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Abstract: Lightning is an important threat to life and properties and its forecast is important for
several applications. In this paper, we show the performance of the “dynamic lightning scheme”
for next-day total strokes forecast. The predictions were compared against strokes recorded by a
ground observational network for a forecast period spanning one year. Specifically, a total of 162 case
studies were selected between 1 March 2020 and 28 February 2021, characterized by at least 3000
observed strokes over Italy. The events span a broad range of lightning intensity from about 3000
to 600,000 strokes in one day: 69 cases occurred in summer, 46 in fall, 18 in winter, and 29 in spring.
The meteorological driver was the Weather Research and Forecasting (WRF) model (version 4.1)
and we focused on the next-day forecast. Strokes were simulated by adding three extra variables to
WRF, namely, the potential energies for positive and negative cloud to ground flashes and intracloud
strokes. Each potential energy is advected by WRF, it is built by the electrification processes occurring
into the cloud, and it is dissipated by lightning. Observed strokes were remapped onto the WRF
model grid with a 3 km horizontal resolution for comparison with the strokes forecast. Results are
discussed for the whole year and for different seasons. Moreover, statistics are presented for the
land and the sea. In general, the results of this study show that lightning forecast with the dynamic
lightning scheme and WRF model was successful for Italy; nevertheless, a careful inspection of
forecast performance is necessary for tuning the scheme. This tuning is dependent on the season. A
numerical experiment changing the microphysics scheme used in WRF shows the sensitivity of the
results according to the choice of the microphysics scheme.

Keywords: lightning; forecast of convective environments; statistical scores; WRF

1. Introduction

Lightning is a hazard to life and properties. In the USA, for example, flashes are as
deadly as tornadoes [1–12], and in some years, hurricanes, but they are less deadly than
floods and flash floods. In Italy, about 20–30 people are killed every year by flashes with
even more injured (probably ten times the people killed according to Istituto Superiore di
Sanità [13]). Lightning is an important issue for electrical companies, forest fires, and, in
general, outdoor activities. The lightning forecast is also important for aviation [14,15] because
while airplanes are built to withstand lightning strokes [16], they can suffer structural
damage (e.g., [17,18]). Lightning can also affect airport ground operations.

The lightning forecast also gives an indication of the location of severe weather, since
high values for total lightning are a good indicator of storm severity occurrence (e.g., [19–25]).
Algorithms to identify total lightning jumps are used to predict severe weather because
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storms with lightning jumps are longer-lasting and are more likely to develop severe
characteristics [11,24,26].

Lightning is a clear manifestation of deep convection as shown by the high lightning
activity over the tropical areas in both northern and southern hemispheres [27], as well as
by the larger number of flashes recorded in summer (June, July, and August in the northern
hemisphere, and December, January, and February in the southern hemisphere), when
surface heating forces the development of deep convective cells [28].

A lightning forecast can also be used within a lightning data assimilation [29–31]. The
forecast of lightning during the assimilation period clearly shows where convection is
simulated, helping to precisely address areas where false alarms are predicted. This can be
used to reduce spurious convection predicted by models [32].

All of these applications show the potential importance of lightning, suggesting that it
needs to be studied, monitored, and predicted.

Different methods have been reported in the literature to forecast lightning strokes
from nowcasting to forecasting. Lightning nowcasting from observations is useful to pre-
dict flashes from minutes to one hour in the future [33–38]. These methods are based on
lightning observation networks, where observed flashes are advanced in time to nowcast
lightning strokes [35,39–44]; alternatively, some approaches use radar reflectivity nowcast-
ing as a proxy for the lightning magnitude [45–50]. These nowcasting methods have a
useful average lead time of around half an hour [51].

Data assimilation can be used to make highly accurate lightning forecasts from one
hour to six hours using numerical weather prediction models (NWP) as, for example,
in [31,52]. The same lightning scheme used to make such forecasts can be used to predict
lightning for the next day, recognizing that all such forecasts are dependent on the accuracy
of convective forecasts at such times.

Methods for forecasting lightning using NWP can be classified into two main groups.
The first contains advanced one-dimensional [53,54] or three-dimensional [55–57] cloud
models equipped with sophisticated electrification schemes. These schemes explicitly
simulate the electrification processes and the electric breakdown [58,59]. In [60], Fierro
et al., for example, implemented a physics-based, explicit lightning scheme within the
Weather Research and Forecasting (WRF) model [61] that treats space charges as state
variables and explicitly solves for the three components of the ambient electric field.

The second group includes simpler diagnostic schemes correlating the hydrometeors
or other parameters computed by cloud-resolving models with the number of observed
flashes [62–67]. For example, in ref. [66], Wong et al. revised the Price and Rind parameteri-
zations by applying the same methodology in cloud-resolving models. They showed the
need for validation and tuning of the parameterizations when applying the Price and Rind
approach to cloud-resolving models. The need for calibration is discussed also in McCaul
et al. [68], who compared different settings of the McCaul scheme [63] and recommend
methods for its recalibration. These schemes are computationally efficient and show better
performance than schemes forecasting lightning based on thermodynamic indices [69],
which indirectly describe and quantify atmospheric processes related to lightning [70,71].

