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Abstract: Target detection based on unmanned aerial vehicle (UAV) images has increasingly become
a hot topic with the rapid development of UAVs and related technologies. UAV aerial images
often feature a large number of small targets and complex backgrounds due to the UAV’s flying
height and shooting angle of view. These characteristics make the advanced YOLOv4 detection
method lack outstanding performance in UAV aerial images. In light of the aforementioned problems,
this study adjusted YOLOv4 to the image’s characteristics, making the improved method more
suitable for target detection in UAV aerial images. Specifically, according to the characteristics of the
activation function, different activation functions were used in the shallow network and the deep
network, respectively. The loss for the bounding box regression was computed using the EIOU loss
function. Improved Efficient Channel Attention (IECA) modules were added to the backbone. At
the neck, the Spatial Pyramid Pooling (SPP) module was replaced with a pyramid pooling module.
At the end of the model, Adaptive Spatial Feature Fusion (ASFF) modules were added. In addition,
a dataset of forklifts based on UAV aerial imagery was also established. On the PASCAL VOC,
VEDAI, and forklift datasets, we ran a series of experiments. The experimental results reveal that
the proposed method (YOLO-DRONE, YOLOD) has better detection performance than YOLOv4
for the aforementioned three datasets, with the mean average precision (mAP) being improved by
3.06%, 3.75%, and 1.42%, respectively.

Keywords: target detection; UAV aerial imaging; YOLO; attention mechanism; UAV dataset

1. Introduction

Small size, light weight, simple operation, energy savings, and low noise are key
advantages of an unmanned aerial vehicle (UAV). Its take-off and landing are less restricted
by the site, and it can take off and land on playgrounds, roads, or other open ground with
good stability and safety. UAVs easily capture images. Due to the different flying heights
and viewing angles during shooting, compared with natural images shot at a horizontal
angle, aerial photography images of UAVs contain more small targets, and the objects
in the images are arranged in a disorderly manner, with random directions and complex
backgrounds. UAV systems are easy to transport and have low operating costs. They may
carry a variety of sensors for repeated cycle detection, which is convenient for collecting
the required data. As deep learning technology has advanced rapidly in recent years,
UAV systems have become more intelligent, efficient, and convenient. UAVs have evolved
into the ideal equipment for precision agriculture [1–4], smart cities [5–7], and search and
rescue [8–10].

Traditional object detection methods employ an exhaustive strategy for region selec-
tion [11–13]. Because the target’s position, size, and aspect ratio cannot be known, the
image is traversed using sliding windows of various scales and aspect ratios. Although
all possible target positions are provided, there are issues such as excessive complexity,
many redundant windows, and poor area matching that have a significant impact on classi-
fication speed and accuracy. Traditional object detection methods use artificially designed
features for feature extraction [14,15]. The artificially designed features lack robustness and

Remote Sens. 2022, 14, 3240. https://doi.org/10.3390/rs14143240 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14143240
https://doi.org/10.3390/rs14143240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14143240
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14143240?type=check_update&version=1


Remote Sens. 2022, 14, 3240 2 of 22

adaptability due to the diversity of target morphologies, the uncertainty of illumination
changes, and the complexity of target backgrounds. For the above reasons, the detection
effect of traditional methods is unstable. They are prone to various constraints, and it is
difficult to meet the needs of real-time processing in practical applications.

With the rapid development of deep learning technology in recent years, convolutional
neural networks (CNN) have been proven to be more effective in handling a variety of
vision tasks. Modern object detection methods can be divided into the following two
categories: two-stage detection methods and one-stage detection methods, which have
achieved significant improvements in detection accuracy and processing speed. The two-
stage detection method consists of two stages, where candidate regions are first proposed
through a selective search strategy, and then a classifier built with a convolutional neural
network is used to determine the corresponding category score. In the existing two-stage
detection models, R-CNN [16] requires a fixed input image size, which restricts the image’s
aspect ratio. Its training is a multi-stage procedure that is both time and space-consuming,
as well as slow in terms of object detection. The selective search process adopted by Fast
R-CNN [17] is complex and time-consuming, and does not implement a true end-to-end
training mode. Faster R-CNN [18] cannot achieve the effect of the real-time detection of
objects. The features of other layers are not fully considered, and the detection performance
is obviously insufficient when detecting small objects. The problem of pixel alignment
between the network’s input and output is ignored, resulting in a general misalignment
of the region of interest (ROI) and retrieved features. Furthermore, the number of feature
channels after ROI pooling is large, causing the whole connection process to consume a
large amount of memory and slow down the model’s calculation speed. By cascading,
Mask R-CNN [19] and Cascade R-CNN [20] increase detection performance, but the gain is
restricted since the information flow across mask branches at various stages is not optimal.
R-FCN [21] must build a huge number of score maps, and the network’s pace is slow,
with a significant computational cost. With the rising requirements for efficiency and real-
time performance in the field of target detection, many classical one-stage target detection
methods that complete target prediction and localization in one step have been presented.
In the existing one-stage detection model, YOLO [22], it is difficult to deal with small targets
that appear in groups, the model generalization ability is weak, and the problem of loss
function easily leads to obvious positioning errors. SSD [23] adopts a hierarchical structure
of pyramid features, which makes it difficult to handle large-scale changes, especially when
detecting small-sized objects. DenseBox [24] has difficulty handling overlapping bounding
boxes and has low recall. When RetinaNet [25] handles objects of various scales, additional
stages are usually required to complete the image classification task. The accuracy of
YOLOv2 [26] much improved compared to YOLO, but in subsequent practical applications,
the accuracy remained insufficient. The feature extraction network of YOLOv3 [27] lacks
fusion operations, and the activation function it uses is not smooth enough, which affects
the gradient descent.

