokohama, Japan, with 1 m resolution,
an incident angle of 43.8◦, and containing 12,786 × 12,487 pixels. In this scene, there are a
large number of small- and medium-sized tanks densely arranged in the port, and most of
them are fixed-roof tanks. The detection result of the full SAR image is shown in Figure 8.
We selected three densely arranged regions to further compare the detection results of the
original YOLOX and the redesigned model, YOLOX-TR. According to the visualization
results in Figure 9, the missing targets of the baseline YOLOX are mainly dense oil tanks of
small size, and YOLOX-TR can better deal with the task of detecting dense oil tanks and
small oil tanks.

Figure 8. The detection and classification result in a large-scale SAR image of Yokohama via Yolox-TR.
Boxes numbered 1–3 are three densely arranged regions selected to further compare the detection
results of the original YOLOX and the redesigned model YOLOX-TR.
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Figure 9. The visual detection results of the ablation experiments of the three densely arranged areas
numbered 1–3 from Figure 8. The first column shows the ground truth (GT); the second column
shows the detection results of the baseline YOLOX; and the third column shows the detection results
of YOLOX-TR.

3.5. Comparison with Other Detectors

To further verify our method, we compared it with several other detectors commonly
used in the natural scene, optical remote sensing, and SAR images. As shown in Table 4, we
use one-stage detectors, including RetinaNet [35], SSD [36], and YOLOv5, and a two-stage
detector: Faster R-CNN [37]. The results show that the proposed model, YOLOX-TR, has
the best mAP0.5 compared with the other models. Specifically, the mAP0.5 of YOLOX-TR
is 94.8%, which is 14.1%, 10.4%, 9.8%, and 3% higher than RetinaNet, Faster RCNN, SSD,
and YOLOv5, respectively. The GFLOPS of SSD are the highest, and those of YOLOv5 are
the lowest. As shown in the first row of Table 1, the GFLOPS of the baseline YOLOX are
26.6, which is larger than YOLOv5 because of the decoupled head and SimOTA strategy
adopted in YOLOX. YOLOX-TR has relatively few GFLOPS totaling 26.1.
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Table 4. Comparative results of different detectors.

Method
Roof Type (AP0.5%) mAP0.5% GFLOPS Parameters (M)Floating Fixed

RetinaNet 89.3 72.1 80.7 81.87 36.13
Faster RCNN 90.3 78.5 84.4 91.01 41.13

SSD(300) 90.0 79.9 85.0 137.31 23.88
Yolov5-s 95.2 88.4 91.8 15.9 7.3
Yolox-TR 97.7 91.9 94.8 26.1 8.48

To visually demonstrate the detection performance of YOLOX-TR compared to other
detectors, Figure 10 shows the comparative results for different methods based on the OTD.
As can be seen from the second column of Figure 10, RetinaNet has the worst detection
performance, can only detect medium- and large-sized oil tanks, and has the highest false
alarm rate, incorrectly detecting several buildings as fixed-roof oil tanks. From the third
and fourth columns, it can be seen that Faster RCNN and SSD can detect most of the tanks
but perform poorly in detecting dense groups of small-sized fixed-roof tanks, and easily
misclassify small floating-roof tanks as fixed-roof tanks. From the fourth and last column, it
can be seen that both YOLOv5 and YOLOX-TR can correctly classify oil tanks, but YOLOv5
has a few false alarms and missing detections compared to YOLOX-TR.

Figure 10. The visual detection result of the comparison experiments of RetinaNet, Faster RCNN,
SSD, YOLOv5, and YOLOX-TR.
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4. Discussion

The results of the ablation experiments show that the Transformer encoder and
RepVGG block can effectively improve the performance of YOLOX-TR in locating and
classifying continuous oil tanks in high-density areas. The Transformer encoder can learn
the distribution relationship and find the region of interest of oil tanks via the self-attention
mechanism. It can also enhance the representation of feature maps. The results in Tables 1–3
demonstrate the effectiveness of the Transformer encoder in improving detection accuracy
and classification accuracy. The RepVGG block can augment the discriminative features
extraction of the two types of oil tanks in various sizes by the structural reparameterization
mechanism. The results in Tables 1 and 2 show that the RepVGG block can help distinguish
the two types of oil tanks and improve the detection performance. Additionally, experi-
mental results of comparison with other commonly used detectors show the performance
superiority of YOLOX-TR in dense oil tank detection and classification in large-scale SAR
images with a mAP0.5 of 94.8%.