Lynn et al. [72] proposed the forecast of lightning through the dynamic lightning
scheme (DLS), which is used in this paper. The dynamic lightning model is neither an
explicit approach as no electrical field is calculated, nor is it a statistical approach wherein
lightning values are calculated directly from the vertical velocity and hydrometeor masses
or thermodynamic indices. The DLS uses the dynamic and microphysics fields from
WRF to calculate the electrical potential energy for positive and negative cloud-to-ground
and intracloud lightning, adding prognostic equations for three variables in the WRF
model. The number of cloud-to-ground (positive and negative) and intracloud lightning is
computed from these potentials whenever the potential energy is larger than the threshold
energy, whose value depends on the type of lightning. According to the tripolar charge
model for clouds [73], positive flashes originate from the upper part of the cloud, i.e., the
stratiform anvil, negative flashes originate from the lower part of the cloud, and intracloud
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flashes can occur everywhere in the cloud. Assuming a tripolar charge model, however, is
a limitation of the method because the charge structure of deep convection is often more
complicated than a tripole [74].

An important parameter of the lightning scheme is the charge transferred in a time
unit within the cloud, as shown by the sensitivity tests of Lynn et al. [31]. A complete
analysis of this sensitivity is shown in this paper for the specific setting of the WRF model
used here and for the Italian area.

Federico et al. [75] showed a lightning forecast over Italy using the RAMS (Regional
Atmospheric Modeling System) model equipped with the Dahl et al. [45,76] electrification
scheme. However, the aim of their work was limited to showing the feasibility of the
method because their paper only evaluated the performance of the lightning forecast for
two intense lightning events that occurred during the fall of 2011 and 2012.

This work makes a lightning forecast evaluation over Italy for a whole year using the
DLS of Lynn et al. [72]. The analysis is performed for the four seasons within a year and
compares the forecast over the land and the sea. A sensitivity test for the fall season shows
the impact of changing the microphysical scheme of WRF on the lightning forecast.

This paper is organized as follows: Section 2 gives a short description of the WRF
settings and the dynamical lightning scheme and introduces the case studies. Section 3
shows the results, discussing an example of a good forecast, then provides a comparison
among the three settings for the DLS, discusses the dependence of forecast performance
on the seasons, compares forecasts for over the land and the sea, and finally, discusses the
results of a sensitivity numerical experiment aimed studying the impact of the microphysi-
cal scheme on the forecast of strokes. Conclusions are given in Section 4 and Appendix A
summarizes the statistics used to verify the forecast.

2. Data and Methods
2.1. WRF Model

The numerical model used in this study is the WRF model with Advanced WRF dy-
namic (WRF-ARW), version 4.1.3 [77]. The simulations use one domain, with 635 × 635 grid
points and 50 unevenly spaced vertical levels with a model top at 50 hPa. The model do-
main (Figure 1) covers the Central Mediterranean and the whole Italian territory. It has a
horizontal grid spacing of 3 km. Figure 1 also shows the verification area, extending over
Italy and the surrounding sea (6◦E–19◦E; 36.5◦N–47◦N).

The physical schemes employed include the Thompson microphysics scheme [78], the
Mellor–Yamada–Janjic scheme using a one-dimensional prognostic turbulent kinetic energy
scheme with local vertical mixing [79], the five-layer thermal diffusion for land surface
processes scheme, the Monin–Obukhov (Janjic Eta) scheme for surface layer physics [80],
the Dudhia scheme [81] for the short-wavelength radiative scheme, and the rapid radiative
transfer model (RRTM, [82]) for the longwave radiative scheme. No cumulus parameteriza-
tion was used as these are convection-allowing simulations.

Initial and boundary conditions for the simulations are taken from the integrated
forecasting system (IFS) global model of the European Centre for Medium-Range Weather
Forecasts (ECMWF). Specifically, we use the analysis-forecast cycle issued at 12 UTC on the
day before the actual day to forecast. Hence, for each forecast day, we run the WRF model
for 36 h starting at 12 UTC on the day before the actual starting time of the day to forecast.
The first 12 h are used for the spin-up of the model and are discarded from the forecast
performance evaluation. The initial and dynamic boundary conditions are used at 0.25◦

horizontal resolution and boundary conditions are updated every 3 h.
To consider the forecast variability with seasons, a total of 162 cases were selected for

the year from 1 March 2020 to 28 February 2021. Further details about the simulations of
this paper are given in Section 2.3 Case Studies.
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2.2. The Dynamic Lightning Scheme and LINET Data

The dynamic lightning scheme (DLS) was proposed by Lynn et al. [72] and is used
to simulate both cloud-to-ground (positive and negative) and intracloud strokes. In this
paper, we report the main features of the DLS, but the reader is referred to Lynn et al. [72]
for a detailed description.

The lightning forecast is computed from the WRF model dynamic and microphysical
fields starting from the lightning potential index calculation (LPI, [65,83]). The LPI measures
the kinetic energy of updrafts and downdrafts scaled by the potential of charge separations,
which is a function of the hydrometeors mixing ratios (cloud, rain, snow, graupel, and ice).
Lynn and Yair [83] and Yair et al. [65] specified that the LPI should be computed between
the isotherms 0 ◦C and −20 ◦C, where the noninductive mechanism involving collisions
between ice and graupel in the presence of supercooled water is most effective [84,85].
The LPI has the largest value when graupel exists in an equal ratio relative to water, ice,
and snow.

The electric potential is computed by multiplying the LPI by the total mass of ice and
dividing by the charge of 1 C (unit of V, J C−1 kg−1). The electric potential is computed for
positive, negative, and intracloud lightning. Negative flashes originate from the lower part
of the cloud, positive flashes originate from the upper part of the cloud, and intracloud
flashes originate everywhere in the cloud. These assumptions are consistent with the
tripolar charge model of Williams [73], but more complex electric structures can be present
inside the clouds [73].

