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Abstract: Vegetation, a key intermediary linking water, the atmosphere, and the ground, performs
extremely important functions in nature and for our existence. Although satellite-based remote-
sensing technologies have become important for monitoring vegetation dynamics, selecting the
correct remote-sensing vegetation indicator has become paramount for such investigations. This
study investigated the consistencies between a photosynthetic activity index (the solar-induced
chlorophyll fluorescence (SIF) indicator) and the traditional vegetation index (the Normalized Dif-
ference Vegetation Index (NDVI)) among different land-cover types and in different seasons and
explored the applicability of NDVI and SIF in different cases by comparing their performances in
gross primary production (GPP) and grain-yield-monitoring applications. The vegetation cover and
photosynthesis showed decreasing trends, which were mainly concentrated in northern Xinjiang
and part of the Qinghai–Tibet Plateau; a decreasing trend was also identified in a small part of
Northeast China. The correlations between NDVI and SIF were strong for all land-cover types
except evergreen needleleaf forests and evergreen broadleaf forests. Compared with NDVI, SIF had
some advantages when monitoring the GPP and grain yields among different land-cover types. For
example, SIF could capture the effects of drought on GPP and grain yields better than NDVI. To
summarize, as the temporal extent of the available SIF data is extended, SIF will certainly perform
increasingly wide applications in agricultural-management research that is closely related to GPP
and grain-yield monitoring.

Keywords: Normalized Difference Vegetation Index; solar-induced chlorophyll fluorescence; gross
primary production; grain yield; China

1. Introduction

The varieties and sizes of natural ecosystems are largely influenced by natural veg-
etation [1–5]. Vegetation also plays an important role in influencing human survival; for
example, vegetation produces oxygen via photosynthesis [6], provides resources (e.g., food
and timber) [7–9], regulates atmospheric circulation [3], affects climate change [10], and
reduces soil erosion [11,12]. Therefore, monitoring vegetation conditions, especially vege-
tation changes, is of great significance, as this information is important for protecting the
natural environment [2,13].

Several methods have been developed to monitor field vegetation [14,15]. Spot sam-
pling is typically used in the early stages of vegetation monitoring [16,17] and has a high
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level of accuracy and reliability [17]. This method can even be used to evaluate the accu-
racies of other methods [18]. For example, Liu et al. [18] provided sampling protocols to
effectively improve the estimation accuracy of the forest leaf area index. However, spot
sampling has some disadvantages; it is not a continuous vegetation monitor [17], it is
unsuitable for monitoring vegetation over a large area [19], and it requires substantial
resources (time and materials) [17]. With the development of remote-sensing technologies,
vegetation changes can be effectively monitored by using equipment carried on various
platforms, such as unmanned aerial vehicles, aircrafts, and satellites [15,20,21]. For example,
Wei et al. [15] used an unmanned aerial vehicle to monitor the vegetation dynamics in the
foreland of the Urumqi Glacier, and Chang et al. [21] used an unmanned aerial system to
monitor corn and soybean crops on the Cornell Musgrave Research Farm in New York, USA.
Different global-scale, satellite-derived datasets were used by Ye et al. [13] to compare
trends in vegetation seasonality. The rapid development of satellite technologies has re-
sulted in the availability of time-series products with higher precision and longer temporal
domains [14,22,23]. Many vegetation indicators have been used to describe vegetation
characteristics, such as Normalized Difference Vegetation Index (NDVI) [24], Vegetation
Condition Index [25], Vegetation Health Index [26], Enhanced Vegetation Index [27] and
solar-induced chlorophyll fluorescence (SIF) [14].

Among the above vegetation indicators, NDVI and SIF have been widely used to
describe vegetation dynamics in drought and crop-yield studies [4,13,14,28,29]. Regarding
drought research, Ding et al. [29] employed NDVI to reveal the effects of agricultural
drought on forest, grassland, and cropland ecosystems over China, and Xu et al. [30] used
NDVI to obtain the response time and degree of vegetation to meteorological drought
conditions in North China. Liu et al. [31] applied SIF to analyze the sensitivity of vegetation
in the Hulun Buir Grassland, China, and indicated that SIF was more sensitive than NDVI
when monitoring the responses of vegetation to drought. Chen et al. [28] recorded the
changing biomass features of vegetation during the 2009/2010 droughts over the North
China Plain, based on SIF. Among existing studies on crop yields, Kern et al. [7] employed
NDVI to forecast early crop yields in Central Europe, and Peña-Gallardo et al. [8] used NDVI
to analyze the response times of the yields of different crops (barley, winter wheat, soybean,
corn, and cotton) to drought in the USA. Chen et al. [28] analyzed the relations between
SIF, crop yield, and the gross primary productivity (GPP) of vegetation during the growth
periods of summer maize over the North China Plain. Chang et al. [21] used both NDVI
and SIF to identify seasonal changes in corn and soybean croplands in New York, USA.
Although NDVI and SIF have already been applied in vegetation research, estimating GPP
and crop yield by using SIF data combined with statistical methods is still not a common
practice, mainly due to the low spatial resolution of the available SIF data. Li and Xiao [14]
developed a global SIF dataset (GOSIF) with high spatial and temporal resolutions (0.05◦

