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Abstract: China has implemented a series of forestry law, policies, regulations, and afforestation
projects since the 1970s. However, their impacts on the spatial and temporal patterns of forests
have not been fully assessed yet. The lack of an accurate, high-resolution, and long-term forest
disturbance and recovery dataset has impeded this assessment. Here we improved the forest loss and
gain detections by integrating the LandTrendr change detection algorithm with the Random Forest
(RF) machine-learning method and applied it to assess forest loss and gain patterns in the Zhejiang,
Jiangxi, and Guangxi Provinces of the subtropical vegetation in China. The accuracy evaluation
indicated that our approach can adequately detect the spatial and temporal distribution patterns in
forest gain and loss, with an overall accuracy of 93% and the Kappa coefficient of 0.89. The forest
loss area was 8.30 × 104 km2 in the Zhejiang, Jiangxi, and Guangxi Provinces during 1986–2019,
accounting for 43.52% of total forest area in 1986, while the forest gain area was 20.25 × 104 km2,
accounting for 106.19% of total forest area in 1986. Although the interannual variation patterns
were similar among three provinces, the forest loss and gain area and the magnitude of change
trends were significantly different. Guangxi has the largest forest loss and gain area and increasing
trends, followed by Jiangxi, and the least in Zhejiang. The variations in annual forest loss and gain
area can be mostly explained by the timelines of major forestry policies and regulations. Our study
would provide an applicable method and data for assessing the impacts of forest disturbance events
and forestry policies and regulations on the spatial and temporal patterns of forest loss and gain
in China, and further contributing to regional and national forest carbon and greenhouse gases
budget estimations.

Keywords: forest gain; forest loss; LandTrendr; Random Forest (RF); forest policies; subtropical China

1. Introduction

The earth is becoming greener, and China is regarded as the major contributor to this
trend [1,2]. According to the 1st and 9th National Forest Inventory (NFI), forest coverage in
China has increased from 12.7% in 1976 to 22.96% in 2018. Unlike other countries, increasing
forest resources in China were primarily owed to the issuance and adjustment of national
forestry policies [3–5]. During the past half century, China has put forward a series of
forestry policies and regulations, such as timberland base shifting, “grain to green” program
(GTGP), and Natural Forest Conservation Program (NFCP). In addition, many regional and
national afforestation projects have been implemented, such as the Three-North Shelterbelt
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Project in northern, northeastern, and northwestern China, Project for Fast-growing and
High-yield Plantation in the Key Areas (FHPKA), and Shelterbelts Project along the Upper
and Middle Reaches of the Yangtze River [3,6–8]. The implementations of these forestry
policies and projects had not only greatly improved forest quality and quantity, but also
significantly changed the structure and function of forest ecosystems in China [1,3,9–12].
Meanwhile, forest losses in China were also increasing due to forestry policies and intensive
disturbance events such as land use change, insects and diseases, fire, strong winds, and
harvesting [12]. Although the total forest area was increasing, the natural forest area
was decreasing and forest age became younger under both the influences of both forestry
policies and disturbances. For example, the “three determinations” policy (i.e., determining
the rights for forest land property, privately planted forests, and forestry production) in
1981 [13] and the collective forest tenure reform (CFTR) policy in 2003 have caused sudden
increases in forest harvesting and area losses [5,14,15]. Diseases outbreaks have affected
22,954 km2 of forest area in 2019, and insects and pests have affected 81,146 km2 of forest
area according to the NFI report. In addition to forestry policies and disturbances, other
factors such as elevation, local economic development condition, and local forestry policies
were reported to affect forest gain and loss [16–18]. All above factors could greatly affect
the spatial and temporal patterns in forest gain and loss at different scales; however, few
regional studies have assessed their impacts in China [19]. The lack of a spatiotemporally
explicit and high resolution forest gain and loss dataset is the main impediment for filling
this knowledge gap. Forest loss and gain cannot be fully reflected by many existing land
use and cover datasets [19–21], which can only reflect the long-term land cover changes
from or to forests but not be able to track the short-term changes in forest status due to
scattered and short-lasting disturbance events.

With the rapid progress in remote sensing detection technology and increasing publi-
cally available satellite images, the remote sensing approach has been widely applied to
detect forest gain and loss at local, regional, national, and global scales [22–25]. In these
studies, many satellite platforms were applied, such as AVHRR, MODIS, Landsat, SPOT,
Sentinel, and Worldview. Due to its long-term history and relatively high spatial and
temporal resolution, Landsat imagery was the most popular platform used for detecting
forest loss and gain at regional, national, and global scales [24,26–29]. The early detec-
tion methods of forest loss and gain were mainly based on dual-temporal images, which
mainly obtained the change area by comparing two period classified images, or computing
the image difference, ratio, and canonical correlation changes. More recently, the time
series analysis method has been widely applied to identify forest disturbance and recovery
through background noise and time-series trajectories of abrupt changes. Many change de-
tection algorithms were developed based on the time series satellite images, such as BFAST
(Breaks for Additive Season and Trend Monitor) [30], LandTrendr (Landsat-based detection
of Trends in Disturbance and Recovery) [31], VCT (Vegetation Change Tracker) [27], and
CCDC (Continuous Change Detection and Classification) [32]. Different wavelength bands,
vegetation indices, image conversion processing, and sub-pixel variable ensembles were
applied in these change detection algorithms, which greatly improved the automation and
accuracy of forest loss and gain detection. Among these algorithms, LandTrendr solely
requires one or two years to input a cloudless image or multiple cloud-covered images, and
may not only capture the long-term slow forest changes but also detect the mutation change
trend, and thus gains a better applicability [22,31,33]. At the early stage, LandTrendr only
used the Normalized Burn Ratio (NBR) vegetation index to detect the maximum change
magnitude and thus determine the forest loss and gain [31,34]; however, it is likely that
a single spectral index is insufficient to adequately characterize forest loss and gain [35].
Cohen et al. [18,35] demonstrated that the use of a single algorithm with multiple indices to
employ ensemble stacking can improve the disturbance detection. They identified six most
important factors including NBR, reflectance of green band (Band2), short-wavelength
infrared band 1 (Band5), Tasseled Cap index of greenness (TCG), brightness (TCB), and
wetness (TCW) for the ensemble stacking. Based on these input variables, they applied the
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Random Forest (RF) machine-learning method for the secondary classification of forest loss
and gain. In addition, several other studies have also proved the better performance of
this integrated approach. For example, [36] proposed an ensemble approach for predicting
disturbance and subsequent recovery levels for each disturbed pixel, and argued that this
approach could simultaneously describe the levels of both disturbance and subsequent
recovery as a single hybrid pattern; [37] developed the integrated approach between the
LandTrendr and gradient nearest neighbor (GNN) imputation method to detect large tree
and snag distributions; [38] detected forest harvest and post-harvest recovery in Japan
using the integrated RF and LandTrendr approach, and concluded that this approach can
provide valuable information on a country-wide replantation activity in harvest areas.
However, due to the more complex terrain, forest types, and climate conditions in China,
our previous study [16] indicated that some other factors such as elevation and image
textures could also be important factors for detecting forest loss and gain in China.

At present, there are only a few studies in China that have assessed the spatial and
temporal patterns of forest loss and gain on a small scale, such as mountains, counties,
and multi-counties [17,39–42]. Most of these studies directly adopted the forest change
detection algorithms in China and the parameters and methods were not localized and
improved. At present, the Global Forest Change (GFC) product including both forest
loss and gain in 2001–2020 was available for providing forest loss and gain data covering
the entirety of China; however, this product has not been specifically validated based on
local forest state data [43]. Based on multiple data comparisons, several previous studies
have also indicated that the GFC product significantly underestimated the forest loss and
gain area at stand [44], national [19,45], and global scales [46]. In addition, this product
only covered recent years and missed the 1980–2000 period when China has experienced
stronger disturbance and initializations of several afforestation projects [16]. Therefore,
it is necessary to localize and improve the forest change detection methods for China by
considering the complicated forest and topographic conditions and training and evaluating
the algorithms using more intensive local observational data, and generate provincial and
national forest loss and gain dataset using the validated methods.