As the evolution of the cloud progresses, the charge and the electric potential builds
up. The source term for this potential is referred in Lynn et al. [72] as the power index and
depends on an important constant, whose units are coulombs, such that the appropriate
amount of energy builds up over several model time steps. We will refer to this constant
as the charge transferred in 1 s inside the convective and stratiform cloud. The number
of strokes simulated (and, in some measure, their positions, because the electric potential
is advected by WRF) is dependent on these parameters and three different magnitudes
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of charge transfer were used to calibrate the method as follows: L50, in which the charge
transferred in 1 s is 0.5× 10−4 C; L75, in which the charge transferred in 1 s is 0.75 × 10−4 C;
and L100, in which the charge transferred in 1 s is 1.0 × 10−4 C. The three settings were
used to simulate all 162 cases considered in this work.

When the potential energy value exceeds threshold values (this value is 5 × 109 J
for positive strokes and 1 × 109 J for intracloud and negative strokes), it is converted
into electrical energy by lightning strokes (cloud-to-ground or intracloud), immediately
dissipating the energy and reducing the electric potential magnitude at that grid point. The
same thresholds as Lynn et al. [72] are used. The sum of positive, negative, and intracloud
lightning is considered for comparison with observed strokes.

In the DLS, the three electric potentials for positive, negative, and intracloud lightning
are formulated in four-dimensional derivative equations so that the scheme can account for
energy buildup in convective and stratiform clouds as well as its possible advection from
convective to stratiform clouds. For this reason, the scheme was referred to as the dynamic
lightning scheme.

Strokes data used to verify the model prediction are provided by the LINET (lightning
detection network; [86,87]). LINET includes more than 500 stations worldwide. More
than 200 sensors are in Europe, where there is the best lightning detection efficiency.
This network covers the Italian territory and the western Mediterranean Sea. LINET
sensors detect very low frequency (VLF) and low frequency (LF) waves emitted during
a flash. LINET can measure both intracloud (IC) and cloud-to-ground (CG) discharges;
nevertheless, in this paper we compare the total strokes observed by LINET with the
total strokes simulated by the DLS ignoring the IC-CG difference. The data processing
technique used to locate the strokes in three dimensions follows a 3D method ([87]), by
which the height of IC lightning is also calculated. Position accuracy is about 75 m for CG
and IC strokes.

The detection efficiency (DE) of lightning location networks depends on a variety of
parameters, such as the sensitivity of antennae, handling of signals in the receiver, sensor
baselines, and treatment in the central data processing unit. In LINET, these components
have been optimized to improve IC and CG detection efficiency [87,88]. Among other
factors, two characteristics are worth reporting here. First, the LINET sensor measures the
magnetic flux of the lightning signal directly as a function of time rather than the time
derivative with subsequent integration [87]. Second, LINET uses a time of arrival (TOA)
method in the VLF/LF frequency range for lightning detection [86]. Only the arrival times
of the signals are used for lightning detection, irrespective of their waveform. The difference
of the travel time of high (IC lightning) compared to low (CG lightning) electromagnetic
emissions is used for the discrimination between CG and IC and to calculate the emission
height of the signals [86,87]. The ability of LINET to detect strokes for the target area,
including weak signals (<5 kA), is discussed in [88].

For the above reasons, the DE of LINET is expected to be high over the verification
area (hopefully >85–90% for total lightning). Nevertheless, a map showing the DE of the
LINET network for different seasons and types of strokes over the verification area is not
available and we cannot give a definitive answer about the DE of LINET for this study. For
this reason, when comparing the strokes forecast and observations, we use the row LINET
strokes without corrections for DE estimations. It is also worth noting that while the DE is
high, it is less than 100%, so a small to moderate overestimation (10–15% of the observed
value) of the forecasted strokes should be considered as a positive result.

2.3. Case Studies

With the above settings of the WRF model, and with the three settings of the DLS
(L50, L75, and L100), 162 cases were simulated for 12 months from 1 March 2020 to
28 February 2021. A total of 486 (162 × 3) simulations were performed, where a change in
the DLS setting required a new simulation of the WRF model. These cases were selected to
simulate all the days with low, moderate, and high electric activity over Italy. Specifically,
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this criterion was followed: we focused on the area 6◦E–19◦E and 36.5◦N–47◦N (Figure 1)
and we considered the number of observed strokes. The days with at least 10,000 strokes
were considered for summer and September, and for the other months, the days with at
least 3000 strokes were selected. These thresholds were chosen to account for most of the
strokes recorded over Italy during the year while avoiding simulating days with marginal
lightning activity in different seasons.

The distribution of the cases is as follows: 69 in summer, 46 in fall, 18 in winter, and 29
in spring (Table 1). This distribution is a result of the convection over Italy and the central
Mediterranean, which is especially active in summer and fall.

Table 1. Distribution of the selected days among the seasons.

SEASON Number of Days

SUMMER 69
FALL 46

WINTER 18
SPRING 29

The strokes distribution in different seasons for the whole year and for the subset of
162 cases considered in this paper is shown in Figure 2a. It is apparent that more strokes
occur, by far, in summer and fall, followed by spring and winter. From Figure 2a, it follows
that the 162 cases are well representative of the seasonal behavior. About 11.5 million
strokes were recorded for the 162 cases out of a total of about 12 million that occurred
over the whole year. Similar considerations apply to the distribution of the strokes within
the hours of the day (Figure 2b), even if this aspect will not be further considered in this
work. The 162 cases and the whole year show the strokes peak in the early afternoon
(12:00–17:00 UTC, corresponding to 13:00–18:00 local time in winter, November and March,
and 14:00–19:00 local time for all other months). This behavior is determined by surface
warming, which triggers convective phenomena in summer and fall afternoons.
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In addition to the 486 simulations introduced above, the 46 fall cases were simulated
with the WSM6 [89] microphysics scheme to assess the impact of changing the microphysics
scheme of WRF on the strokes forecast.