and 8 days, respectively) representing the 2000–2020 period; this dataset could broaden the
use of SIF studies over longer time periods and at higher resolutions. Although previous
studies on NDVI and SIF have been conducted in research fields such as the response of
vegetation to drought [32], the phenology of vegetation in high-latitude forests [33], and the
relationship between GPP and SIF [4], NDVI and SIF have not been thoroughly compared
due to limitations in existing research, such as a small study area [34], the analysis of only a
single vegetation type [33], or the lack of measured crop-yield data [32].

Therefore, this study aims to examine the performances of NDVI and SIF from 2001–2019
in a large study area (China) for various land-cover types based on measured grain-yield
data. The primary objectives of this study are (1) to explore the response relationship
between NDVI and SIF; (2) to check whether SIF has an advantage over NDVI in GPP
monitoring applications; and (3) to compare the application of SIF and NDVI in grain-yield
monitoring. The obtained results represent systematic performance differences between
NDVI and SIF and provide a reference for selecting suitable vegetation-monitoring indica-
tors in future vegetation studies.
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2. Data and Methods
2.1. Study Area

China is located in East Asia (3◦51′N−53◦33′N and 73◦29′E−135◦04′E) and has an
approximate land area of 9.63 × 106 km2 and a sea area of 3.00 × 106 km2 [35]. The
main plain regions in China include the Northeast Plain (NEP), the North China Plain
(NCP), and the middle-lower reaches of the Yangtze River Plain (MLRYR); the main plateau
regions include the Inner Mongolia Plateau, the Loess Plateau (LP), the Qinghai–Tibet
Plateau (QTP), and the Yun-Gui Plateau (YGP). The main basins in China include the
Sichuan Basin (SCB), the Dzungarian Basin, and the Tarim Basin (Figure 1a). Based on
the regional characteristics of China, the major crop production areas (croplands) can be
divided into nine subregions (http://www.resdc.cn/data.aspx?DATAID=275, accessed on
21 October 2021): the NEP, NCP, MLRYR, YGP, SCB, LP, QTP, southern China (SC), and
arid and semiarid northern China (ASANC) (Figure 1c).

Remote Sens. 2022, 14, 3237 3 of 15 
 

 

ences between NDVI and SIF and provide a reference for selecting suitable vegetation-
monitoring indicators in future vegetation studies. 

2. Data and Methods 
2.1. Study Area 

China is located in East Asia (3°51′ N−53°33′ N and 73°29′ E−135°04′ E) and has an 
approximate land area of 9.63 × 106 km2 and a sea area of 3.00 × 106 km2 [35]. The main 
plain regions in China include the Northeast Plain (NEP), the North China Plain (NCP), 
and the middle-lower reaches of the Yangtze River Plain (MLRYR); the main plateau re-
gions include the Inner Mongolia Plateau, the Loess Plateau (LP), the Qinghai–Tibet 
Plateau (QTP), and the Yun-Gui Plateau (YGP). The main basins in China include the Si-
chuan Basin (SCB), the Dzungarian Basin, and the Tarim Basin (Figure 1a). Based on the 
regional characteristics of China, the major crop production areas (croplands) can be di-
vided into nine subregions (http://www.resdc.cn/data.aspx?DATAID=275, accessed on 
21 October 2021): the NEP, NCP, MLRYR, YGP, SCB, LP, QTP, southern China (SC), and 
arid and semiarid northern China (ASANC) (Figure 1c). 

 
Figure 1. (a) Topographic and geographic zones of China; (b) land-cover types of China; and (c) 
the nine major crop production areas of China. 