The forest coverage (>59%) in the Jiangxi, Guangxi, and Zhejiang Provinces ranks in
the top five highest provinces in China and thus have more forest resources compared with
other provinces in China. Although all three provinces were influenced by similar national
forestry laws, policies, and regulations, the forestry productions in these three provinces
have witnessed very different trajectories due to the large differences in their execution
capability of the national forestry laws, policies, regulations, economic development levels,
population growth rates, provincial forestry policies, and topographic conditions. The
spatiotemporal patterns in forest cover and the impacts of these socioeconomic factors are
still unclear. Based on all available Landsat time-series images and Google Earth Engine
(GEE) platform, our study intended to recalibrate the LandTrendr change detection algo-
rithm and identified the most important variables in RF classifier for their applications in
subtropical China. Specifically, our objectives were to (1) detect the forest loss and gain
in the Jiangxi, Guangxi, and Zhejiang Provinces of subtropical China using an integra-
tive LandTrendr and RF method and further evaluate the performance of this approach;
(2) analyze and compare the spatial and temporal patterns of forest loss and gain in the
three provinces during 1986–2019; and (3) identify the impacts of major forestry policies on
the temporal change patterns of forest loss and gain area. In this study, forest loss denotes
the stand-replacing disturbance (tree loss fraction > 70%), including both permanent loss
due to land conversion and temporary loss followed by tree regeneration. Forest gain
denotes the inverse of loss, or the establishment of tree canopy from a non-forest state [23].
Our study establishes a well-evaluated integrative approach for detecting forest loss and
gain in China, and provides accurate data for the establishment of national level forest
loss and gain dataset, reconstruction of forest age structure, and large-scale modeling of
forest carbon stocks and fluxes. In addition, our study results can also provide an accurate
assessment on the effectiveness of major forestry policies and regulations since the 1980s.
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2. Materials and Methods
2.1. Study Region

The study region is located in the three provinces of subtropical China, including Zhe-
jiang, Jiangxi, and Guangxi Provinces (Figure 1). All three provinces are located in the sub-
tropical monsoon climate region. Zhejiang Province (118◦01′E–123◦10′E, 27◦02′N–31◦11′N)
is located on the southeastern coast of China. This province has a complex terrain, with
mountainous/hilly and plain terrains accounting for 70% and 23%, respectively. The
average annual temperature is about 18 ◦C and annual precipitation ranges between
1000 and 1900 mm. The mean annual sunshine hours range between 1710 and 2100 h.
Jiangxi (113◦34′E–118◦28′E, 24◦29′N–30◦04′N) is located in the center of southeastern
China. Mountainous, hilly, and plain area accounts for about 36%, 42%, and 12% of
the terrains, respectively. The average annual temperature ranges between 16 and 20 ◦C
and annual precipitation ranges between 1300 and 2000 mm. The Guangxi Province
(104◦26′E–112◦04′E, 20◦54′N–26◦24′N) is located in the southern coast. Mountainous, hilly,
and plain area accounts for about 57.8%, 28.9%, and 6.3% of the terrains, respectively.
The province is mostly karst landform, accounting for about 38% of the land area. Most
areas of Guangxi have a subtropical monsoon climate, and a few areas are affected by the
tropical monsoon climate and are rich in heat. The average annual temperature ranges
between 17 and 23 ◦C and annual precipitation ranges between 1400 and 2100 mm, with
most (>70) rainfall occurring in summer. According to the 9th NFI report (2014–2018)
(http://forest.ckcest.cn/sd/si/zgslzy.html; accessed on 15 March 2022), the forest coverage
rates in Zhejiang, Jiangxi, and Guangxi are 59.43%, 61.16%, and 60.17%, respectively, rank-
ing as the fifth, second, and fourth, respectively, among all China’s provinces. The main
tree species are subtropical evergreen broad-leaved forest and evergreen needleleaf forest.
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Figure 1. The location of study region and the spatial distribution of different types of sampling plots.

Guangxi Province is oriented as the new timberland base for China under the support
of “Project for Fast-growing and High-yield Plantation in Key Areas” (FHPKA), one of
the ten biggest forestry projects in China. The Guangxi forest land area only accounts for
about 5% of the national total forest area, but it produced about 50% of the national total
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wood products in 2020. The main fast-growing and high-yield tree species is eucalyptus
(Eucalyptus robusta Smith), which has a short rotation age of around 6–8 years and accounted
for about 70% of the total wood production in Guangxi in 2017. The gross forestry output
value has increased from 1.81 billion RMB in 1990 to 43.74 billion RMB in 2020, with
24 times of increases. The gross forestry output value in Zhejiang Province has increased
from 1.60 billion RMB in 1990 to 18.96 billion RMB in 2020, with 12 times of increases.
The policy for public welfare forest classification and conservation in Zhejiang started
in 2001, which is the earliest province in China. The forestry production in Zhejiang
mainly targeted to realize ecological forestry, high-income forestry, and humanity forestry.
Non-destructive and sustainable forest resource usage became the top priority, and thus
the forestry output value was mainly from the bamboo forests and high-profit economic
forests. Jiangxi Province was in the transitional stage from forestry-based economy to
agriculture-based economy. The gross forestry output value has increased from 2.40 billion
RMB in 1990 to 36.79 billion RMB in 2020, with 15 times of increases.

2.2. Data Sources and Descriptions
2.2.1. Satellite Data and Preprocessing

The acquisition and processing of remote sensing images and the operation of al-
gorithms were conducted on the GEE platform (https://earthengine.google.com/; ac-
cessed on 1 February 2022). GEE is a PB-scale scientific analysis and geospatial data
set visualization platform, including Landsat, MODIS, Sentinel, and other massive ge-
ographic and remote sensing data, and has powerful data storage and computing ca-
pabilities [47]. In order to reduce the influence of atmospheric solid or liquid aerosols
scattering and Rayleigh scattering, the SR data of the ground surface reflectance that
have been corrected for atmospheric and radiation are selected [48,49]. We collected the
tiles with IDs: “LANDSAT/LT05/C01/T1_SR”, “LANDSAT/LE07/C01/T1_SR”, “LAND-
SAT/LC08/C01/T1_SR”, and “USGS/SRTMGL1_003”, which were corresponding to the
Landsat5 TM, Landsat7 ETM+, Landsat8 OLI, and the 30-meter resolution SRTM DEM
data [49,50]. The surface reflectivity of Landsat5 TM and Landsat7 ETM+ was obtained by
radiation calibration and atmospheric correction using the LEDAPS model algorithm [49].
In order to reduce the interference caused by phenological changes while ensuring the
image quality requirements, Landsat images of the growing seasons from May to October
each year were selected to construct the Landsat time series stack (LTSS). In order to re-
duce the error caused by the sensors during change detection and construct Landsat time
series data with more consistent radiation characteristics, this study used the conversion
coefficient from Roy et al. [51] to process the Landsat8 OLI data. The preprocessing such
as cloud masking, shadow removal, stitching, and cropping were already included in the
GEE LandTrendr program package [52]. Finally, the numbers for available images from
different Landsat platforms in each year were shown in Figure 2.

2.2.2. Training and Validation Sampling Data

A large number of sample point data were collected for the training of the RF classifier
and the validation of the classification results. The sample plots came from three sources,
including local forest management inventory plots, NFI (National Forest Inventory) plots,
and the visual interpretation plots based on high resolution satellite images from Google
Earth Pro platform. A total of 2516 sample points were obtained, including 884 forest recov-
ery sample points, 967 forest loss sample points, and the rest were persistent forest sample
points (Table 1). Based on the high resolution satellite images (spatial resolution < 5 m;
mostly Quickbird imagery), the 10 m Sentinel-2 panchromatic images, and 30 m Landsat
images on Google Earth Pro, we visually interpreted the forest loss and gain plots. We
first identified all available high-resolution images during the 2010–2019 period, and then
compared the images at two time periods (<3 years interval) to identify the forest loss
and gain area and occurrence time (year). During the visual interpretation, three adjacent
sample periods were selected (i.e., pre-disturbance, post-disturbance, and disturbance year).

https://earthengine.google.com/


Remote Sens. 2022, 14, 3238 6 of 27

The high-resolution images were not always available at the <3 years interval; therefore,
to more accurately determine the actual loss and gain years, we also loaded the available
10 m Sentinel-2 panchromatic images (only for the period after 2016) and 30 m Landsat
images (true color composite band). Under the cases with few available high-resolution
images (i.e., the span years for two high-resolution images are greater than 3 years), these
Sentinel-2 and Landsat images will be used to assist the determination of forest loss and
gain years. Use the Landsat images as a boundary map, we only selected sample plots at
the area with forest loss or gain greater than 30 m × 30 m, and with loss or gain fraction
greater than 70% at a 30 m × 30 m pixel level. We classified three types of forest status: the
forest loss (deforestation), forest gain (afforestation or reforestation), and persistent (stable)
forest. Totally, 1258 sampling plots were visually interpreted, among which 472 plots for
forest loss, 513 plots for forest gain, and 273 plots for persistent forest (Table 1).
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1986–2019 in the study region.