3. Results
3.1. Example of Predicted Fields

In this section, we show the model output for the stroke density field from 3 October 2020
for the three different charge transfer configurations, L50, L75, and L100 (Figure 3, which
shows the daily number of strokes per 9 km2 for the verifications area, i.e., the number of
strokes observed/forecasted in a day in each WRF grid cell in the verification area). This
was a well predicted event. Observations (Figure 3d) shows intense electrical activity with
about 204,000 strokes recorded for the day. The total number of strokes is underestimated
by L50, slightly overestimated by L75, and quite overestimated by L100.

The strokes spatial pattern is represented satisfactorily by all settings of the WRF and
DLS, with intense electric activity over the Tyrrhenian Sea, Slovenia, and Croatia. For
example, considering the scores (for a description of the statistics used in this paper, see
Appendix A) for the L75 configuration and a threshold of 1 stroke per WRF grid cell (3 km
by 3 km), the probability of detection is around 0.8.

WRF overestimates the electric activity over Liguria, Tuscany, Corse Island, and the
Alps. This overestimation is confirmed by the scores: referring to the L75 configuration,
frequency bias (FBIAS) is 1.5 for 1 stroke per WRF grid cell for the whole day, and the false
alarm rate (FAR) is 0.5 for the same threshold, showing the model tendency to overestimate
electrical activity over the area on this day.
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charge transfer setting of (a) L50, (b) L75, (c) L100 for the lightning scheme; (d) LINET strokes density.
The total number of strokes is shown in the figure title of each panel. The dots represent the daily rate,
i.e., the number of strokes accumulated for the whole day in the model grid cells (3 km horizontal
resolution). LINET daily data are remapped onto the model grid. Gray dots are smaller than other
dots to avoid a large superposition of the dots.

As a final remark, we note that despite the different number of strokes predicted by
L50, L75, and L100, the spatial patterns of the predicted strokes are similar among the
configurations. This result shows that the lightning forecast closely follows the spatial
pattern of convection simulated by WRF, even though the occurrence of lightning events is
a result of generation and advection of the electric potential in DLS.

3.2. Comparison among L50, L75, and L100 Configurations and Upscaling of the Model Output

Table 2 shows the number of strokes simulated in different seasons and for the whole
year, along with the Pearson correlation coefficient for the time series of daily observed and
forecast strokes, both in the different seasons and for the whole year. For the computation
of the Pearson correlation coefficient, the pairs used are the daily forecasted total strokes
value and the corresponding daily observed value. The histogram in Figure 4 shows the
numbers from Table 2 for visual inspection.

Considering the number of strokes for the whole year, it is apparent that the L100
configuration overestimates the number of strokes and L50 underestimates it. L75 gives a
very good prediction of the total number of strokes for the whole year.
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Table 2. Number of strokes simulated with the different charge transfer settings by the DLS (columns
L50, L75, and L100) and observed by LINET (column OBS) for each season and for the whole year.
The second number in each cell of the L50, L75, and L100 columns shows the correlation coefficient
for the daily simulated and observed number of strokes for each season and for the whole year. The
number of pairs used for each correlation are those from Table 1: 29 in spring, 69 in summer, 46 in
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SEASON/YEAR L50 L75 L100 OBS

SPRING 352,397; 0.64 647,563; 0.66 968,901; 0.66 494,678
SUMMER 3,630,810; 0.76 5,954,415; 0.77 8337„408; 0.77 7,140,804

FALL 2,314,092; 0.76 3,861,155; 0.78 5,491,026; 0.77 3,528,789
WINTER 521,886; 0.87 1,021,174; 0.85 1,574,974; 0.84 332,347

YEAR 6,819,185; 0.77 11,484,307; 0.77 16,372,309; 0.77 11,496,618
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Considering the forecast behavior for different seasons, we note that L100 overesti-
mates the number of strokes in all seasons, and L50 underestimates the number of strokes
in all seasons except winter. All DLS configurations overestimated the strokes in winter.
L75 overestimates the strokes in spring, fall, and winter, and underestimates their number
in summer. The underestimation in summer is almost compensated by the overestimation
in other seasons so that the total number of strokes forecasted by L75 is close to the num-
ber of strokes observed for the whole year. The result of this comparison shows that the
performance of the DLS settings is dependent on the season. In summer, for example, the
number of observed strokes fell between the L75 and L100 configurations, whereas it is
between L50 and L75 in spring.

The correlation coefficients for the time series between daily simulated and observed
strokes (Table 2) has values around 0.8 or higher for summer, fall, and winter, showing that
the WRF model with DLS can predict the day-to-day variability of electric activity over
Italy. The correlation coefficient was lower in spring compared to other seasons. The poorer
performance of spring compared to other seasons will be further examined in Section 3.3.

Lightning is a manifestation of deep convection, whose characteristics vary with the
seasons, and it is expected that a correct prediction of the convective environment would
lead to a correct lightning prediction. This subject was investigated, among others, in
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Lynn [52], who considered the correlation between the fraction skill score (FSS, [90]) of
the precipitation forecast and the corresponding score for the lightning forecast, finding
a positive correlation for the two scores. Other convective parameters, such as radar
reflectivity, could be considered in future studies.