The land-cover map used herein was derived from the Moderate-Resolution Imag-
ing Spectroradiometer (MODIS) land-cover-type product (MCD12C1) and was based on 
the International Geosphere-Biosphere Programme (IGBP) classification scheme. The 
MCD12C1 product released in 2019 was used to classify different land-cover types with-
out considering the land-cover-type changes that occurred during the 2001–2019 study 
period, and the proportions of different land-cover types were calculated (Table 1). The 
evergreen needleleaf forest (ENF) and evergreen broadleaf forest (EBF) land-cover types 
were mainly located in southwestern China; the deciduous needleleaf forest (DNF) and 
deciduous broadleaf forest (DBF) land-cover types were mainly located in northeastern 
China; mixed forests (MF) were mainly located in northeastern, southwestern (YGP), 
and southeastern China; closed shrublands (CS) were mainly located in southwestern 

Figure 1. (a) Topographic and geographic zones of China; (b) land-cover types of China; and (c) the
nine major crop production areas of China.

The land-cover map used herein was derived from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) land-cover-type product (MCD12C1) and was based on the In-
ternational Geosphere-Biosphere Programme (IGBP) classification scheme. The MCD12C1
product released in 2019 was used to classify different land-cover types without considering
the land-cover-type changes that occurred during the 2001–2019 study period, and the pro-
portions of different land-cover types were calculated (Table 1). The evergreen needleleaf
forest (ENF) and evergreen broadleaf forest (EBF) land-cover types were mainly located
in southwestern China; the deciduous needleleaf forest (DNF) and deciduous broadleaf
forest (DBF) land-cover types were mainly located in northeastern China; mixed forests
(MF) were mainly located in northeastern, southwestern (YGP), and southeastern China;
closed shrublands (CS) were mainly located in southwestern (YGP) China; open shrublands
(OS) were mainly located in western (QTP and Tarim Basin) and northern (Inner Mongolia
Plateau) China; woody savannas (WS) were mainly located in southwestern (YGP) and

http://www.resdc.cn/data.aspx?DATAID=275
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southeastern China; savannas (SA) were mainly located in northeastern China; and steppes
(ST) were mainly located in northeastern, northern (Inner Mongolia Plateau), northwestern
(Tarim Basin), and southwestern (QTP) China. Croplands were mainly located in northeast-
ern (NEP), northern (NCP), and southwestern (SCB) China. Urban and built-up (UB) areas
were dispersed across China. Barren or sparsely vegetated (BSV) areas were mainly located
in the northwestern part of China (Figure 1b). The percentage of the cultivated area in
each crop production area is 58.47% (NEP), 82.26% (NCP), 44.01% (MLRYR), 31.53% (SC),
28.70% (YGP), 26.20% (SCB), 44.42% (LP), 7.752% (ASANC), and 0.70% (QTP).

Table 1. Proportions of different land-cover types.

Vegetation Type
Abbreviation

Class 1 Class 2

Forest (17.85%)

Evergreen needleleaf forest (3.22%) ENF
Evergreen broadleaf forest (12.43%) EBF
Deciduous needleleaf forest (1.20%) DNF
Deciduous broadleaf forest (2.04%) DBF

Mixed forest (81.11%) MF

Shrubland (10.21%)
Closed shrublands (0.69%) CS
Open shrublands (99.31%) OS

Grassland (24.05%)
Woody savannas (14.51%) WS

Savannas (0.24%) SA
Steppes (85.25%) ST

Croplands (23.28%) CR

Urban and built-up areas (0.81%) UB

Barren or sparsely vegetated areas (23.80%) BSV

2.2. Datasets

In this study, monthly SIF data recorded from 2001–2019 were obtained from a high-
resolution GOSIF product (https://globalecology.unh.edu//data/GOSIF.html, accessed
on 21 October 2021). The GOSIF records were retrieved from the original Orbiting Carbon
Observatory (OCO)-2 SIF retrievals using a machine-learning model and other finer-scale
data as inputs. Compared with the original OCO-2 SIF data, the spatial distribution
of and seasonal variation in the GOSIF dataset were consistent with the corresponding
characteristics of the coarse SIF data directly collected by OCO-2 SIF. However, the GOSIF
data had a higher temporal resolution (8 days) and a higher spatial resolution (0.05◦), which
was of great significance for using SIF data to study the global carbon cycle. Meanwhile,
GOSIF data covering the world were of great significance for exploring the role of SIF in
drought monitoring, vegetation phenology, and stress monitoring [36,37]. For a detailed
description of the GOSIF dataset, please refer to Li and Xiao [14].