Table 1. The sources, categories and numbers of sampling plot data. NFI: national forest resource
inventory; LFMI: local forest management inventory.

Categories FGV FGT FLV FLT PFV PFT Total

NFI 13 46 20 42 131 79 331
LFMI (Linan) 23 65 24 78 15 52 257

LFMI (Jingdezhen) 28 83 37 111 19 17 295
LFMI (Longnan) 19 59 18 57 17 18 188
LFMI (Yihuang) 20 56 18 49 21 23 187

Visual interpretation 213 259 220 293 117 156 1258
Total 316 568 337 630 320 345 2516

This study obtained the 6th (1999–2003) NFI plot data. The NFI plot size is about
800 m2, which is close to a Landsat grid cell size (900 m2). There were more than ten
thousand NFI plots for the three provinces; however, most plots consisted of persistent
forest area. Eventually, we collected 331 sample plots from NFI, among which were 59 plots
for forest loss, 62 plots for forest gain, and 210 plots for persistent forest.

The Local Forest Management Inventory is usually carried out at the county level for
the purpose of better organization and management of local forest resources. Compared
with the NFI the basic unit of the Local Forest Management Inventory is the small class
(forest stands with relatively consistent attributes), which can conduct a more in-depth
investigation of the forest resources in the entire county. The accuracy of the recorded forest
change information is sufficient for Random Forest training and result verification.

The spatial distribution training and validation plots were shown in Figure 1. All
sample plots were further divided into 6 categories according to their usages: persistent
forest training (PFT), persistent forest validation (PFV), forest loss training (FLT), forest
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loss validation (FLV), forest gain training (FGT), and forest gain validation (FGV) (Table 1).
The recorded information for all plots included: the coordinates, forest change category
(gain, loss, or persistent forest), and the year of gain or loss. This information will be used
to match the LandTrendr and RF classifier outputs.

2.2.3. Other Data Sources

This study collected the inventory data from the 9 times of NFI to compare our classi-
fied results. The NFI was conducted every five years, and hundreds of thousands of fixed
sample plots were deployed across the country. The forest status (loss and gain) information
was recorded for all forest plots. Based on these plot data, the area of forest loss due to dif-
ferent disturbances (i.e., fire, insect, disease, and harvesting) and gain (i.e., afforested area)
at the provincial and national levels was extrapolated based on statistical methods and was
available for downloading from the NFI website (http://forest.ckcest.cn/sd/si/zgslzy.html;
accessed on 15 March 2022). In addition, the forestry output values and annual planted
forest area in each province were also downloaded from the NFI website. These data gener-
ally covered the period from 1990 to 2018. The global forest change (GFC) data product
(version 1.7) [23] was also downloaded from the GEE platform to compare our detected
forest loss and gain at both spatial and temporal scales from 2001 to 2019. The tree canopy
change data from Song et al. [53] were also downloaded and analyzed for comparisons of
forest gain area.

There were over 289 forest laws, policies, and regulations that were put forward
during 1949–2020 [6]. Among them, the major forestry laws, policies, and regulations that
can affect forest loss and gain in the three provinces were selected and are described in
Table 2.

2.3. Data Processing

The approach by integrating the LandTrendr algorithm with the RF method was
applied to detect forest loss and gain. The main flow work is listed in Figure 3. Below, we
briefly described the procedures for the integrated LandTrendr and RF approach. More
detailed descriptions can be referred to our previous study [16].

2.3.1. Extraction of Forests

The non-forest land has spectral characteristics close to forests, and it is easy to be
classified as forest after changes in some phenological or man-made images during forest
change detection [23]. Therefore, exclusion of other land cover types could reduce some
uncertainties for forest loss and gain detection. The RF classifier was applied for forest
classification. The sixth NFI (1989–1993) plot data (2300 forest plots) were used as training
samples to classify forest distribution in 1986, while the 665 training and validation sample
plots (Table 1) were used as training to classify forest distribution in 2019. In order to make
the extraction result of the forest more accurate, in addition to the band, we also use the
vegetation index, texture information, and elevation as classification features. Combining
the forest extraction results in 1986 and 2019, if both classifications are classified as non-
forest, the raster will be eliminated. Mask the annual composite image with the last retained
forest distribution map, then the remote sensing image containing only the forest area is
obtained to participate in the subsequent interference detection and analysis calculation.

2.3.2. LandTrendr Algorithm and Implementation

The LandTrendr time series segmentation algorithm was considered to be one of the
best algorithms for detecting both slow and abrupt changes of forests [31]. A set of spectrum-
time segmentation algorithms in LandTrendr can effectively detect forest interference, and
can be used to generate trajectory-based spectral time series data without interannual
signal noise [31,34]. The algorithm can not only identify short-term severe disturbances but
also long-term slow vegetation change events. The LandTrendr version on GEE was from
Kennedy [52]. This version has simplified the Landsat image pre-processing steps, allowing

http://forest.ckcest.cn/sd/si/zgslzy.html
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focuses on the translation of the core temporal segmentation algorithm. The implementation
of LandTrendr’s algorithm included the following steps [31,35,52] (Figure 3): (1) removal of
the spikes (i.e., the noises caused by cloud, snow and shadows): A de-spiking algorithm was
developed in LandTrendr to remove the abrupt noises. (2) Identify potential segmentation
points (vertices): A regression-based vertex identification strategy is used to identify
vertices. The excessive vertices are removed based on a criterion. (3) Fit the spectrum
trajectory: After the segmentation points are determined, a series of fitting methods are
used to determine the spectral index value of each segmentation point, thereby forming the
best continuous spectral index trajectory in the entire time series. (4) Simplify the models
and select the best model: Fitting the spectral trajectory obtains the most complicated
segmentation model, so the model should be simplified to highlight the spectral trajectory
characteristics and to filter the noises.

Table 2. The selected major forestry policies and regulations that affect forest loss and gain in the
subtropical China.

Law, Policies, Regulations Timeline Key Policies Effects

Decision on Several Issues
Concerning the Protection and

Development of Forests
1981 The three

determination policy
The private party have the right

to own and manage forests

Forestry Law of the People’s
Republic of China 1984 The first forestry law in China Constraints on forest activities

Guidelines on Enhancing the
Management of Collective Forest

Resources in the South and
Prohibiting of the Indiscriminate

Tree Felling

1987

The three determination
policy was found not suitable
and stopped; the regulations

for forest cutting quota

Enhanced forest management
and protection

Notice on Protecting Forest
Resources and Stopping

deforestation, Reclamation and
Indiscriminate Occupation of

Forest Land

1998 Trial time for the NFCP Began to protect forest resources
especially natural forests

Regulations on Returning
Farmland to Forests 2002 The starting time of

GTGP policy Recover forest coverage

Project for Fast-growing and
High-yield Plantation in Key

Areas (FHPKA)
2002 The starting time for shifting

timberland base to the south
To protect natural forest resource

in northern China

Decision on Accelerating Forestry
Development 2003 The trial time for the collective

forest tenure reform (CFTR)

Separation of ownership,
contracting right and

management right of collective
forest land

Opinions on Comprehensively
Promoting the Reform of

Collective Forest Right System
2008 Fully implementation of

the CFTR
The CFTR policy was found

effective and thus widely applied

Outline of National Forest Land
Protection and Utilization Plan 2010 The starting time for second

stage of the NFCP Full implementation of the NFCP

Guidelines for National Public
Welfare Forests Management 2013 The starting classification of

public welfare forests

More strict conservation for
restoring forest

ecological function
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Table 2. Cont.