In the remainder of this paper, we consider the statistical scores and analysis that
consider the correct positioning of the strokes forecast within the verification domain
(Figure 1). As shown in several studies [29,52,91,92], the forecast of lightning and severe
weather are difficult tasks because they are typical of convective environments, which
are difficult to predict precisely in space and time. The error in lightning forecast occurs
because of WRF model errors in simulating convection and errors in the lightning scheme.
In addition, most of lightning forecasts are performed using numerical weather prediction
models (NWP) with high horizontal resolutions (1–5 km), which gives a more reliable
representation of cloud types and structures compared to coarser horizontal resolution
models. Nevertheless, the performance of high-resolution models, quantified by some
statistical scores, can be worse than that of coarser horizontal resolution models because of
the well-known double penalty error [93,94]. For these reasons, it is important to consider
the lightning forecast performance not only for the WRF grid cell horizontal resolution
(3 km in our case) but also for coarser horizontal resolutions or using scores that consider
the neighborhood forecast, i.e., FSS.

In this paper we adopt a simple upscaling technique of the model output, shown in
Figure 5. We sum the number of strokes simulated by WRF over an equal number of model
grid cells in both horizontal directions. The number of grid cells summed in each direction
is referred to as the upscale factor. Upscale factors of 1 (i.e., 3 km WRF grid), 2, 4, 8, and
16 are considered, which correspond to an evaluation of the model performance for grid
cells with 3 km to 48 km horizontal dimensions. Figure 5 shows an example of applying
an upscale factor of 4 to the WRF 3 km horizontal resolution grid. The horizontal grid
spacing of the upscaled grid is 12 km and the grid cell is equivalent to sixteen grid cells in
the WRF model.
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As stated above, in the following section we show statistics for the daily lightning
forecast that consider the position error of the strokes. Of course, upscaling the model
output improves these statistics because we neglect a spatial error of d

√
2, where d is the

grid spacing, which increases for larger grids. Regarding the Department of Civil Protection
(DPC), which issues meteorological alerts over Italy, upscaling the model does not limit the



Remote Sens. 2022, 14, 3244 12 of 25

practical usefulness of the lightning forecast as all areas corresponding to grid cells from
3 km to 24 km are less than the DPC’s alert areas. For the 48 km grid, there are cases where
the alert area is the same size as the upscaled grid.

Figure 6 shows the performance diagram for 6 km and 24 km horizontal grid cells
(upscale factors of 2 and 8, respectively). The performance is shown for 1 stroke per grid
cell, 10 strokes per grid cell, and 30 strokes per grid cell. For grid sizes, the performance
decreases with the number of strokes, which is indicative of the convection intensity. The
performance of the 24 km grid cell is better than that of the 6 km grid cell, as expected,
because we are neglecting larger spatial errors for larger grid spacing. The frequency bias
(FBIAS) of L75 is close to 1 for the 6 km horizontal resolution, whereas the FBIAS of L100 is
larger than 1 and the FBIAS of L50 is less than 1. The threat scores (TS) for L100 and L75
have similar values for both 6 km and 24 km, whereas L50 has lower values. There is an
increase in the FBIAS for the 24 km grid for all configurations, and L50 has the best FBIAS.
In any case, TS is better for L75 and L100 compared to L50.

All in all, the L75 configuration has the best performance because its FBIAS is closer
to 1 compared to L100 while having similar TS values, and the TS of L75 is always better
than L50. This result is further supported by the number of flashes simulated in different
seasons (Figure 4). For these reasons, L75 will be used when showing the performance of
the DLS scheme in the following sections.
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3.3. Performance in Different Seasons and Comparison between the Forecast over Land and over Sea

Because of the high variability of the Mediterranean climate and strokes distribution
with seasons, it is important to consider the performance of the DLS in different seasons.
This is studied in this section using the fraction skill score (FSS, [90]). This metric is a skill
score based on the mean squared error of the forecasts relative to a worst-case reference
forecast (see Appendix A for the details). This metric is well suited for evaluating forecasts
produced by neighborhood approaches. The forecast is considered skillful for a scale x
if FSS is greater than 0.5 + fo/2, where fo is the probability of occurrence of the forecasted
event. We consider the event as having at least 1 stroke in a grid cell per day for the L75
configuration of the lightning scheme. The probability of occurrence of the forecast event
fo is about 1% in winter and spring, and 2% in summer and fall. These probabilities were
estimated considering the number of grid cells in which strokes were observed over the
total number of grid cells.

Lynn [52] used a neighborhood approach to verify the lightning forecast made with
the same dynamical scheme used here. Forecast probabilities of hourly lightning were
evaluated using the method described in [92] and the optimal performance of the lightning
forecast was found when the smoothing parameter σ = 48 km. With this length-scale,
he computed the saving over climatology (SOC) for different cost to loss ratios as well
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as other statistics, including FSS (see his Figure 9a). He found (mostly) positive values
for SOC for different forecast hours with the exception of the forecast hours from +7 h
to +9 h, where negative values were found for cost to loss ratios greater than 0.2–0.25,
depending on the forecasting hour. The FSS score was computed for each forecast hour for
the length-scale of 48 km, showing a decreasing trend with increasing forecast time. Larger
FSS values generally corresponded with larger values for the SOC. Interestingly, for the
+9 h forecasting time, he found that the saving over climatology was still positive for a cost
to loss ratio less than about 0.2 and for FSS = 0.48. This indicates that forecasts that are not
considered useful based on FSS value can have an economic value to some users.