In East Asia, the eddy correlation flux-tower measurements are less readily
available [38]. Since the flux-tower distribution is uneven and sparse, it is impossible
to obtain high-precision GPP in global range. Many scholars have evaluated the MODIS
GPP through ground observation sites [14,36]. Although the MODIS GPP may overestimate
or underestimate the tower eddy-flux network measurements, the MODIS product can
reproduce seasonal and spatial changes well [39]. Since the purpose of this study was to
evaluate the spatial monitoring performance of GOSIF in fine resolutions, we chose MODIS
GPP (MOD17A2H) in this study. GPP calculation was based on the LUE Model. The
specific calculation process can be referred to Zhao et al. [40]. MODIS GPP (MOD17A2H)
produces (2001–2019) were obtained from MODIS (https://modis.gsfc.nasa.gov/data/,
accessed on 21 October 2021). GPP data had a spatial resolution of 500 m and a temporal
resolution of 8 days.

https://globalecology.unh.edu//data/GOSIF.html
https://modis.gsfc.nasa.gov/data/
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In this study, we used the ability of NDVI to monitor vegetation dynamics, GPP and
drought [5,41,42] to compare the application potential of GOSIF. NDVI captured the contrast
in reflectance between the red and near-infrared radiance wavelengths. NDVI (MOD13C2)
data (2001–2019) were obtained from MODIS (https://modis.gsfc.nasa.gov/data/, accessed
on 21 October 2021). The NDVI data had a spatial resolution of 0.05◦ and a temporal
resolution of 1 month.

Per-unit grain yields were obtained by dividing grain yield and cropland area. Grain
yields and cropland area data recorded from 2001 to 2019 were acquired from China’s
agricultural statistical data and the 60 years’ agricultural statistical data of the Ministry of
Agriculture and Rural Affairs of China (http://zdscxx.moa.gov.cn:8080/nyb/pc/index.jsp,
accessed on 21 October 2021) and the China Statistical Yearbook published by the National
Bureau of statistics (http://www.stats.gov.cn/tjsj/ndsj/, accessed on 21 October 2021). To
ensure consistency among the spatiotemporal resolutions of the SIF, NDVI, and GPP data,
the GPP data were resampled to a spatial resolution of 0.05◦, and the 8-day GOSIF and
GPP data were resampled to the monthly scale [32].

2.3. Analysis

The Pearson correlation coefficient (PCC) was calculated between SIF and NDVI [43].
The relations between monthly SIF and NDVI were explored across different land cover
types and in different seasons. We selected a correlation coefficient that passed the signifi-
cance level of p < 0.05. For two time series, x and y, the PCC was calculated as follows:

PCC =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

(1)

where xi and yi denote the i-th value in the two corresponding time series (monthly NDVI
and SIF across different land-cover types and in different seasons). The PCC values range
from –1 to 1. A PCC value greater than 0 indicates a positive linear correlation, a PCC value
less than 0 indicates a negative linear correlation, and a PCC value equal to 0 indicates no
linear correlation.

Next, we calculated the PCC values between monthly SIF (NDVI) and GPP. The
temporal and spatial differences between SIF or NDVI and GPP were analyzed across
different land-cover types and in different seasons to reveal the applicability of SIF and
NDVI for monitoring GPP.

Finally, polynomial fitting (univariate quadratic function) was used to reveal the rela-
tionship between SIF (NDVI) and the per-unit grain yield. The coefficient of determination
(R2) was used to represent the abilities of the analyzed vegetation indicators to explain
the measured changes in grain yield. Next, considering that China experienced relatively
large-scale drought events during the 2009–2010 period, we compared the percentage
changes in the SIF, NDVI, and per-unit grain yield values from 2009–2010 with the mean
annual values recorded from 2001–2019 to reveal the abilities of NDVI and SIF to monitor
grain-yield changes induced by drought. In addition, based on previous studies [5,29,35],
in this study, spring, summer, autumn, and the growing season were defined as the periods
from March to May, from June to August, from September to November, and from March
to October, respectively.