Current target detection methods lack outstanding performance on UAV aerial images.
Due to the difference in the flying height of the UAV and the shooting angle, the objects in
the image contain different texture and shape information than the natural image captured
on the ground. Igor Sevo et al. [28] demonstrated the possibility of using CNN for aerial
image analysis and proposed a two-stage detection method. The method was tested in
image classification tasks. Due to the long detection time, it is necessary to reduce the
computation time by configuring multiple GPUs. By combining appearance and motion
information, Rodney LaLonde et al. [29] proposed a two-stage spatio-temporal CNN
method to improve the target detection effect of UAV-based wide area motion imagery.
The frame alignment part introduced in this method to eliminate camera shake will greatly
increase the network’s computational cost. Yongchao Xu et al. [30] suggested a detection
approach to overcome the problem of unpredictable target angles in UAV aerial images,
resulting in predicted boxes with more accurate information. However, since the detection
model needs to obtain angle information, it requires additional calculation parameters
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and calculation time. Danilo Avola et al. [31] presented the MS-Faster R-CNN detection
method, which is a multi-stream architecture that efficiently solves the problem of picture
quality degradation caused by the UAV’s mobility during detection. Its detection speed,
however, has to be increased. Jing Zhang et al. [32] analyzed the two factors of real-time
processing and detection accuracy, and proposed a UAV aerial image detection method
based on a lightweight CNN. To boost detection performance, this approach must optimize
the network structure.

In conclusion, new target detection methods have increased in accuracy and speed as
a result of the proposal and development of target detection methods. The advantages of
two-stage and one-stage detection methods lie in their excellent detection accuracy and
speed, respectively. Since the UAV transmits video streams or pictures in real time, the
influence of the detection speed needs to be considered, so the YOLO series detection
method was selected. The YOLO detection method was improved across several versions,
and its detection effect was excellent. Newer YOLO versions are YOLOv4 [33], YOLOv5,
and YOLOX [34]. YOLOv5 and YOLOX are larger in scale, have more parameters, and
have more complex models than YOLOv4, and they are not separated from the CSPNet
structure of the backbone of YOLOv4 and the PANet structure of the neck of YOLOv4.
Therefore, this research improved the YOLOv4 target detection method to make it more
suitable for target detection in UAV aerial images. We focused on the following four points:
(1) because the background of UAV aerial images is cluttered, the backbone’s capacity to
extract features must be improved; (2) small targets abound in UAV aerial images, which
are orientated and grouped in a complex manner. The detection model must be able to
emphasize key information while suppressing irrelevant information; (3) the aerial imagery
of the UAV has a larger scale due to the UAV’s perspective. The detecting model’s receptive
field must be appropriately expanded; (4) the size of the targets in the UAV aerial images
changes as the flying height of the UAV changes. The ability of the feature pyramid for
multiscale object detection must be improved. According to the above four requirements,
we proposed an improved target detection method suitable for UAV aerial imagery and
named it YOLO-DRONE (YOLOD). This work’s primary contributions are as follows:

1. According to the characteristics of the activation function, more appropriate activation
functions were used on different layers of the backbone. In shallow and deep networks,
HardSwish [35] and Mish [36] activation functions were used, respectively. This
choice is beneficial because it reduced model complexity while maintaining good
detection accuracy.

2. We finally chose the EIOU loss [37] function to calculate the loss of the bounding box
regression of the model after analyzing and comparing different loss functions. The
model’s convergence speed quickened as a result, and the positioning effect improved.

3. The performance of three modules used to enhance the model’s receptive field in
YOLOv4 was compared, and the spatial pyramid pooling (SPP) module was eventu-
ally replaced with the pyramid pooling module [38]. The pyramid pooling module
is useful for increasing the model’s receptive field and thereby enhancing its detec-
tion performance. We also introduced an Adaptive Spatial Feature Fusion (ASFF)
module [39] to the model’s end to improve multiscale feature fusion, which was useful
for detecting objects on different scales.

4. A new attention module was proposed. The module uses a one-dimensional convo-
lution operation to adaptively determine the number of adjacent channels for each
channel, which effectively captures the information interaction between channels. The
proposed attention module fully exploits the benefits of global average and global
max pooling, allowing the model to extract target features more effectively.

5. A dataset of forklift trucks based on UAV aerial imagery was established. The dataset
consists of 1007 annotated images. This is the first dataset of forklift trucks based on
UAV aerial images that we know of.

The following sections make up the remainder of this work. Section 2 gives a brief
overview of the previous YOLO series of detection methods and details the proposed
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YOLOD improvement strategy. Section 3 introduces the experimental environment, selected
datasets, parameter settings, and evaluation metrics and gives detailed experimental
procedures and results that verify the superiority of the new method. Section 4 summarizes
the new method and indicates research directions for the future.

2. Methods
2.1. YOLOv3 and YOLOv4 Algorithm Description

The backbone of YOLOv3 is Darknet53. Darknet53 uses a residual structure [40]. First,
the width and height of the incoming feature map are compressed by convolution operation
with stride 2 × 2. Then, two convolution operations with kernel sizes of 1 × 1 and 3 × 3
are used for feature extraction. Finally, the extracted features are added to the compressed
feature map to obtain the output of the residual structure. To improve the model’s accuracy,
we used the method of deepening the residual network. The residual network is simple to
optimize, and the skip connection of the residual block within it alleviates the vanishing
gradient caused by increased network depth. Darknet53’s convolution block employs the
DarknetConv2D structure. Specifically, batch normalization and the LeakyReLU activation
function are performed after the convolution operation is completed. Compared with
the ReLU activation function, the LeakyReLU activation function [41] adds a non-zero
slope at negative values, solving the Dead ReLU problem. At the neck of the model,
YOLOv3 extracts multiple feature maps for object detection, which are located in the
middle, lower, and bottom layers of the backbone, respectively. After that, the model uses
the feature pyramid to perform fusion on the features extracted from different layers, which
is conducive to extracting more effective features.