Considering the value of fo for different seasons and the result of Lynn [52], a 0.5 thresh-
old was used to determine the scale of usefulness of the forecast.

The results for different seasons are shown in Figure 7. In summer and fall, FSS is
greater than 0.5 at a 15 km length-scale; in winter, FSS is greater than 0.5 at a 21 km length-
scale; and in spring, FSS is greater than 0.5 at a 63 km length-scale. Thus, the WRF model
and DLS scheme performed better in summer and fall than winter, and the worst FSS score
is for spring, highlighting a lower ability to forecast strokes in this season. Possible solutions
to improve the lightning forecast, especially in spring, include an ensemble forecast and/or
data assimilation at a local scale in a rapid update cycle (RUC) forecasting system (see
Discussion for more detail).
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refers to the L75 configuration and the event forecast is 1 stroke per grid cell.

The results for the FSS score show that the performance is similar for summer and fall,
when the largest number of strokes is observed, followed by winter and finally spring. The
FSS becomes greater than 0.5 for spatial scales smaller than the spatial dimensions of the
meteorological alert areas used by the Civil Protection Department for summer, fall, and
winter. For spring, the forecast becomes useful for scales (about 60 × 60 km2) larger than
the meteorological alert areas used by the Civil Protection Department.

Another important point to consider for Italy is the comparison of the performance
of the forecast of strokes over land and over sea. This is quantified considering the Taylor
diagram for the whole period and a 48 km grid (upscale factor 16). The classification of
land and sea grid points was carried out according to the WRF land-sea mask. Thus, when
upscaling the forecast, a grid cell is classified as land if the number of land grid cell in the
WRF model is greater than the sea grid cells and vice versa. After upscaling the forecast, it
turned out that a few (6) grid cells (48 km length) had an equal number of WRF- grid cells
labelled as land or sea, which could not be labelled as land or sea, so they were discarded
from the analysis. The Taylor diagram is shown in Figure 8.
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Figure 8. Taylor diagram for the 162 cases studied and each configuration of the DLS. The number of
48 km grid cells classified as sea and land is 44,712 and 34,930, respectively. The cells containing an
equal amount of WRF 3 km grid cells labelled as land or sea were discarded from the analysis. L50S
is the result for L50 over the sea, L50L is the results for L50 over the land; L75S is the result for L75
over the sea, L75L is the result for L75 over the land; L100S is the result for L100 over the sea, L100L
is the result for L100 over the land.

The results show that the strokes forecast is better over land than over sea for all DLS
configurations (L50, L75, L100). The better performance over land the sea is likely caused
by the orography, which acts as a triggering mechanism for convection and/or focuses
convection on specific regions, effects that are at least partially represented by the WRF. The
correlation coefficient is not high (about 0.45 for land grid points and 0.25–0.28 for sea grid
points) showing the difficulty of precisely forecasting the position and amount of electrical
activity for the following day, as the Taylor diagram considers both aspects of the strokes
forecast. The low value of the correlation coefficient is expected because it is difficult to
precisely predict convection one day in advance. Indeed, convection often develops on
a small scale, usually embedded in larger scale meteorological systems, and sometimes,
especially in summer, as a local phenomenon. Small meteorological systems are inherently
difficult to predict one day in advance [11,36,44,95,96] and the correlation coefficient is
expected to be low because lightning is a manifestation of a small-scale phenomenon.

The standard deviation of the observations is better represented by the L100 configura-
tion, especially over the sea, whereas L75 and (especially) L50 underestimates the standard
deviation of the observations both over land and sea. Similar results were obtained for
smaller upscale factors; however, the value of the correlation decreases as the grid cell
dimension decrease. For example, the correlation for the 24 km grid cell is about 0.35 for
the land and 0.2 for the sea.

3.4. Sensitivity to the Microphysical Scheme

The electric potential and energy computed by the DLS depends on the hydrometeor
mixing ratios (liquid water, graupel, snow, and ice), thus changing the microphysical
scheme plays a major role in the lightning forecast. For this reason, we studied the sen-
sitivity of the strokes forecast to the microphysical scheme by simulating the fall cases
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(46 cases) with the WSM6 microphysical scheme. This scheme and the Thompson scheme
were chosen because they are both used by the DPC through agreements with CNR-ISAC
and CIMA Foundation. The charge transferred in 1 s within the cloud is 0.75 × 10−4 C, so
the impact of changing the microphysical scheme can be quantified by comparing WSM6
and L75 forecasts.

The results are shown for 24 km grid cells, but similar conclusions were found for
other grid spacings. Comparing the FBIAS for the two different configurations, WSM6
produced higher values for all thresholds, showing that the WSM6 microphysical scheme
predicts more convection compared to the Thompson scheme [97,98]. The larger FBIAS of
the WSM6 configuration results in both larger POD and FAR scores than the Thompson
scheme for all of the thresholds considered. The ETS score improves for higher POD and
worsens for higher FAR, so the ETS of WSM6 and L75 are similar (Figure 9d). The results
of this experiment show an important sensitivity of the forecast of strokes to the choice of
the microphysical scheme used in the WRF, as expected. The L75 configuration is preferred
in this work because of the tendency of WSM6 to overestimate convection, as shown by the
FBIAS cores, and because the ETS score is slightly better for L75.
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It is important to highlight that the scope of this test is to show how sensitive stroke
prediction can be to a change in the microphysical scheme rather than developing a com-
plete sensitivity test. The impact of changing the microphysical scheme on stroke prediction
should be considered in other seasons, as microphysical regimes may vary among seasons
so that results of the sensitivity test can be different. A full developed sensitivity test is
beyond the scope of this paper, so the analysis in this section is only a preliminary study of
the problem.