3. Results
3.1. Consistency between SIF and NDVI

The seasonal spatial distributions of the PCC values obtained between NDVI and
SIF are shown in Figure 2. During the growing season, lower degrees of consistency
(PCC values < 0.8) were found in the SC, YGP, part of the SCB, MLRYR, QTP, and ASANC,
while higher degrees of consistency were found in the NEP, NCP, LP, part of the SCB, and
QTP (Figure 2a). The spatial distributions of the PCC in spring and autumn were similar
to that in the growing season (Figure 2b,d). In summer, higher degrees of consistency

https://modis.gsfc.nasa.gov/data/
http://zdscxx.moa.gov.cn:8080/nyb/pc/index.jsp
http://www.stats.gov.cn/tjsj/ndsj/
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were found in part of the NEP, NCP, LP, and QTP (Figure 3c). In general, the degrees of
consistency in summer were smaller than in other seasons.
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To further analyze the relationship between the SIF and the NDVI, Figure 3 shows
the correlations between the NDVI and the SIF obtained for different land-cover types
during the growing season, spring, summer, and autumn. Overall, the correlations between
the NDVI and the SIF differed significantly among different land-cover types. Figure 3a
indicates that, except for the ENF, EBF, CS, and BSV land-cover types, during the growing
season, the NDVI and the SIF showed relatively large positive correlations, and the PCC
values were basically greater than 0.6. During spring, except for in the ENF, EBF, and BSV
land-cover types, the NDVI and SIF showed relatively large positive correlations (Figure 3b).
Compared to the springtime correlations, the summertime correlations between the NDVI
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and the SIF were weak, with the PCC values mainly concentrated in the range of 0.4–0.6
(Figure 3c). In autumn, the relationships between the NDVI and the SIF for different
land-cover types were similar to those obtained during spring; the correlations between
NDVI and SIF in the ENF, EBF, CS, and BSV land-cover types were relatively weak during
autumn. In the land-cover types other than the ENF and EBF, the correlations between
the NDVI and the SIF revealed larger PCC values (Figure 3d). In general, the correlations
between the NDVI and the SIF were stronger in regions comprising other land-cover types
compared to the correlations obtained in the ENF, EBF, and BSV regions.

3.2. Relationships between SIF and GPP and between NDVI and GPP

Figure 4 shows the spatial distributions of the correlations between the SIF (NDVI)
and the GPP obtained in different seasons. During the growing season, the PCC values
(Figure 4a,e) mainly ranged from 0.80 to 1.00 (for SIF) and from 0.20 to 0.60 (for NDVI)
in the SC. In the YGP, the PCC values ranged from 0.80 to 1.00 (for SIF) and from −0.50
to 0.80 (for the NDVI). The SIF had a higher degree of consistency with the GPP than the
NDVI during the growing season. During spring, negative PCC values were found in the
western YGP and QTP regions (Figure 4b,f), indicating that the SIF had a higher degree of
consistency with the GPP than the NDVI did in southwestern China. There was a large
amount of BSV coverage in the northwestern part of China, and GPP data were missing in
these areas [4,28]. The missing data resulted in gaps in coverage for the northwestern part
of China. The relations between the SIF (NDVI) and the GPP during the other two seasons
were similar to those identified during the growing season.
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To further analyze the relationships between the SIF (NDVI) and the GPP, the correla-
tions between the SIF (NDVI) and the GPP were calculated for different land-cover types, as
shown in Figure 5. As shown in Figure 5a, during the growing season, the SIF and the GPP
showed relatively strong correlations for most of the land-cover types except for the EBF
and the BSV; the NDVI and GPP also showed high correlations for most of the land-cover
types except for the ENF, EBF, and CS. However, the PCC values derived between the
SIF and the GPP were essentially greater and less variable than those obtained between
the NDVI and the GPP. During spring (Figure 5b), a significant correlation was found
between the SIF and the GPP, while the correlation between the NDVI and the GPP was
relatively small, and the fluctuation ranges of the PCC values were relatively large in the
regions characterized by the ENF, EBF, DNF, and DBF land-cover types. During summer
(Figure 5c), the PCC values obtained between the SIF (NDVI) and the GPP fluctuated
widely. In particular, the correlations were all relatively small in regions characterized by
forest vegetation types, and the fluctuation ranges were relatively large. During autumn
(Figure 5d), the PCC values derived between the SIF and the GPP were large, while those
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obtained between the NDVI and the GPP were smaller, especially in the regions comprising
ENF, EBF, and CS vegetation. Overall, the correlations between the SIF and the GPP were
more significant than those between the NDVI and the GPP.
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3.3. Performances of SIF and NDVI in Grain-Yield Monitoring