Law, Policies, Regulations Timeline Key Policies Effects

The Guidelines for the Reform of
State-owned Farms 2015 Reform of state-owned forest

farms (RSFF)

Forest farms shift from a
profit-making agency to forest

protection agency

Regulations on the
Implementation of the Forestry

Law of the PRC China
(amendment 2016)

2016 Institutional guarantee for
deepening forestry reform

Protect forest resource and realize
ecological civilization
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with the Random Forest machine-learning method. Note: NBR, TCB, TCG, and TCW are vegetation
indices. Green: green band (Band2); SWRI1: short-wavelength infrared band 1 (Band5); RF: Random
Forest; Yod (year of detection), Mag (magnitude), Dur (Duration), Prevalue, and Dsnr (Detail Signal
Noise Ratio) were the outputs from LandTrendr.
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Regularly, the single NBR index was used to detect forest loss and gain in LandTrendr [31,34].
However, Cohen et al. [18,35] found that the single NBR could cause large errors due to the
image quality; instead, the use of multiple indices to employing ensemble stacking can improve
the disturbance detection. We chose the index combination with the lowest overall error as
suggested by Cohen et al. [18,35] including TCB, TCG, TCW, NBR, green band reflectance
(Band2), shortwave infrared band 1 (SWIR1 or Band5) to feed and run the LandTrendr algorithm.
The parameters including max_segments (6), despike (0.8), pval (0.05), and recovery_threshold
(0.5) for LandTrendr were tested and slightly modified based on the default values provided
by Cohen et al. [18,35]. The output results were an array images with 5 outputs × N years.
These output variables are yod (year of detection), mag (magnitude), dur (duration), preval
(prevalue), and Dsnr (Detail Signal Noise Ratio). Each grid of the outputs includes a series
of segments. We used five or four years as a time window to extract the maximum change
magnitude (decrease or increase) within a window based on each of the 6 input variables. Then,
we exported the magnitude data for each five year period (1986–1990, 1991–1995, 1996–2000,
2001–2005, 2006–2010, 2011–2015, 2016–2019). Due to the difficulty in detecting forest recovery
in a shorter time span for the 2016–2019, the detected forest gain patterns in 2016–2019 were
not analyzed in this study. In the ordinary LandTrendr algorithm, the forest gain and loss are
identified based on the magnitude data for NBR [28,31], and the Yod with the largest segment,
which represents the maximum change of NBR in a time window, is considered as the year
with loss or gain. However, not all these identified largest segments are actually forest loss or
gain. Some of the identified segments may be due to the issues of image quality or other noises.
Other indices are necessary to be used as complementary evidence [35]. Therefore, all segmented
outputs from 6 indices were used as input variables to further make decisions on forest loss and
gain in the RF classifier.

2.3.3. Secondary Classification Using the RF Method

The RF classifier was further used to identify the final forest loss and gain based on
the LandTrendr results. The LandTrendr obtained segmented outputs including mag, dur,
preval, and dsnr for each index and totally 24 variables (4 outputs× 6 indices) were used as
the inputs in the RF classifier. In this study, a 5-year segment window was applied, so the
RF classifier was run every 5 years. Except for the outputs from LandTrendr, other assisting
variables including 8 image texture variables, elevation and slope were also used as the
input variables of RF. These assisting variables have also been used in previous studies
to detect forest loss and gain [33,36]. The 1543 training samples (Table 1; Figure 1) were
used as training for the decision making algorithm in the RF classifier. In the RF classifier, it
randomly chooses 80% of the training points to train the algorithm and the remaining 20%
points are used to cross-validate the fitted algorithm. If the cross-validation accuracy is
higher than 90%, all training points are used again to obtain the final algorithm. Otherwise,
the parameters for NumberOfTrees and VariablesPerSplit will be automatically adjusted
until the accuracy meets the requirements. The RF outputs variables include forest loss,
gain, persistent forest, and persistent non-forest. Due to the limitations of image quality
and the LandTrendr algorithms, our detected forest loss and gain area only covered those
with greater than 70% tree loss or gain within each pixel. In another word, our study can
only accurately monitor the forest loss and gain due to stand-replacing events.

2.3.4. Post-Processing and Accuracy Assessment

Due to the likely mixture pixel issue, image quality, system errors, and other unidenti-
fied issues, the identified forest loss and gain pixels were widely scattered or fragmented.
We applied the minimum mapping unit (MMU) filtering to remove these dispersed pix-
els [35]. The minimum unit is set as 4 pixels (0.36 ha) to perform the MMU filtering.
The outputs after MMU filtering were the final products for forest loss and gain during
1986–2019.
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Based on the 973 validation sample points (Table 1) and selected 351 pixels from GFC
product, the classification accuracy was assessed. The validations were performed by
separating the loss, gain, and persistent forest categories (Table 3). Specifically, for the
validations using sample points, the producer and user accuracies for forest loss were about
94% and 95%, respectively; the producer and user accuracies for forest gain were 94% and
93%, respectively. The overall accuracy and Kappa Coefficient for both forest loss and gain
were about 93% and 0.89, respectively. The detected results were further compared with
the results from GFC product [23]. The comparison indicated that the overall accuracy and
Kappa Coefficient for both forest loss and gain were 91% and 0.86, respectively, suggesting
a well-match between the GFC product and our detected results. Overall the accuracy
assessment results indicated that the integrated LandTrendr and RF method can adequately
detect forest loss and gain. Our sampling strategy was based on an assumption that
the plot assemblage is sufficiently similar to the population; however, this assumption
cannot be fully tested by our sampling design. The sample plot numbers were limited and
locations were based on the availability of high-resolution images (not completely random).
Therefore, our inference for the accuracy assessment may be slightly biased.

Table 3. Accuracy assessment confusion matrix for forest loss and gain classification results. Note:
the pixel values were compared for the GFC product.

Data Sources Change Types Loss Gain Persistent Produce
Accuracy

User
Accuracy

Overall
Accuracy

Kappa
Coefficient

Sampling
points

Loss 301 4 11 95% 94%
93% 0.89Gain 6 314 17 93% 94%

Persistent 12 15 293 92% 91%

GFC product
Loss 114 2 4 95% 93%

91% 0.86Gain 3 100 8 91% 89%
Persistent 5 12 103 86% 90%

We have evaluated the forest change detection mechanisms in LandTrendr in our
previous study for Jiangxi Province alone [16]. Based on the three selected disturbed
forest locations, here we further evaluated the change detection mechanism (Figure 4).
Comparing with the high-resolution, Landsat images were not very clear and had some
mixed pixels, but the forest loss area can still be easily and accurately delineated based
on Landsat images, only showing some mismatches for the mixture pixels at the edge of
forests. Compared with the GFC product, our detected forest loss area was more matched
with the visually interpreted forest loss boundary at spatial scale. The fitting mechanisms
based on NBR values were further evaluated at the selected sample plots. The results
indicated the fitted disturbance trajectories from LandTrendr can successfully detect the
forest loss in the years 2016, 2018, and 2019 at the forests in Ningming County, Yongfu
County, and Rong County, Guangxi Province.
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Figure 4. The comparisons of detected forest loss area with the GFC product at selected disturbance
areas in (a) Ningming County, (b) Yongfu County, and (c) Rong County in Guangxi Province. Note:
the red dots are the sampling plots, which are also the points for fitting the disturbance trajectories;
the first column is the Google HD images; the second column is the Landsat true color composite
images; the third column is the detected forest loss area in this study; the fourth column is the
GFC forest loss area. The fifth column is the LandTrendr fitted disturbance trajectories based on
NBR alone.