4. Discussion

In this paper, we applied the dynamic lightning scheme of Lynn et al. [72] to the WRF
model for a year-long lightning forecast over Italy. A total of 162 days were considered,
accounting for most of the strokes that occurred during the year and throughout the
different seasons and times of the day. The forecast is issued for the next day using a WRF
model configuration at 3 km horizontal resolution and 50 vertical levels.
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Three different configurations of the lightning dynamic scheme were considered: L50,
as in Lynn et al. [72], L75, and L100. These configurations differ for the key parameter of
assumed charge transferred in one second within convective and stratiform clouds.

Among the three dynamic lightning scheme configurations considered, L75 accurately
forecast the total number of strokes recorded in all cases, whereas L50 underestimated and
L100 overestimated the number of strokes. However, the relative performance of L50, L75,
and L100 for the number of strokes depended on the season. The time-series correlation
of daily observed and forecasted strokes over the domain (6◦E–19◦E; 36.5◦N–47◦N) was
around 0.75, depending on the season, with the largest value in winter (around 0.85) and
the lowest in spring (around 0.65).

Qualitative scores (FBIAS, ETS, POD, FAR) computed for the 3 km grid and different
strokes thresholds (from 1 stroke per grid cell per day to 45 strokes per grid cell per day)
had low values, and upscaling of the model output by summing the forecast and observed
strokes over grids with larger grid sizes (from 6 to 48 km), improved the results as spatial
errors became smaller than the grid size. Upscaling does not limit the practical usefulness
of the forecast, given that the meteorological alert areas used by the Department of Civil
Protection have typical dimensions of 50 km by 50 km. Among the different configurations
of the DLS, L75 performed slightly better. However, L50, L75, and L100 showed very
similar spatial patterns for the predicted strokes, the main difference being the number of
strokes simulated by each configuration.

The analysis of the fraction skill score showed that the best lightning forecast was for
summer, followed by fall, winter, and spring. For spring, the forecast usefulness started
at scales of around 60 km for a 1 stroke per grid cell per day event, which is larger than
those used by the Civil Protection Department to issue meteorological alerts, so the forecast
performance in this season is not satisfactory. For other seasons, the forecast is useful at
scales well below those used by the Civil Protection Department to issue meteorological
alerts. Future studies will consider the point of improving the lightning forecast, especially
in spring. An important technique to improve the convective environments forecast is
the use of data assimilation at the local scale in rapid update data assimilation/forecast
cycles [99]. Among the local data, lightning plays a major role [29,30,32,52,100,101] and
a study is underway to show the impact of lightning data assimilation on the strokes
forecast. A further enhancement of the accuracy of convective cell prediction can be
obtained by exploiting ensemble predictions, which have a long tradition in meteorology
(see, for instance [102,103]) and has been adopted as a standard procedure by various
meteorological agencies [104]. The lightning forecast could take advantage of ensemble
forecasting by quantifying the predictability of convective events through the ensemble
spread and by removing the most unpredictable components of the weather forecast
through the ensemble mean. However, the use of the ensemble for lightning forecast needs
considerable computing resources because of the high horizontal resolutions required to
simulate flashes.

The lightning forecast performance varied between the sea and the land, where the
analysis of the Taylor diagram showed a better performance over land than sea. This result
is likely caused by a better WRF simulation of convection over land, where the effect of
topography may trigger/focus the convection over specific areas.

Finally, the sensitivity of the strokes forecast to changing the microphysical param-
eterization scheme was investigated for a specific microphysics scheme. We considered
the comparison between the WSM6 one-moment microphysics scheme and the Thompson
microphysics scheme, which are both used in forecasting systems by the DPC. Results
showed a better performance of the Thompson scheme in terms of FBIAS and FAR scores,
whereas the POD was better for the WSM6 microphysics scheme. Minor differences were
found for ETS, with the Thompson scheme performing slightly better. These results show
that DLS performance is sensitive to the choice of the microphysics scheme, and the WSM6
scheme predicts more flashes compared to Thompson [97,98].
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5. Conclusions

All in all, the results of this study show that the dynamic lightning scheme of
Lynn et al. [72] can be applied with success over Italy for a next day strokes forecast,
although careful calibration of the scheme is needed to produce better forecasts. The
forecast quality depends on the season, spatial scales, and surface type.
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Appendix A

The forecast verification was assessed by several metrics. In this appendix, those
statistics are briefly introduced. The Pearson (ordinary) correlation coefficient gives a
measure of the association between two variables x and y [105]:

rxy =
[1/(n− 1)]∑n

i=1[(xi − x)(yi − y)]√
[1/(n− 1)]∑n

i=1(xi − x)2
√
[1/(n− 1)]∑n

i=1 (yi − y)2

where the bar is the average value of the variable computed over the sample size n.
Scores from 2 × 2 dichotomous contingency tables (Table A1) are used to quantify the

model performance. Scores are computed for different lightning density threshold values
(the event): 1 stroke per grid cell per day, from 5 to 45 strokes per grid cell per day, and
every 5 strokes per grid cell per day.

Table A1. Elements of the contingency table.