The YOLOv4 detection model is an improved version of YOLOv3 with better detection
performance. The backbone of YOLOv4 is CSPDarknet53. Compared with YOLOv3, the
improvements in the backbone part are as follows. The Mish activation function replaces
the original LeakyReLU activation function in the DarknetConv2D structure. The gradient
of the Mish activation function does not vanish and has good smoothness at negative
values. The experimental results of D. Misra [36] revealed that the detection accuracy using
the Mish activation function was better than the Swish and ReLU activation functions in
the same network. The backbone uses the CSPNet structure [42], which splits the origi-
nal stack of residual blocks into two parts. One part is used for the superposition of the
residual structure, and the other part is added to the previous part after a small number
of convolution operations. The CSPNet structure enhances the learning ability of the net-
work, can keep the network lightweight while maintaining good accuracy, and reduces
computational bottlenecks and memory costs. At the model neck, YOLOv4 uses the SPP
module and PANet structure [43]. After the output of CSPdarknet53’s last feature map, the
SPP module is added. This module processes data using four different max pooling scales,
which helps to expand the receptive field and distinguish important contextual features.
The PANet adds a bottom-up feature fusion step, which overcomes the limitations of classic
FPN networks due to unidirectional information flow. This structure increases information
usage, enhances the efficiency with which information is disseminated, and is useful for
recurring feature extraction. In the feature utilization part, YOLOv4 behaves the same as
YOLOv3, extracting three feature maps located in the middle, lower, and bottom layers
of the backbone. The output feature maps have the shapes (52, 52, 256), (26, 26, 512), and
(13, 13, 1024) when the input size is 416 × 416 pixels. Since YOLOv4 has three prior bound-
ing boxes for each feature point, the shapes of the feature maps output by YOLO Head
are (52, 52, 3 × (4 + 1 + number of classifications)), (26, 26, 3 × (4 + 1 + number of classes))
and (13, 13, 3 × (4 + 1 + number of classes)). The number “4” represents the priori boxes’
adjustment parameters, “1” indicates if the priori boxes contain objects, and “number
of classes” indicates the detection score of each category. Mosaic data augmentation is
utilized during YOLOv4 training to enrich the background of recognized objects and boost
batch normalization efficiency. Label smoothing is used to prevent model overfitting.
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Using the CIOU loss function makes the target regression more stable. Figure 1 shows
YOLOv4’s architecture.

Figure 1. The YOLOv4’s architecture.

2.2. Algorithm Design and Improvement

The aerial image of the UAV includes more small targets than the natural image ac-
quired from the horizontal perspective due to the UAV’s flying height and shooting angle.
In addition, the objects in the UAV aerial images were arranged in a disorderly manner,
with random directions and complex backgrounds. The shortcomings of the present detec-
tion methods were described in the preceding section, and they still have a lot of room for
improvement. Based on the properties of UAV aerial images, our method aimed to achieve
the following goals: (1) enhance the feature extraction capability of the backbone; (2) em-
phasize important information in UAV aerial images and suppress irrelevant information;
(3) increase the receptive field of the detection model; and (4) enhance the target detection
ability of the feature pyramid for multi-scale targets. Our improvements mainly concerned
the backbone and neck of the model.

2.2.1. Improvement of Detection Model Backbone

Our backbone improvements to YOLOv4 were as follows: (1) choosing more suitable ac-
tivation functions; (2) applying a new loss function; and (3) adding new attention modules.

(1) Choosing more suitable activation functions.
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The activation function was utilized in the detection model to raise the nonlinear
factors so that the convolutional neural network was able to approximate any nonlinear
function. This allows the model to fully utilize the advantages of multi-layer superposition
and improve its expressive capacity. The following two issues must be considered while
selecting an activation function: (1) whether it improves gradient propagation; and (2) the
cost of function calculation.

Early activation functions include Sigmoid and Tanh activation functions. The functional
formula and derivation of the Sigmoid activation function are shown in Equations (1) and (2),
and the functional formula and derivation of the Tanh activation function are shown in
Equations (3) and (4):

Sigmoid = f (x) =
1

1 + e−x (1)

f ′(x) =
1

1 + e−x ×
(

1− 1
1 + e−x

)
= f (x)× (1− f (x)) (2)

Tanh = f (x) =
ex − e−x

ex + e−x (3)

f ′(x) = 1− (ex − e−x)
2

(ex + e−x)2 = 1− f 2(x) (4)

The Sigmoid and Tanh activation functions are smooth and differentiable, and the
derivative calculation is convenient. The output of the sigmoid activation function is
bounded between 0 and 1, which makes it stable for some larger inputs as well. The output
of the Tanh activation function is stable between [−1, 1], symmetric about the 0 center, and
the gradient is larger near 0, which is beneficial to distinguish small feature differences.
The outputs of the Sigmoid activation function are all positive values, which causes zigzag
shaking during gradient descent and in turn reduces the gradient descent speed. The
output is not centered at 0, reducing weight update efficiency. Both Sigmoid and Tanh
activation functions have nonlinear saturation regions, which easily cause the phenomenon
of vanishing gradient during backpropagation. Since the derivative of Sigmoid has a
maximum value of 0.25 and the derivative of Tanh has a maximum value of 1, the vanishing
gradient of Tanh is slightly smaller than that of Sigmoid.