3. Results
3.1. Spatiotemporal Patterns in Forest Loss Area

The total forest loss area including both temporary and permanent (land use change)
loss was 0.64 × 104 km2 in Zhejiang Province during 1986–2019, with a mean annual loss
rate of 188 km2 (0.46%; Figures 5 and 6). This accounted for about 15.53% forest area in
1986, implying that 15.53% of forest area has been disturbed during the study period. The
calculated permanent loss area was 5097 km2, which accounts for about 79.63% of the total
loss area, indicating that most of lost forest area in Zhejiang was due to land use change.
The detected annual forest loss area showed no obvious change trend during 1986–1999,
while a sharp decline from 2000 to 2003. Forest loss area showed an increasing trend from
2003 to 2008, and then kept no obvious change trend. Overall, the forest loss area showed a
significant increasing trend (slope = 8.30 km2/yr; R2 = 0.29; p < 0.05) from 2003 to 2019. The
highest loss area (379 km2) occurred in 2017.
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Figure 5. Interannual variations in detected forest loss area (km2) in Zhejiang, Jiangxi, and Guangxi
Province during 1986–2019.
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Figure 6. Interannual variations in detected forest loss fraction (%) relative to forest area in 1986 in
Zhejiang, Jiangxi, and Guangxi Province during 1986–2019.
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The total forest loss area was 1.94 × 104 km2 in Jiangxi Province during 1986–2019,
with a mean annual loss rate of 572 km2 (0.74%). This accounted for about 25.02% forest
area in 1986. The calculated permanent loss area was 5880 km2, which accounts for about
30.24% of the total loss area, indicating that most of lost forest area in Jiangxi was due to
temporary disturbance. The detected annual forest loss area showed a rapid decline from
1987 to 2003, while an obvious increasing trend was found from 2003 to 2016, and then
kept a slight decline since 2017. Overall, the forest loss area showed a significant increasing
trend (slope = 54.56 km2/yr; R2 = 0.69; p < 0.01) from 2003 to 2019. The largest loss area
(1399 km2) occurred in 2016, and the forest loss area in 1987 (977 km2), 2001 (877 km2), and
2008 (1181 km2) were also very large, indicating stronger disturbance in these years.

The total forest loss area was 5.72 × 104 km2 in Guangxi Province during 1986–2019,
with a mean annual loss rate of 1682 km2 (2.34%). This accounted for about 79.62%
forest area in 1986. The calculated permanent loss area was 4806 km2, which accounts for
about 8.40% of the total loss area, indicating that most of lost forest area in Guangxi was
due to temporary disturbance. The detected annual forest loss area showed an increase
from 1986 to 1988 and then a rapid decline from 1988 to 2003, with large interannual
variation. An obvious increasing trend was found from 2003 to 2017, and then kept a
slight decline since 2018. Overall, the forest loss area showed a significant increasing
trend (slope = 139.70 km2/yr; R2 = 0.70; p < 0.01) from 2003 to 2019. The largest loss area
(3779 km2) occurred in 2017, and the forest loss area in 1987 (2697 km2), 1988 (3066 km2),
1996 (877 km2), and 2008 (2586 km2) were also very large, indicating stronger disturbance
in these years.

Totally, forest loss area was 8.30× 104 km2 in the Zhejiang, Jiangxi, and Guangxi Provinces
during 1986–2019, accounting for 43.52% of total forest area in 1986 (19.08 × 104 km2). Com-
pared with Jiangxi and Zhejiang, Guangxi Province, where is the current national timber base,
has the largest forest area, loss area, and loss fraction in all years (Figure 5). The forest area in
Jiangxi Province (7.77× 104 km2) is significantly larger than Zhejiang (4.12 × 104 km2). Jiangxi
Province has smaller loss fraction than Zhejiang Province during 1989–2000, while it was oppo-
site during other years (Figure 6). The increasing trends in loss area during 2003–2019 ranked
by Guangxi (139.70 km2/yr) > Jiangxi (54.56 km2/yr) > Zhejiang (8.32 km2/yr). Although the
loss area and change trends were different among three provinces, the interannual variations
were quite similar. All provinces observed a significant increasing trend in forest loss area since
2003 and forest loss area was larger in 2008 and 2017.

At spatial scale, most forest loss areas were located in the forest edge or near the human
settlements in all three provinces (Figures 7 and 8). In Zhejiang Province, larger forest loss
areas were distributed in the northwest and southwest (Figure 8). At city level, Lishui
City, located in the southwest, has the largest total loss area (2217 km2) and loss fraction
(20.38%) during 1986–2019. In Jiangxi Province, larger forest loss areas were distributed in
the central west and south. At city level, the largest total loss area occurred in Ganzhou
City (5438 km2) and Jian City (3981 km2); however, the largest loss fraction occurred in
Xinyu City (30.32%). In Guangxi Province, forest loss areas were scattered across the entire
province, with relatively smaller area in the central. At city level, the largest total loss area
occurred in Baise City (8619 km2) and Hechi City (7085 km2); however, the largest loss
fraction occurred in Yulin City (49.16%).

3.2. Spatiotemporal Patterns in Forest Gain Area

The total forest recovery area including both temporary (reforestation) and permanent
(afforestation) gain was 2.54 × 104 km2 in Zhejiang Province during 1986–2015, with a
mean annual gain area of 848 km2 (2.06%; Figure 9). This accounted for about 61.73%
forest area in 1986, implying that 61.73% forest area has been gained during the study
period. The calculated permanent gain (afforestation) area was 2.02 × 104 km2, which
accounted for about 79.55% of the total recovery area, indicating that most recovered forest
area in Zhejiang was due to afforestation. The detected annual forest gain area showed a
sharp decline from 1986 to 1991, while a larger interannual variation was observed during
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1992–2003. The gained forest area showed a slight (p = 0.69) increasing trend from 2003 to
2015. The highest gain area (2902 km2) occurred in 1987.
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Figure 9. The interannual variations in forest gain area in the Guangxi, Jiangxi, and Zhejiang
Provinces during 1986–2015.

The total forest gain area was 6.15 × 104 km2 in Jiangxi Province during 1986–2015,
with a mean annual gain area of 2052 km2 (2.64%). This accounted for about 79.21% forest
area in 1986. The calculated afforestation area was 3.61 × 104 km2, which accounts for
about 58.61% of the total gain area. The detected annual forest gain area showed a large
variation during 1986–1995, but the mean annual gain area of this period was significantly
larger than other years. Forest gain area showed an obvious increasing trend (18.24 km2/yr;
R2 = 0.54; p < 0.01) from 2003 to 2012. The largest gain area occurred in 1988 (4474 km2)
and 1993 (4946 km2).

The total forest gain area was 11.56 × 104 km2 in Guangxi Province during 1986–2015,
with a mean annual gain area of 3853 km2 (5.36%). This accounted for about 160.89% of
forest area in 1986, indicating recovered forest area was significantly larger than the original
forest area. The calculated afforestation area was 9.25 × 104 km2, which accounts for about
80.04% of the total gain area, indicating that most of recovered forest area was due to
land use conversion to forests. The detected annual forest gain area showed a significant
declining trend from 1986 to 1991 and then kept relatively stable during 1992–2002. An
obvious increasing trend (38.41 km2/yr; R2 = 0.80; p < 0.01) was found from 2003 to 2012.
The gain area decreased since 2013. The largest gain area occurred in 1987 (1.39 × 104 km2).

Totally, forest gain area was 20.25 × 104 km2 in the Zhejiang, Jiangxi, and Guangxi
Provinces during 1986–2015, accounting for 106.19% of total forest area in 1986. Compared
with Jiangxi and Zhejiang, Guangxi Province had the largest gain area and fraction in most
years, while Jiangxi had higher recovery fraction since 2003 as compared with Zhejiang.
The increasing trends in loss fractions ranked by Guangxi > Jiangxi > Zhejiang during
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the 2003–2012 period. The interannual variation patterns in gain area also showed some
similarities. Forest gain area for all provinces had a decrease from 1986 to 1991 and an
increasing trend during 2003–2012, and kept relatively stable during other years. The
largest gain area showed in 1987 and 1988 for all provinces.

At spatial scale, the recovered forest areas generally scattered across the entire study
region, with more gain areas at the fringes of forests (Figures 10 and 11). In Zhejiang
Province, the largest gain area was mostly located at the southwest and northwest, with
the largest gain area in Lishui City (5051 km2) and the highest gain fraction in Jiaxing City
(98.83%) during 1986–2015. In Jiangxi Province, the largest gain area was distributed in
the southwest and central west, with the largest total gain area occurred in Ganzhou City
(1.74 × 104 km2) and Jian City (9354 km2); however, the largest gain fraction occurred in
Nanchang City (73.69%). In Guangxi Province, the largest gain area was distributed in the
northwest and the smaller gain area was scattered in the central. The largest total gain
area occurred in Baise City (2.06 × 104 km2) and Hechi City (1.77 × 104 km2); however, the
largest gain fraction occurred in Qinzhou City (108.78%).
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Figure 10. The spatial and temporal distribution of detected forest gain areas in the Guangxi,
Jiangxi, and Zhejiang Provinces during 1986–2015. Note: the six boxes at the bottom represent the
magnified typical forest gain areas. Note: the numbers (1–6) denote the selected typical areas in the
three provinces.