Observed Observed
YES NO

Forecast YES a b
Forecast NO c d

In particular, defining the hits (a, when both the forecast and the corresponding
observation are above or equal to a threshold value), false alarms (b, when the forecast
is above or equal to a threshold value while the corresponding observation is below
the threshold value), misses (c, when the forecast is below a threshold value while the
corresponding observation is above or equal to the threshold value), and correct no forecast
(d, when both the forecast and the corresponding observation are below a threshold value).

https://www.nowcast.de/
https://www.nowcast.de/
https://www.nowcast.de/
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Starting with the elements in the contingency tables, summed over all the cases of the
specific analysis considered, the following scores are calculated:

FBIAS =
a + b
a + c

POD =
a

a + c

TS =
a

a + b + c

ETS =
a− ar

a + b + c− ar
, ar =

(a + b)(a + c)
a + b + c + d

FAR =
b

a + b
where ar is the probability of a correct forecast by chance when the yes/no forecast occur-
rence is independent from the observation. The frequency bias (FBIAS; range (0, +∞), where
1 is the perfect score, i.e., when no misses and false alarms occur) is the ratio of the number
of yes forecasts of the event and the observed number of yes events. The probability of
detection (POD; range (0, 1), where 1 is the perfect score and 0 is the worst value) is the
proportion of correct forecasts over the total number of observed events. The threat score
(TS; range (0, 1), where 1 is the perfect score and 0 is the worst score) is the number of
correct forecasts of the event divided by the total number of occasions on which the event
was observed and/or forecast. The equitable threat score (ETS; range (−1/3, 1), where 1 is
the perfect score and 0 is a useless forecast) is the proportion of correct forecasts corrected
for the probability of a correct forecast by chance, where the occurrence/non-occurrence of
the event is independent from its observation.

The FAR (false alarm rate; range (0, 1), where 0 is the best forecast and 1 represents the
worst forecast) is that proportion of forecasted events that fail to materialize.

A performance diagram (Figure 6 of the paper) is used to graphically represent the
performance given by most of the above scores. The x-axis of the performance diagram
shows the success ratio (1-FAR), and POD is along the y-axis. Different values for FBIAS lie
on straight lines from the axes origin and are represented as grey lines. Different values
for the threat score are represented by hyperboles in the performance diagram and are
represented as blue lines. The model performance, quantified by the scores of a contingency
table, is represented as a single point in the performance diagram.

The fraction skill score (FSS, [90]) is based on the mean squared error (MSE) of the
forecast relative to the worst case. It is especially suited for verifications considering the
neighborhood approach. It is given by:

FSS(n) =
MSE(n) −MSE(n),re f

MSE(n),per f ect −MSE(n),re f
= 1−

MSE(n)

MSE(n),re f

where the MSE is given by:

MSE(n) =
1

Nx Ny

Nx
∑

i=1

Ny

∑
j=1

[
O(n),i,j −M(n),i,j

]
MSE(n),re f =

1
Nx Ny

[
Nx
∑

i=1

Ny

∑
j=1

O2
(n),i,j +

Nx
∑

i=1

Ny

∑
j=1

M2
(n),i,j

]

In the above equations, Nx and Ny are the number of grid points in the x and y
directions (635 in both directions in this paper). Fractions are generated for different spatial
scales by changing the value of n, which can be any odd value up to 2N − 1, where N is
the number of points along the longest side of the domain. In the statistics of this paper,
n varies from 3 to 43, corresponding to spatial scales from 9 to 129 km. The FSS score is
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summed over all grid points in the domain, and it is defined such that the perfect (no) skill
forecast has an FSS equal to 1 (0).

O(n),i,j is the resultant field of observed fractions for a square of length n obtained from
the binary field Io and M(n),i,j is the resultant field of forecast fractions for a square of length n
obtained from the binary field IM. Specifically, Io (IM) is 1 if the observed (forecast) lightning
density per grid cell is above a threshold value, and Io (IM) is 0 if the observed (forecast)
lightning density per grid cell is below this threshold. The corresponding formulae are
as follows:

O(n),i,j =
1
n2

n

∑
k=1

n

∑
l=1

IO

[
i + k− 1− (n− 1)

2
, j + l − 1− (n− 1)

2

]

M(n),i,j =
1
n2

n

∑
k=1

n

∑
l=1

IM

[
i + k− 1− (n− 1)

2
, j + l − 1− (n− 1)

2

]
The Taylor diagram [106] provides a way of graphically summarizing how closely a

pattern matches observations. The similarity between two patterns (forecast and observed
daily lightning density) is quantified in terms of their correlation, their centered root mean
square difference, and the amplitude of their variations (represented by their standard
deviations). These diagrams are useful in evaluating the relative skill of different models.
In this research, the Taylor diagram is used to quantify the relative skill of the prediction of
strokes over land and over sea. Model root mean square errors and standard deviations
are divided by the observation standard deviation for the graphical representation (see
Figure 9). The distance of each point, which quantifies the statistics for each model, from
the axes origin is the standard deviation of the model and values can be read on the
x- or y-axis (a value of 1 means that the standard deviation of the model is equal to the
standard deviation of the observations); the Pearson correlation coefficient for the model
and observations is measured by the angle along the circumference arc (values are given
in the outer circumference in Figure 9), and the centered root mean square difference
between the model and observations is given by the radius of the dotted blue circumference
corresponding to the model point. The centered root mean square difference is represented
as units of observed standard deviation, and a value of 1 means that the centered root mean
square difference is equal to the observation standard deviation. The best performance
of the model is when the point representing the model statistics lies on the x-axis at the
abscissa 1.
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