Since its inception, the ReLU activation function [40] has become one of the most
widely utilized activation functions. The functional formula and derivation of the ReLU
activation function are shown in Equations (5) and (6):

ReLU = f (x) = max(0, x) (5)

f ′(x) =
{

1 , if x ≥ 0
0 , if x < 0

(6)

Because the ReLU activation function only requires information on whether the input
is greater than 0, the calculation is simple and quick. This function converges much faster
than the Sigmoid and Tanh functions. The ReLU activation function solves the gradient
dispersion problem in the positive interval; however, in the process of back propagation,
if the input is negative, the gradient is zero, and there is a Dead ReLU problem. This will
cause some units to remain inactivated and the corresponding parameters to never be
updated. For the Dead ReLU problem, PReLU [44], Elu [45], Leaky ReLU [41], and other
improved methods based on this function were proposed. The functional formulations of
the activation functions of PReLU, ELU, and Leaky ReLU are shown in Equations (7)–(9):

PReLU =

{
yi , if yi ≥ 0

aiyi , if yi < 0
(7)

Elu =

{
x , if x ≥ 0

a(ex − 1) , if x < 0
(8)
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Leaky Relu =

{
x , if x ≥ 0
ax , if x < 0

(9)

The parameter ai in PReLU is usually limited between 0 and 1. If ai = 0, it is converted
to a ReLU function; if ai > 0, it is converted to a Leaky ReLU function; if ai is a learnable
parameter, it is expressed as a PReLU function. The PReLU, ELU, and Leaky ReLU
activation functions all have slopes in the negative domain, thus avoiding the Dead ReLU
problem. PReLU requires additional computation and increases the risk of overfitting due
to the introduction of additional hyperparameters. Elu involves exponential operations, so
the calculation is complicated and slow. Leaky ReLU lacks robustness to noise.

The Swish activation function [46] is an activation function proposed by Google in
2017. The functional formula and derivation of this activation function are shown in
Equations (10) and (11):

Swish = f (x) = x·Sigmoid(βx) (10)

f ′(x) = x·Sigmoid(x) + Sigmoid(x)(1− x·Sigmoid(x)) = f (x) + Sigmoid(x)(1− f (x)) (11)

The functional formula of the Swish shows that when β = 0, Swish = 0.5x, and when it
tends to infinity, Swish is transformed to ReLU, indicating that this function is akin to a
smooth function between a linear function and ReLU. Swish is smooth and non-monotonic;
the output has lower bounds and no upper bounds; and the effect on deep networks is
better than the ReLU activation function. However, its calculation speed is slightly slower
than ReLU’s.

The HardSwish activation function [35] is proposed in MobileNetV3. The functional
formulation and derivation of this activation function are shown in Equations (12) and (13):

HardSwish = f (x) =


0 , if x ≤ −3
x , if x ≥ 3

x(x+3)
6 , otherwise

= x
ReLU6(x + 3)

6
(12)

f ′(x) =
ReLU6(x + 3)

6
+

x
6
·ReLU6′(x + 3) (13)

Compared with Swish, the HardSwish activation function has better stability and a
faster calculation speed.

Mish [36] is the activation function in the YOLOv4 backbone. The functional formula-
tion and derivation of this activation function are shown in Equations (14) and (15):

Mish = f (x) = x·Tanh(ln(1 + ex)) = x· (1 + ex)2 − 1

(1 + ex)2 + 1
= x·y

2 − 1
y2 + 1

(14)

f ′(x) =
4y(y− 1)

(y2 + 1)2 ·x +
y2 − 1
y2 + 1

(15)

The Mish activation function improves training stability, average accuracy, and peak
accuracy significantly. However, this function is computationally difficult.

In deep networks, especially after layer 16, the accuracy of the ReLU activation function
will drop rapidly. The same problem occurs with the Swish activation function after
21 layers. However, the Mish activation function still maintains good accuracy. This small
gap is magnified after passing through the deep network, showing a large performance
improvement. Figure 2 depicts an intuitive comparison of the mathematical models of the
Leaky ReLU, Swish, HardSwish, and Mish activation functions, respectively.



Remote Sens. 2022, 14, 3240 8 of 22

Figure 2. Mathematical models of Leaky ReLU, Swish, HardSwish, and Mish activation functions are
compared intuitively.

In summary, combined with the characteristics of each activation function, we found
that the HardSwish activation function has good detection accuracy and computational
complexity in shallow networks, while the Mish activation function has a greater contri-
bution in deep networks. Under the trade-off between model complexity and detection
accuracy, the activation function in the original YOLOv4 backbone was modified. The
activation functions of HardSwish and Mish were used in the first two layers and the last
four layers of the backbone, respectively.

(2) Applying a new loss function.
In the YOLOv4 detection method, bounding box regression (BBR) is used to locate

objects. The choice of loss function is critical because it can seriously affect the performance
of target localization. The early use of the L2 norm loss to compute the loss for bounding
box regression [24,47], as shown in Equation (16), represents the sum of the squares of the
differences between the predicted and ground-truth values. Jiahui Yu et al. [48] pointed out
that the L2 norm loss has two main flaws. First, the correlation between the coordinates
of the bounding box is torn, resulting in the inability to obtain an accurate bounding box.
Second, the loss is not normalized, so there is an imbalance between objects of different
sizes. This causes the model to focus more on large objects while ignoring small objects.

Ll2 =
N

∑
i=1

(yi − f (xi))
2 (16)

yi is the genuine value, f (xi) is the forecast value, and Ll2 is the loss value in the
equation above.