3.3. Impacts of Forest Policies and Elevation on Forest Loss and Gain

During 1986–2019, some forestry policies and regulations have significantly affected the
interannual variations and change trends of the forest loss (Figure 12). The “three determination”
forestry policy (was also called the first collective forest tenure reform) in 1981 allowed the
private parties to own and manage the collective forests, and the following forestry law in
1984 provided institutional support. This resulted in a gradual increase in forest losses since
1981 and it arrived at the highest loss area in 1986 and 1987. The central government realized
the immaturity and big flaws in the “three determination” policy and then put forward the
guidelines on enhancing the management of collective forest resource and prohibiting of the
indiscriminate tree felling in 1987, which resulted in sudden decreases in forest loss area since
1986 for Zhejiang and Jiangxi and since 1987 for Guangxi. The implementation of the natural
forest conservation program (NFCP) in 1998 slightly reduced forest loss area since 2000 and
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resulted in the lowest forest loss area in 2002. The forest tenure reform policy trial in 2003 and
full implementation in 2008, which allows private parties to own, manage and trade forest lands,
resulted in greater forest loss in the three provinces, with more significant increasing trend
in Guangxi. The full implementation the NFCP in 2010 and the protection policy for public
welfare forest in 2013 slightly reduced the increasing trend in forest losses. The implementation
for the reform of state-owned forest farms in 2015, which transform the profiting-making
state-owned forest farms to a forest protection agency, resulted in a decline in forest loss after
2017. Although the key turning points and interannual variation patterns of forest loss area
were similar among three provinces under the influences of similar national forest policies, the
magnitudes of loss area and change trends were significantly different. This may be caused by
the different implementation levels and local forest resource, climate and economy conditions.
For example, all three provinces have implemented the Project for Fast-growing and High-yield
Plantation in Key Areas. However, due to the suitable climate condition and more available
non-forest land area, the wide planting of shorter rotation eucalyptus in Guangxi Province has
resulted in larger forest loss area than other two provinces. Both Guangxi and Jiangxi Provinces
were oriented and delineated as an agriculture-based province in the national economy system,
thus the economy development more relies on the forestry output values than that in Zhejiang
Province. This explained the higher forest loss area and greater change trends in forest loss in
Guangxi and Jiangxi.
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Zhejiang Provinces during 1986–2015.

Similarly, most above forestry policies also affected forest gain patterns in the three
provinces since most forest loss area recovered either through natural regeneration or
reforestation. The “three-determination” policy in 1981 caused rapid increases in forest
loss within several years (1982–1987), which resulted in subsequent large area forest gain
during 1986–1990 (Figure 9). The legacy effect has been diminished and stabilized during
1991–2002. The implementations of GTGP policy in 2002 and the CFTR policy in 2003
had resulted in continuously increasing forest gain area since 2003. However, with almost
no more non-forest land for afforestation and reduced forest loss due to forest protection
policies, the forest gain area is anticipated to drop down significantly since 2017.
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Figure 12. The timelines of the major forestry policies and interannual variations in forest loss area
in the Zhejiang, Jiangxi, and Guangxi Provinces. 1: the three-determination policy (the first try for
collective forest tenure reform) (1981); 2: the first Forestry Law of the People’s Republic of China
(1984); 3: policy for enhancing forest management and ban on indiscriminate tree felling (1987); 4: the
trial of Natural Forest Conservation Program (NFCP) (1998); 5: Grain-to-Green (or Green for Grain)
Policy (GTGP) (2002); 6: Project for Fast-growing and High-yield Plantation in Key Areas (FHPKA)
(2002); 7: the trial of Collective Forest Tenure Reform (CFTR) (2003); 8: the full implementation
of CFTR (2008); 9: the full implementation for NFCP (2010); 10: policy for public welfare forest
classification and management (2013); 11: reform of the state-owned forest farms (RSFF) (2015);
12: the amendment of Forestry Law (CFTR, NFCP, and other policies were added into law) (2016).

4. Discussion
4.1. Comparisons with Other Data Sources

Our detected forest loss area was compared with the inventory data from NFI and
Forestry Statistical Yearbook during the seven five-year periods (Figure 13). The inventory
forest loss area was from four disturbance regimes including forest fire, insect, disease, and
harvesting. The inventory data varied much more than our detected data. Our detected
forest loss area was significantly lower than the inventory during 1989–1993, 1999–2003,
2004–2008, and 2009–2013 periods, while our detected forest loss area was higher during
the rest periods. Our detected mean annual loss area (2452 km2) was comparable to the
inventory data (2673 km2). From the inventory data, we found that forest loss due to insects
accounted for a large fraction of total loss area. Our forest change detection algorithm can
only effectively detect the areas with tree loss fraction greater than 70% at the grid size
of 30 m × 30 m [18,35]. Forest pests and diseases generally cause partial tree losses and
the impact area generally is smaller than 900 m2, which resulted in failed detections for
these areas and thus our detected forest loss area was less than the inventory data. We
further compared our detected forest loss area with the GFC product [23], which is the first
and most widely used forest loss and gain dataset. Compared with the GFC forest loss
area (Figure 14), our detected forest loss area has the same interannual variation pattern
during 2001–2019; however, our detected loss area was generally higher than the GFC
data for most years. The GFC estimated a total loss of 4.77 × 104 km2, while our detected
loss area was 5.36 × 104 km2, with 12% higher than the GFC data. Based on multiple
forest change datasets, Li et al. [19] found that the total forest loss area from MODIS NBR,
MODIS LC, and MODIS VCF products was 7206 km2, 2.61 × 104 km2 and 1.00 × 104 km2,
respectively, during 2001–2013 in the three provinces; while our detected total loss area
was 2.82 × 104 km2. Our data are close to the MODIS LC product but significantly higher
than the loss area from other two products. The short-term forest loss cannot be reflected
effectively based on the MODIS products.



Remote Sens. 2022, 14, 3238 20 of 27

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 28 
 

 

for these areas and thus our detected forest loss area was less than the inventory data. We 
further compared our detected forest loss area with the GFC product [23], which is the 
first and most widely used forest loss and gain dataset. Compared with the GFC forest 
loss area (Figure 14), our detected forest loss area has the same interannual variation pat-
tern during 2001–2019; however, our detected loss area was generally higher than the GFC 
data for most years. The GFC estimated a total loss of 4.77 × 104 km2, while our detected 
loss area was 5.36 × 104 km2, with 12% higher than the GFC data. Based on multiple forest 
change datasets, Li et al. [19] found that the total forest loss area from MODIS NBR, 
MODIS LC, and MODIS VCF products was 7206 km2, 2.61× 104 km2 and 1.00 × 104 km2, 
respectively, during 2001–2013 in the three provinces; while our detected total loss area 
was 2.82 × 104 km2. Our data are close to the MODIS LC product but significantly higher 
than the loss area from other two products. The short-term forest loss cannot be reflected 
effectively based on the MODIS products.  

 
Figure 13. Comparison between our detected forest loss area and from NFI and Forestry Statistical 
Yearbook in each five year period during 1986–2018. Note: the loss area due to forest insect and 
disease is calculated by subtracting the prevention area from the total occurrence area. 

 
Figure 14. Comparisons of interannual variations in forest loss area (100 km2) between our detec-
tion and the GFC product in the study region during 2001–2019. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1984−1988 1989−1993 1994−1998 1999−2003 2004−2008 2009−2013 2014−2018

M
ea

n 
an

nu
al

 fo
re

st
 lo

ss
 a

re
a 

(k
m

2 )

Fire Disease Insect

Harvest Detected

0

10

20

30

40

50

60

2001 2006 2011 2016

Lo
ss

 a
re

a 
(1

00
 k

m
2 )

GFC product Our detection

Figure 13. Comparison between our detected forest loss area and from NFI and Forestry Statistical
Yearbook in each five year period during 1986–2018. Note: the loss area due to forest insect and
disease is calculated by subtracting the prevention area from the total occurrence area.
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Figure 14. Comparisons of interannual variations in forest loss area (100 km2) between our detection
and the GFC product in the study region during 2001–2019.