From the perspective of the model’s applicability and detection performance, YOLOX-
TR balances the accuracy and computation FLOPS of the network. As shown in the first row
and last row of Table 1, YOLOX-TR has smaller GFLOPS while showing improved mAP
by 2.45% compared with the baseline YOLOX. In detail, the layers that the Transformer
encoders applied are high-level, low-resolution feature maps that facilitate the capturing
of richer global information and require less computation and memory cost. Meanwhile,
the reparameterization mechanism of RepVGG enables the model to infer in a single-path
structure that would not increase computation cost in inference time. For application in
large-scale SAR image detection, we employ a slicing detection module to the detection
layer to realize end-to-end detection. Therefore, compared with the traditional methods
mentioned in the introduction, YOLOX-TR can better meet the needs of practical applica-
tions. Lastly, it is worth mentioning that we build a multiscale dataset based on the GF-3
SL SAR images (OTD) to realize oil tank detection and classification, containing the two
most common types of tanks.

Although we have achieved promising results in dense oil tank detection and classi-
fication, as shown in Figure 11(a1), this paper does not consider oil tanks less than 10 m
in diameter, which may lead to missed detections and false alarms in areas where small-
sized tanks are densely aligned. In addition, the high spatial correlation between SAR
image pixels makes the scattering features of adjacent objects mixed, especially on poorly
focused SAR images, leading to incomplete tank imaging and affecting the detection results.
For example, in Figure 11(b1), when floating-roof tanks and fixed-roof tanks in the same
area are distributed too close to each other, the overlapping features can easily lead to
misclassification.

Figure 11. (a1) Missing detections of oil tanks less than 10 m in diameter on an SAR image. (a2)
Optical image from Google Earth of (a1). (b1) Misclassification of oil tanks on a poorly focused SAR
image. (b2) Optical image from Google Earth of (b1).
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5. Conclusions

Oil tank detection and classification is a popular application of high-resolution SAR
and optical remote sensing images. Unlike optical images, adjacent oil tanks in SAR
images exhibit more overlap and geometric distortion due to the side-looking imaging
geometry and multibouncing scattering mechanism, making it a challenging task to detect
and classify oil tanks in densely distributed areas, especially for small-sized oil tanks.
To meet the needs of practical applications, an end-to-end dense oil tank detection and
classification method for large-scale SAR images named YOLOX-TR, an improved YOLOX,
is proposed. To improve the detection performance of dense oil tanks, we employ the
Transformer encoder, a self-attention-based architecture to the baseline YOLOX, which can
enhance the representation of feature maps and capture the region of interest of oil tanks in
densely distributed scenarios. Moreover, we replace the original convolutional base layers
of the backbone with structural reparameterized VGG-like (RepVGG) blocks to enable
the training time model to have a multibranch topology that can augment the extraction
of the discriminative feature of multiscale oil tanks without increasing computation in
inference time. The results of ablation experiments demonstrate the effectiveness of both
the Transformer encoder and RepVGG blocks. Additionally, compared with the other
commonly used methods, YOLOX-TR shows performance superiority in detection and
classification, with a mAP and mAP0.5 of 60.8% and 94.8%, respectively.

Enhancing discriminative feature extraction is the key to the object detection and
classification of SAR images. The application of YOLOX-TR in dense oil tank detection
and classification is potentially applicable to other dense object detection in large-scale
SAR images, such as ship detection and aircraft detection. In further research, we will
continue to verify the performance of YOLOX-TR applied to other dense object detection
in large-scale SAR images.
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