In order to solve these defects, in subsequent research, a loss based on intersection
over union (IOU) was proposed. There are mainly IOU loss [48], GIOU loss [49], DIOU
loss [50], CIOU loss [50] and EIOU loss [37]. Scale invariance, satisfying non-negativity,
identity, symmetry, and triangular inequality are all characteristics of IOU, which is a
regularly used indicator in object detection. However, if the two bounding boxes do not
intersect, the IOU loss cannot accurately reflect the distance between them. Hence, the IOU
loss cannot accurately describe the degree of overlap. On the basis of IOU characteristics,
GIOU introduces the minimum circumscribed rectangle, which overcomes the problem
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of the loss value being 0 when the bounding boxes do not overlap. However, when the
bounding boxes are contained, GIOU degenerates into IOU. When the bounding boxes
are in a state of intersection, the GIOU loss converges slowly in both the horizontal and
vertical dimensions. To solve GIOU’s slow convergence speed, DIOU directly returns the
straight-line distance between the center points of the bounding boxes, which accelerates
the convergence speed. However, the bounding boxes’ aspect ratio is not taken into account
in the regression procedure, and the DIOU loss still needs to be improved in terms of
accuracy. The CIOU loss adds the loss of length and width to the DIOU loss, which makes
the predicted boxes more consistent with the real boxes. However, the aspect ratio in
CIOU is a relative value, which is ambiguous. The penalty term of CIOU only reflects the
difference in length and width, which may optimize the similarity in an unreasonable way.
The EIOU loss is improved following the CIOU loss. EIOU and EIOU loss are calculated
using Equations (17) and (18):

EIOU = IOU −
ρ2(b, bgt)

c2 −
ρ2(w, wgt)

C2
w

−
ρ2(h, hgt)

C2
h

(17)

LEIOU = 1− EIOU (18)

The width and height of the minimum circumscribed rectangle covering the ground-
truth box and the prediction box are represented by CW and CH in the preceding formula.
EIOU loss is divided into the following three parts: IOU loss, distance loss, and location
loss. EIOU directly reduces the difference between the width and height of the bounding
boxes, which increases the speed of convergence and improves the position effect. YOLOv4
uses CIOU loss when computing bounding box regression. We then replaced it with an
EIOU loss.

(3) Adding new attention modules.
The performance of deep convolutional neural networks has been proven to benefit

from attention mechanisms. Representative attention modules include the Squeeze-and-
Excitation (SE) module [51], the Convolutional Block Attention Module (CBAM) [52], and
the Efficient Channel Attention (ECA) module [53], etc.

The SE module improves the feature quality of the network through the interdepen-
dence between channels. Through this module, the network can selectively emphasize
informative features and suppress irrelevant features. This module is generic and has
different effects at different depths throughout the network. Features are excited in a
class-independent manner in shallow networks. In deep networks, the module becomes
increasingly specialized, responding to different inputs in a highly class-specific manner.
The CBAM module computes the attention map along two different dimensions and se-
quentially, and then multiplies the attention map with the input feature map to obtain the
refined features. The ECA module omits the fully connected layer in the SE module and di-
rectly performs global average pooling by channels. An adaptive method was then used to
determine the number of adjacent channels for each channel, which was proportional to the
signal dimension. This method ensured that the module was both efficient and effective.

In the process of determining the weight of each channel, the SE module uses two fully
connected layers, which reduces the complexity of the model. However, this procedure
seems to be of limited help in capturing the interactions between all channels and thus
may be redundant. The channel attention sub-module in the CBAM module adds global
maximum pooling on the basis of global average pooling in the past, which enriches
the features of the target. However, the CBAM module increases the computational
complexity of the module due to the existence of two connected sub-modules. The ECA
module avoids the operation of dimensionality reduction and provides an efficient adaptive
method to obtain the number of adjacent channels. However, the ECA module only
performs the global average pooling operation, ignoring the gain brought by the global
maximum pooling.
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We proposed the Improved Efficient Channel Attention (IECA) module as a new
attention module, as shown in Figure 3. The IECA attention module first utilizes global
average pooling and global max pooling operations to obtain channel information for
feature maps. Then, the one-dimensional convolution operation is used to adaptively
determine the number of adjacent channels for each channel, and the calculated results are
added to obtain the attention map of the feature map. Then, the weight of each channel is
calculated using the Sigmoid function. Lastly, the final result is generated by multiplying
the obtained weights by the input feature map.

Figure 3. The IECA Module’s architecture.

2.2.2. Improvement of the Detection Model Neck

Our neck improvements to YOLOv4 were as follows: (1) the pyramid pooling module [38]
was used to replace the SPP module in YOLOv4; and (2) an Adaptive Spatial Feature Fusion
(ASFF) module [39] was added at the end of PANet.

(1) Use the pyramid pooling module to replace the SPP module in YOLOv4.
The SPP module used in the YOLOv4 detection model uses pooling kernels of different

sizes to perform a max-pooling operation and then concatenates the individual results. The
pooling kernel sizes used are 1, 5, 9, and 13, respectively. Originally, Kaiming He et al. [54]
proposed the SPP module in order to solve the limitation that the CNN must input pictures
of a specified size, which avoids the problem of information loss caused by image clipping.
Because the proposed SPP module’s output is a one-dimensional matrix, it is unsuitable
for the Fully Convolutional Network (FCN), so Joseph Redmon and Ali Farhadi revised
it. It was modified as a cascade of max-pooling outputs of different pooling kernels. This
structure helps in the expansion of the receptive field and the separation of important
contextual features.