We further compared our detected forest gain area with the NFI data (https://forest.
ckcest.cn/sd/si/zgslzy.html; accessed on 15 March 2022). The 3rd and 9th NFI estimated
forest area in the three provinces was 1.53 × 105 km2 during 1984–1988 and 3.06 × 105 km2

during 2014–2018, respectively. The net gain forest area was 1.53 × 105 km2 during
1984–2018. Due to the change of forest definition since the 6th NFI (forest was defined by
the land area covered by 20% trees before the 6th NFI and changed to 10% thereafter), the
actual forest gain area should be slightly lower than 1.53 × 105 km2. Our detected total
forest gain area was 2.03 × 105 km2, and the net gain area (the naturally recovered area
was removed) was 1.49 × 105 km2, which was very close to the NFI data.

The detected forest gain area was also compared with the annual planted forest area
data from the Forestry Statistical Yearbook (Figure 15). From the comparison, our detected
forest gain area was generally larger than the inventory planted forest area. This is because
our detected forest gain area included both afforested area and naturally recovered area.
The large forest loss area during the 1986–1988 period caused a large gain area due to
naturally recovery during this period, which resulted in larger difference between our
forest gain area and the inventory planted area. The interannual variation patterns between

https://forest.ckcest.cn/sd/si/zgslzy.html
https://forest.ckcest.cn/sd/si/zgslzy.html
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two datasets were actually quite similar, but our data were generally a couple of years
lagging behind the inventory data, which is reasonable because forest regrowth after
planting need to take a couple of years to become greener and occupy he vacant land area
and then the forest can be detected by satellites.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 28 
 

 

We further compared our detected forest gain area with the NFI data (https://for-
est.ckcest.cn/sd/si/zgslzy.html; accessed on 15 March 2022). The 3rd and 9th NFI esti-
mated forest area in the three provinces was 1.53 × 105 km2 during 1984–1988 and 3.06 × 
105 km2 during 2014–2018, respectively. The net gain forest area was 1.53 × 105 km2 during 
1984–2018. Due to the change of forest definition since the 6th NFI (forest was defined by 
the land area covered by 20% trees before the 6th NFI and changed to 10% thereafter), the 
actual forest gain area should be slightly lower than 1.53 × 105 km2. Our detected total 
forest gain area was 2.03 × 105 km2, and the net gain area (the naturally recovered area was 
removed) was 1.49 × 105 km2, which was very close to the NFI data.  

The detected forest gain area was also compared with the annual planted forest area 
data from the Forestry Statistical Yearbook (Figure 15). From the comparison, our detected 
forest gain area was generally larger than the inventory planted forest area. This is because 
our detected forest gain area included both afforested area and naturally recovered area. 
The large forest loss area during the 1986–1988 period caused a large gain area due to 
naturally recovery during this period, which resulted in larger difference between our 
forest gain area and the inventory planted area. The interannual variation patterns be-
tween two datasets were actually quite similar, but our data were generally a couple of 
years lagging behind the inventory data, which is reasonable because forest regrowth after 
planting need to take a couple of years to become greener and occupy he vacant land area 
and then the forest can be detected by satellites.  

 
Figure 15. Comparisons of our estimated total forest gain area (100 km2) with the NFI recorded 
planted forest area (https://forest.ckcest.cn/sd/si/zgslzy.html; accessed on 1 February 2022) in three 
provinces during 1986–2015. 

Li et al. [19] also calculated the total forest gain area from MODIS NBR, MODIS LC, 
MODIS VCF, and GFC products: 0.79 × 104 km2, 5.87 × 105 km2, 2.12 × 105 km2, and 0.70 × 
104 km2, respectively, during 2001–2013 in the three provinces; while our detected total 
gain area was 6.83 × 105 km2. Our data is closer to the MODIS LC product but significantly 
higher than other three products. Song et al. [53] developed the global tree canopy change 
data and estimated that the total forest gain area was 5.18 × 105 km2 during 1986–2015, 
which is slightly lower than our estimation. As implied from the NFI forest gain area, 
most of the previous datasets have underestimated the forest gain area in these three prov-
inces, and may be also for the entire China. Some studies have also pointed out that GFC 
data lacked sufficient ground observation data to train the estimation method and verify 
the results, especially for China, where has experienced significant and complicated forest 

0

50

100

150

200

250

1986 1991 1996 2001 2006 2011

G
ai

n 
ar

ea
 (1

00
 k

m
2 )

Detected gain Inventory

Figure 15. Comparisons of our estimated total forest gain area (100 km2) with the NFI recorded
planted forest area (https://forest.ckcest.cn/sd/si/zgslzy.html; accessed on 1 February 2022) in
three provinces during 1986–2015.

Li et al. [19] also calculated the total forest gain area from MODIS NBR, MODIS LC,
MODIS VCF, and GFC products: 0.79 × 104 km2, 5.87 × 105 km2, 2.12 × 105 km2, and
0.70 × 104 km2, respectively, during 2001–2013 in the three provinces; while our detected
total gain area was 6.83 × 105 km2. Our data is closer to the MODIS LC product but
significantly higher than other three products. Song et al. [53] developed the global tree
canopy change data and estimated that the total forest gain area was 5.18 × 105 km2 during
1986–2015, which is slightly lower than our estimation. As implied from the NFI forest gain
area, most of the previous datasets have underestimated the forest gain area in these three
provinces, and may be also for the entire China. Some studies have also pointed out that
GFC data lacked sufficient ground observation data to train the estimation method and
verify the results, especially for China, where has experienced significant and complicated
forest changes [16,19,43]. Our study obtained a large number of quadrat data for training
the algorithm and validating the results, and thus gained a better detection result for both
forest loss and gain in Zhejiang, Jiangxi, and Guangxi Provinces.

4.2. Forestry Policies and Forest Loss and Gain Area

The classified forest dynamics based on remote sensing images have been widely ap-
plied to study the effects of forestry policies on forest structure and function. For example,
Velasco-Aceves [54] applied Landsat images assessed the outcome of the first land-use zon-
ing policy in terms of forest loss and fragmentation in Formosa, Argentina. West et al. [55]
reviewed the conservation instruments and strategies promoted under the PPCDAm um-
brella and estimated their impacts on deforestation based on rigorous and counterfactual
evaluations. Using Landsat imagery, Appiah et al. [56] used a RF machine learning algo-
rithm analyzed the amount and pattern of land changes in the Tano-Offin Forest Reserve of
Ghana between 1987 and 2017. In our study, we found that the “three determination” policy
put forward in 1981 has greatly increased forest loss area during 1986–1988. This policy was
put forward to determine forest use rights, delineate self-retained mountainous land for
farmers and standardized both family forest management and the household responsibility

https://forest.ckcest.cn/sd/si/zgslzy.html
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system within the collectives [5]. Many previous studies have also found the resultant
increased forest loss due to this policy [4,7,13,57]. For example, Liu et al. [5] indicated
that as much as 13.5% of forest area and 14.9% of forest volume was removed during
1980–1990 in southern China. Their study further attributed the increased forest harvest to
the “three determination” policy. The NFI data also indicated harvested forest area signif-
icantly increased during 1984–1989 in all three provinces [5]. Yin and Newman [57] also
observed the increased forest loss area and attributed to this policy. Hyde [8] also indicated
that forest harvesting area increased by 10.4% and standing volume decreased by 9.6%
during 1978–1989, which was also confirmed by [58]. The followed-up forest management
and protection policy raised in the “Guidelines on Enhancing the Management of Collective
Forest Resources in the South and Prohibiting of the Indiscriminate Tree Felling” in 1987
reversed the uncontrolled logging due to “three determination” policy and called for an
end to this policy [5]. Our results also proved that this policy can effectively reduce forest
loss area in the Zhejiang, Jiangxi, and Guangxi Provinces. Our results indicated that the
natural forest conservation project (NFCP) in 1998 did not affect the forest gain area but
it effectively reduced forest loss area during 2000–2002, which has also been indicated in
many previous studies [3,7,12,59,60]. Van Den Hoek et al. [61] applied Landsat imagery-
derived Tasseled Cap variables and a decision tree classifier to map short- and long-term
forest cover change and assessed the effectiveness of NFCP and GTGP policies on forest
cover in Yunnan Province. Their study also found that these two policies resulted in 73%
reduction of forest loss and 100% increase in forest gain in Yunnan Province, neighboring
Guangxi Province.