The Receptive Field Block (RFB) module [55] and the pyramid pooling module, among
others, are employed to increase the model’s receptive field. Songtao Liu et al. proposed
the RFB module, which was inspired by the receptive field organization in the human
visual system. Multiple convolution branches make up this module, with different-sized
convolution kernels providing different-sized receptive fields and dilated convolution
providing individual eccentricities for each receptive field. The output of all branches is
cascaded at the end, and the final result is obtained by adjusting the number of channels
through a convolution operation. The dilated convolutions used in the RFB module are
beneficial for expanding the receptive field and capturing multi-scale contextual informa-
tion. However, they affect the continuity of information and cause local information loss.
In addition, since dilated convolutions sparsely sample the input signal, there is a lack of
correlation between the information obtained by long-distance convolution. The Pyramid
Scene Parsing Network (PSPNet) uses the pyramid pooling module to generate feature
maps of various sizes. This module contains operations for average pooling with various
strides and output sizes. Bilinear interpolation is utilized to adapt each feature map to
the same size during the operation, and then all feature maps are stacked. The pyramid
pooling module comprises four different scales of features, which are separated into 1 × 1,
2 × 2, 3 × 3 and 6 × 6 sub-regions in sequence from coarse to fine. This helps to fully
utilize each region’s contextual information, resulting in more accurate prediction results.
Figure 4 shows the pyramid pool module’s architecture.
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Figure 4. The pyramid pooling module’s architecture.

In our experiments, we found that replacing the SPP module in YOLOv4 with the
pyramid pooling module improved the distinguishing and robustness of features and
obtained more reliable prediction results.

(2) An Adaptive Spatial Feature Fusion (ASFF) module at the end of PANet was added.
Pyramid-shaped feature representations are often used to address the challenges posed

by scale changes in object detection. However, when using feature pyramids to detect
objects, inconsistencies between different feature scales can cause unnecessary conflicts.
For example, YOLOv4 detects small and large objects using feature maps of sizes 52 × 52
and 13 × 13, respectively, when the input image resolution is 416 × 416. If an image
contains objects of different sizes at the same time, the small object will be regarded as
the target on the 52 × 52 feature map, but it will be regarded as the background on the
13 × 13 feature map. The same is true for large objects. The ASFF module is used to
address the inconsistency of feature pyramid characteristics in one-stage detectors. This
module retains useful information from each feature map and combines them by filtering
feature maps of different sizes. The ASFF module first resizes all feature maps to the same
size, and then finds the optimal feature fusion method during model training. At each
spatial location, feature maps of different sizes will be adaptively fused to filter out the
contradictory information carried by the location and to retain those more discriminative
clues. As shown in Figure 5, we added this module at the end of the neck of the YOLOv4
model, which promoted feature extraction and increased the model’s detection accuracy.

Figure 5. Add ASFF module at the end of the neck.

In summary, we made some improvements on the basis of the YOLOv4 model, re-
placed some modules in the original model, and added some new modules. The architecture
of YOLOD is shown in Figure 6. When the input UAV aerial imagery is 416 × 416 pixels
in size, it first passes through the backbone to produce three feature maps with sizes of
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52 × 52, 26 × 26, and 13 × 13, respectively. Then, the feature maps extracted by the back-
bone undergo feature fusion through the neck to deepen the feature extraction. Finally, the
model’s head outputs the final forecast result.

Figure 6. The YOLOD’s architecture.

3. Experiments and Results

In this part, we ran a number of experiments on both the generic dataset and the
UAV aerial picture dataset. The selected datasets were PASCAL VOC, VEDAI [56], and the
forklift datasets. Ablation experiments were used to verify the effectiveness of our proposed
attention module and the improved portions. The proposed method was then compared
to a number of different state-of-the-art detectors to verify that it is superior. Finally,
experiments on the UAV aerial image dataset were conducted to verify the effectiveness of
our proposed method in UAV aerial imaging. Figure 7 shows some examples of the VEDAI
dataset and the forklift dataset.
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Figure 7. Some examples from the datasets: (a1–a4) and (b1–b4) are pictures from the VEDAI and
forklift datasets, respectively.

3.1. Experimental Environment and Training Parameter Settings

The frameworks we used were Python 3.8.12, torch 1.8.1, and torchvision 0.9.1. The
operating system was Windows 10. The CPU was an i7-10700k. The graphics card was
an NVIDIA GeForce RTX 2070 Super. For each set of experiments, we used some of the
same initial training parameters as shown in Table 1. Among them, the optimizer chooses
SGD. The SGD optimizer is fast to train with low memory overhead. In addition, after
adding momentum, the convergence rate is faster and more stable than before, and it helps
to reduce the oscillation at the saddle point. Ashia C. Wilson’s [57] experimental results
show that in the non-adaptive method, SGD finds solutions in CNN training that are more
general and have smaller test errors than adaptive methods such as AdaGrad, RMSProph,
and Adam.

Table 1. Some initial training parameters.

Input Size Optimizer Momentum Learning Rate Decay Batch Size Training Epoch Training, Validation,
and Test Set Ratio

416 × 416 SGD 0.937 0.0005 4 100 8:1:1

3.2. Dataset

For ablation experiments and comparison experiments with other advanced detec-
tion methods, we used the Pascal VOC dataset. The Pascal VOC dataset is divided into
20 common categories and includes the VOC2007 and VOC2012 general object detection
datasets, which consist of 4952 and 16,552 annotated images, respectively.

The UAV aerial image dataset we used was the VEDAI dataset. This dataset, proposed
by Sebastien Razakarivony et al. consists of four distinct subsets. We selected small-sized
color images to train the model. The selected image size was 512 × 512 and consisted of
1246 annotated images. The dataset was divided into nine categories, including “other”.
The images included a variety of different backgrounds, and the detected vehicles had
different angles.

We built a forklift dataset based on drone aerial imagery. The images in the dataset
were taken by two professional UAV pilots who hold civilian UAV pilot certificates. The
UAV used for the shooting is a DJI Mavic 2. The shooting location is Dongfang Steel City in
Xishan District, Wuxi City. The target of the dataset was a forklift truck and consisted of
1007 annotated images. The image includes a forklift taken from various perspectives and
altitudes by the UAV. Forklifts are mainly small targets with different occlusions, rotations,
and dense arrangements. In addition, the datasets had different backgrounds, including
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different shooting times, shooting locations, and weather at the time of shooting. Since our
experiments relied on the accurate labeling of each object in the forklift dataset, we invited
two drivers responsible for filming to participate in the labeling of the dataset. First, we
annotated the entire dataset. To ensure consistency, the annotations were checked separately
by two drivers, who corrected errors such as under-, missing-, or mislabeled annotations.

3.3. Evaluation Indicators

Table 2 shows the parameters used to quantify the correctness of each model output
in object detection. Table 3 shows the model detection performance evaluation indicators.
In the experiments in this paper, we focused on mAP as a measure of model performance.

P = Precision =
TP

TP + FP
(19)

R = Recall =
TP

TP + FN
(20)

F1 =
2× Recall × Precision

Recall + Precision
(21)

AP =
∫

P(R) dR (22)

mAP =
1
C

C

∑
j

APj (23)

Table 2. Parameters used to quantify the correctness of the model output.

Parameter Actual Predicted

TP (True Positive) Positive Positive
FP (False Positive) Negative Positive

FN (False Negative) Positive Negative
TN (True Negative) Negative Negative

Table 3. The evaluation indicators of the model detection performance.

Evaluation Indicators Description Significance Calculation

Precision (P) Ratio between predicted positive
samples and actual positive samples.

The probability that all predicted
positive samples are actually

positive samples.
Equation (19)

Recall (R)
Ratio of positive samples with

accurate predictions to all positive
samples with accurate predictions.

The ability of the classifier to identify
positive samples. Equation (20)

F1 score Harmonic mean of precision
and recall.

F1 is a compromise between
precision and recall. Equation (21)

Average Precision (AP) Average of the precision of a
certain category.

Indicates how well the model
recognizes a certain category. Equation (22)

Mean Average Precision
(mAP)

Average of the sum of the APs of all
categories in the data set.

Measure how well the model is on
average across all categories. Equation (23)

3.4. Experimental Results
3.4.1. Ablation Experiments

With ablation experiments, we checked the usefulness of the new attention module
and the rest of the model’s improvements. Ablation experiments were performed on the
backbone and neck of the model, respectively, because our model improvements primarily
focused on them. The experiments in this part were conducted on the VOC2007 dataset.
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The training was carried out using the YOLOv4 backbone’s pre-training weights, and the
model’s backbone was not frozen, so the unfreezing training was performed directly.

We made the following improvements to the backbone: In the first step, appropriate
activation functions were selected and a new loss function was applied, then they were
merged together. In the second step, the ECA attention module and our proposed IECA
module were added, respectively. The modifications we made to the neck are as follows:
First, we added the ASFF module at the end of PANet. Second, we replaced the original
SPP module with the pyramid pool module. Table 4 shows the experimental results of the
ablation experiments.

Table 4. Results of ablation experiments.

Method
Modify

Activation
Functions

Modify
Loss

Function

Modify Activation
Functions and
Loss Function

Add ECA
Attention
Module

Add our
Proposed

IECA Module

Add
ASFF

Module

Replacing the SPP
Module with the

Pyramid Pool Module
mAP

YOLOv4 80.13%√
80.79%√
81.09%√
81.75%√ √
82.07%√ √
82.31%√
82.56%√ √
82.81%

YOLOD
√ √ √ √

83.19%

From Table 4, we can find that the mAP of YOLOv4 is 80.13%, the mAP of our proposed
method is 83.19%, and the mAP improved by 3.06%. Specifically, in the modification of
the backbone part, when suitable activation functions are used, the mAP of the model
improves to 80.79%. When the new loss function is applied, the mAP of the model improves
to 81.09%. When these two parts are merged together, the mAP of the model improves to
81.75%. Based on this step, we added the ECA attention module and our proposed IECA
module, and the detection accuracy was improved to 82.07% and 82.37%, respectively.
Through comparison, it can be found that our improved attention module is more helpful
for the improvement of model detection accuracy. In the modification of the model neck,
the mAP was increased to 82.81% through two-part improvements. Finally, we combined
all of the backbone and neck improvements to obtain the final detection model. The mAP
of this model improved to 83.19%.

In ablation experiments, we visualized YOLOv4, the model after adding ECA, and the
model after adding IECA. Using the results visualized using Grad-CAM [58], it was clear
that the network uses the extracted features to make judgments. The detection accuracy
and Grad-CAM masks for several classes in the dataset are given in Figure 8. After adding
the IECA module, the model’s Grad-CAM mask can better cover the target area, and the
extracted features are more discriminative. In addition, it can be seen from the numerical
value of the P that the detection accuracy also improved.

3.4.2. Comparison with Other Object Detection Algorithms

We verified the superiority of the proposed method by comparing it with several other
advanced detection methods. The detection methods chosen for comparison were: Faster R-
CNN, SSD, YOLOv3, YOLOv4-Tiny, YOLOv4, YOLOv5l, and YOLOv5x. The experiments
in this part were conducted on the VOC2007 dataset. When training each detection model,
the pre-training weights of each model backbone were used, and training was performed
on this basis. We did not freeze the backbone of the model and proceeded directly to
unfreeze training. Table 5 shows the experimental results of the comparative experiments.
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Figure 8. Results after visualizing the model: (a–e) show the detection accuracy and corresponding
masks for different classes.

Table 5. Experimental results of comparative experiments.