A series of policies and regulations have been put forward in 2002 and 2003, including
the GTGP, FHPKA, and CFTR. These policies coincided and positively contributed to the
increases in both forest loss and gain area, which has been proved by a bunch of stud-
ies [3,4,8,62]. The FHPKA and GTGP are two of the China’s biggest afforestation projects.
GTGP has less impacts than FHPKA on the forest dynamics in southern China [61]. The
FHPKA project targets to provide wood products to the increasing demand of wood market
in China and in the meantime to protect natural forests from logging [63]. This project
was applied in 18 provinces, mostly located in the south. The major tree species include
Eucalyptus, poplar, improved Chinese fir, and bamboo. This policy has promoted both
increases in forest loss and gain area, which is one of the major reasons for the increasing
forest gain area and loss area during 2003–2019. Research showed about 3570 km2 forest
area was planted due to this project during 2002–2009 [64]. This project imposed more
impacts on Guangxi Province [19,65], which is also proved from the larger gain and loss
area and faster increasing trend since 2003. As a result, Guangxi Province became the
largest timber supplier in China. Since 2003, the second CFTR proved to be a suitable
policy for forest resource management in China; therefore, it was fully implemented in
2008 and most provinces have completed the reform tasks at present [4,13]. This policy has
successfully put China’s forests in the trading market, increased farmers’ income, and in
the meanwhile, has reduced illegal forest logging and protected the natural forests [13]. At
present, the effects of the CFTR on forest dynamics were mostly estimated based on the
NRI inventory data or the Forestry Statistical Yearbook statistical data, which are generally
discontinuous and coarse. The spatiotemporally-explicit and more accurate assessments
are needed. The protection policy for public welfare forests in 2013, Reform of State-owned
Forest Farms (RSFF) in 2015, and the amendment of forestry law in 2016 have successfully
promoted the forest protection in China, resulting in declining trend in forest loss area
as seen from our study results. The forestry law amended in 2019 added stricter forest
protection terms and the “two-mountains” (lucid waters and lush mountains are invaluable
assets) and ecological civilization guiding ideology. Therefore, the declining trend of forest
loss area may continue in the near future and then stabilize. In another aspect, there is less
available land for afforestation in China, especially in the south. In addition, our results
found most of the past forest gain area in the three provinces was due to afforestation (land
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conversion to forest). Therefore, a declining trend of forest gain area will continue and
forest gain area will be more from reforestation on the logged forest land in the near future.

4.3. Forestry Economy and Forest Loss

The economy policy can also indirectly affect forest loss area and explain the different
change trends [58,62]. Based on the NFI data, Liu and Xia [62] found that the socio-
economic policies can significantly interact with forestry policy to influence forest loss
and gain dynamics in China. Based on the forestry output value data from the NFI, we
also conducted a correlation between forestry output value and forest loss area during
1990–2019. The results indicated that forestry output value significantly correlated with
forest loss area in the Jiangxi (R2 = 0.59; p < 0.01), Guangxi (R2 = 0.76; p < 0.01), and Zhejiang
(R2 = 0.34; p < 0.01) Provinces (Figure 16). Inferred from the slopes, the impact levels of
economy can be ranked as Guangxi > Jiangxi > Zhejiang. Guangxi Province is now the
timber base for China, which was shifted from northeastern China [65]. Guangxi only
accounts for 5% of the national forest land area, but contributed to about 50% of the national
total wood products in 2020. Due to perfect climate conditions and high profit return, the
“Project for Fast-growing and High-yield Plantation in Key Areas” has promoted a rapid
increase in eucalyptus forests in Guangxi Province and thus wood products, which further
stimulated the forestry economy growth in this province. In contrast, the forestry income in
Jiangxi Province was mainly from large plantation area for Cunninghamia lanceolata (Chinese
fir), Pinus massoniana (Masson pine), and Pinus elliottii (Slash pine). These species have
longer rotation and thus the forestry output value and its increasing trend were lower than
that in Guangxi. Zhejiang Province is the earliest province that implemented the policy
for NFCP and for protection of ecological public welfare forests. Over 10% of the forestry
output value was from the bamboo industry [8]. The bamboo can recover soon and thus
bamboo cutting is not accounted in forest loss area.
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detected forest loss area in Zhejiang, Jiangxi and Guangxi Provinces.

4.4. Uncertainty and Outlook

Although we have evaluated the detected results against the data from sampling
plots, inventory and other remote sensing products, there are still some uncertainties in the
detected forest loss and gain area. The success of LandTrendr algorithm relies heavily on
the available image numbers and quality. As shown in Figure 2, the cloud-free Landsat
images scenes were not sufficient during 1986–2000, much less than that after 2001. Some
of the cloudy pixels were substituted by the pixels in the neighboring years before 2000,
which may result in underestimation of detected forest loss and gain area. In addition, the
resolution of Landsat image is relatively coarse, and thus there are many pixels mixed with
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different forest status. Our current approach can only detect the standing-replace (>70%
trees are altered within a grid cell) forest loss and gain events. Thus, the small scale forest
loss and gain caused by fractional disturbance and recovery events cannot be detected.
As we shown above, large area of forest in the three provinces suffered from infections
of forest insect and disease, and under most cases these events can only cause scattered
tree losses. Similarly, the small-scale tree planting along the riverside and roadside cannot
be effectively detected. Therefore, this may also result in some underestimations to the
forest loss and gain area. Furthermore, our approach exists a lagging for the monitoring
of forest recovery. From the comparisons with inventory planted forest area, we deduced
that the lagging is about two to three years (Figure 15). This is because vegetation recovery
generally takes several years to occupy the vacant space and our approach is more sensitive
to the stand-replacing events; therefore, the detected forest gain years generally deviate
within 0–5 years depending on the study locations.

The single factor could result in larger bias for forest loss and gain detection consid-
ering the image quality issues [35]. Through considering more variables except for the
normally used individual indices such as IFZ, NBR, TCW, EVI, and NDVI, machine or
deep learning methods (such as RF, ANN, and RCNN) have been increasingly applied
in forest loss and gain detection during the recent years, and these methods have been
proved to more comprehensively and accurately reflect both slow and abrupt forest loss
and gain events [18,33,35–38]. Our study also proved that this integration method can
be used to detect provincial scale forest loss and gain in China, where has more complex
terrains, vegetation types, and disturbance events. The major limitation for this approach
is the heavy reliance on the accuracy and numbers of sample plot data for training the
machine-learning algorithms. In the next step, we will further collect more sample plot
data and apply this integrated approach to develop an accurate, long-term, continuous,
and high spatiotemporal resolution national scale forest loss and gain dataset, similar to
the datasets for the United States [22,25,27,66]. In addition, we will detect the fractional
forest loss and gain and further differentiate the forest disturbance regimes in the future.
As inferred from many cutting-edge studies, the forest disturbance regimes and fractional
disturbance events can be successfully detected using the 30 m Landsat images [33,66–69].

5. Conclusions

Based on Landsat time series images and the GEE platform, this study detected forest
loss and gain area during 1986–2019 in the Zhejiang, Jiangxi, and Guangxi Provinces in the
subtropical China by using integrated LandTrendr change detection algorithms and RF
classifier. The detected forest loss and gain area and their variation patterns were evaluated
against sampling plot data, other data products, and inventory data. The evaluations
indicated our approach can provide accurate estimations on the spatiotemporal patterns
of forest loss and gain area. The results indicated that a large portion (43.52%) of forests
in the three provinces had been disturbed and in the meanwhile forest area was doubled
during the study period. Three provinces displayed contrasting patterns in forest loss and
gain area, interannual variation patterns and change trends. The different footprints of
the similar forestry policies and regulations on three provinces can explain most of the
similarities and dissimilarities of forest gain and loss area in three provinces. Our study
also anticipated a declining forest loss and gain area in future in these three provinces.
Although some uncertainties exist, our study can contribute to a better understanding of
forest dynamics in the subtropical China through providing a 34 years’ long annual forest
loss and gain dataset. The further assessments of the effectiveness of major forestry policies
and regulations on forest loss and gain can also contribute to more effective implementation
of these forest management policies, forest-based climate change mitigation policies and
national carbon balance accounting [70].
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