Method Backbone mAP

Faster R-CNN ResNet50 44.39%
SSD VGG16 72.26%

YOLOv3 Darknet53 69.00%
YOLOv4-Tiny Tiny CSPDarknet53 50.43%

YOLOv4 CSPDarknet53 80.13%
YOLOv5l CSPDarknet_l 80.01%
YOLOv5x CSPDarknet_x 82.87%
YOLOD Figure 6 83.19%

Table 5 shows that our proposed detection model outperformed many existing ad-
vanced object detection approaches in terms of mAP.

3.4.3. Experimental Results on the UAV Aerial Image Dataset

We improved on the YOLOv4 model and proposed a new UAV aerial image target
detection method. As a result, the performance of YOLOv4 and the proposed method on
UAV aerial images was compared in this experiments. Inspired by the idea of transfer
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learning, we first trained YOLOv4 and our proposed model on the VOC2007 and VOC2012
datasets. The current stage of training was based on the YOLOv4 backbone’s pre-trained
weights. The VOC2007 and VOC2012 datasets have a total of 21,504 annotated images. The
second step is to use the weights trained on the VOC2007 and VOC2012 datasets as the
pre-training weights of the model and train them on the VEDAI dataset and the forklift
dataset, respectively. We then set the epoch to 500.

Table 6 shows the experimental results for the VOC2007 and VOC2012 datasets. Our
proposed method improved the mAP by 1.99%.

Table 6. Results of training on the VOC2007 + VOC2012 dataset.

Method Dataset Used for Training mAP

YOLOv4 VOC2007 + VOC2012 dataset 87.35%
YOLOD VOC2007 + VOC2012 dataset 89.34%

Tables 7 and 8 show the results for the UAV aerial image dataset. Table 7 shows the
VEDAI dataset detection results, and Table 8 shows the forklift dataset detection results.

Table 7. Results of training on the VEDAI dataset.

Method Plane Camping Car Car Boat Truck Van Pickup Tractor mAP

YOLOv4 0.80 0.65 0.59 0.54 0.32 0.30 0.26 0.17 45.73%
YOLOD 0.84 0.61 0.57 0.51 0.44 0.41 0.32 0.23 49.12%

Table 8. Results of training on the forklift dataset.

Method mAP

YOLOv4 70.55%
YOLOD 71.97%

Tables 7 and 8 show that our proposed methods had a higher mAP. Among them, on
the VEDAI dataset, the mAP of YOLOv4 is 45.37%, and the mAP of our proposed method
is 49.12%, demonstrating an improvement of 3.75%. The mAP of YOLOv4 is 70.55% on the
forklift dataset, and the mAP of our proposed method is 71.97%, an improvement of 1.42%.
In Figures 9 and 10, we show some post-detection results.

It can be seen from the above experiments that the proposed method led to the highest
improvement on the VEDAI UAV aerial image dataset, which was 3.75%. The second
was the improvement in the PASCAL VOC dataset, which was 3.06%. On the forklift
dataset, the improvement was the least at 1.42%. The reasons for the analysis are as follows:
(1) since the design of the YOLOD detection method is mainly aimed at the characteristics
of the target in the UAV aerial image, the mAP improvement is the highest; (2) the PASCAL
VOC dataset contains far more images than the VEDAI and forklift datasets, which makes
the improvement on this dataset second only to VEDAI; (3) at present, the forklift dataset
we established contains few pictures and needs to be supplemented later. The detection
performance will also improve as the number of images increases.



Remote Sens. 2022, 14, 3240 18 of 22

Figure 9. Detection results on the VEDAI dataset: (a1–a8) and (b1–b8) are the detection results of
YOLOv4 and our proposed method, respectively.

Figure 10. Detection results on the forklift dataset: (a1–a8) and (b1–b8) are the detection results of
YOLOv4 and our proposed method, respectively.
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4. Conclusions

In this paper, we analyzed the shortcomings of current detection methods according to
the characteristics of UAV aerial images. We proposed a new method for UAV aerial images,
which were improved on the basis of YOLOv4. In the backbone, we added a new attention
module, the IECA module. This module efficiently utilized the interrelationships between
channels, which was helpful for model feature extraction. According to the characteristics
of different activation functions, we used HardSwish and Mish activation functions in the
shallow and deep layers of the network, respectively. This reduced model complexity while
also providing a good detection effect. When calculating the bounding box regression loss,
using the EIOU loss function speeds up the convergence and improves the localization
effect. At the neck of the model, the SPP module was replaced with a pyramid pooling
module, and an ASFF feature fusion module was added at the end. Such improvements
help to expand the receptive field of the model and strengthen feature fusion. We estab-
lished a forklift dataset based on drone aerial imagery, which consisted of 1007 annotated
images. We conducted a series of experiments on the PASCAL VOC, VEDAI, and forklift
datasets. By conducting ablation experiments, the effectiveness of the proposed attention
module and the rest of the improvements were verified. Among them, the improvements of
the activation functions and loss function were more universal. A well-designed activation
function is conducive to improving the propagation of gradients and reducing the compu-
tational cost of the model, and a well-designed loss function is conducive to measuring the
consistency of the prediction results with the real situation, making the target regression
more stable. Through comparative experiments, the superiority of the proposed model
among several other advanced detection methods was verified. Finally, the experimental
results for UAV aerial images demonstrated that the remaining improvements are more
related to the characteristics of UAV aerial images, which are suitable for images containing
rich, small targets and complex backgrounds. Compared with YOLOv4, this method has
good detection performance.

We will continue to research target detection methods for UAV aerial images in the
future. There is a need to better balance model complexity and detection accuracy, and to
validate the model with integrated data from several sources [59]. In this paper, although
the computational cost of the model was reduced in terms of the choice of activation
function, the rest of the improvements will lead to an increase in computational cost due to
the addition of modules. We will tweak the network structure even further to boost the
model’s detection performance in UAV aerial images.
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