To determine the applicability of the SIF and the NDVI for the grain-yield monitoring,
we compared the relationships between the average SIF (NDVI) values and the per-unit
grain yields during the growing season over different subregions (Figure 6). Figure 6a
shows the correlations of the SIF and NDVI values with the per-unit grain yields over
different subregions. The degrees of consistency between the two indicators and the per-
unit grain yields indicated the existence of close relationships between the SIF and the
per-unit grain yield and between the NDVI and the per-unit grain yield. The PCC values
obtained between the SIF and the per-unit grain yield were generally higher than those
obtained between the NDVI and the per-unit grain yield, especially over the NEP, NCP,
MLRYR, YGP, and ASANC regions. Figure 6b shows the R2 values obtained via polynomial
fitting between the SIF (NDVI) and the per-unit grain yield. Except for in the QTP and
MLRYR regions, the R2 values obtained between the NDVI and the per-unit grain yield
were greater than 0.8, while the R2 values obtained between the SIF and the per-unit grain
yield were greater than 0.8, except in the SC and QTP regions. Moreover, except in the SC,
SCB, and QTP regions, the R2 values derived between the NDVI and the per-unit grain yield
were greater than those derived between the SIF and the per-unit grain yield. Although
the SIF and the NDVI both showed good performances when monitoring the per-unit
grain yield, and their performances were similar, the SIF had stronger correlations with
the per-unit grain yield than the NDVI, indicating that the SIF could explain grain-yield
changes better than the NDVI.
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Figure 7 shows the percentage changes in the SIF/NDVI/ per-unit grain yield during
2009–2010 compared with the corresponding mean annual values recorded from 2001–2019.
In eight subregions, excluding the NEP, the percentage changes in the per-unit grain yield,
SIF, and NDVI showed consistent increases or decreases from 2009–2010. In the NEP
subregion, the percentage changes in the per-unit grain yield and the SIF increased from
2009–2010, but the NDVI percentage change decreased. Except in the NEP region, the SIF
change rate was larger than that of the NDVI. Therefore, the GOSIF could capture the effects
of drought on the grain yield better than the NDVI. As the drought that occurred during
2009–2010 had greater effects over the southern part of China than in other regions in China,
the percentage changes in the per-unit grain yield in the NEP, NCP, LP, and QTP subregions
did not decrease compared with the corresponding mean annual values. It is worth noting
that although the SC region is located in southern China, the percentage change rate in
the NDVI and SIF increased. Previous studies showed that the SC region was less affected
by drought due to climate background, soil type, and river-network distribution [44,45]
during 2009–2010; therefore, the percentage change rate in the NDVI and SIF increased.
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4. Discussion
4.1. Differences between SIF and NDVI

By analyzing the consistency between the SIF and NDVI (see Section 3.1), we recorded
large differences between these indices in the southeastern and southwestern parts of
China (Figure 3). High vegetation-cover levels have been recorded in the southeastern and
southwestern parts of China [5,46]. Previous studies have shown that in areas with high
vegetation coverage, the NDVI reaches saturation [47,48], which may lead to poor consis-
tency between the NDVI and the SIF. The results obtained in the consistency comparisons
between the SIF and the NDVI in different seasons indicated that the relationship between
the SIF and the NDVI was less consistent during summer than during autumn or spring
(Figures 3 and 4). Cui et al. [49] found that the photosynthetic intensity of vegetation could
have a positive linear relationship with the leaf area. As the leaf area increases from spring
to summer and decreases from summer to autumn, with a maximum value in summer [13],
the differences between the NDVI and the SIF may have been consistent due to the leaf area
changes that occur in spring and autumn [32]. However, smaller changes were recorded
in the leaf area of vegetation during summer than in other seasons [49]. When the leaf
area remains stable, NDVI changes can be small, while the changes in photosynthesis that
occur during summer could provide more information on influential factors, such as solar
radiation [50] and drought conditions [28]. Therefore, the SIF had a better performance
than the NDVI in monitoring the physiological state of the vegetation during summer.

In previous investigations, the NDVI generally underestimated the vegetation dy-
namics at high vegetation-cover levels [51–54]. Figure 8 shows the relationship obtained
between the NDVI and the SIF when applied to forest vegetation areas. In regions where
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the vegetation had lower coverage levels (NDVI values not greater than 0.60), good rela-
tionships between the SIF and the NDVI were found; by contrast, in regions where the
vegetation had higher coverage levels (NDVI values greater than 0.60), poor relationships
between the SIF and the NDVI were found (Figure 8a). The distributions of the SIF and
the NDVI also revealed differences between the two indices. The SIF distribution fitted a
normal distribution better than the NDVI distribution (Figure 8b). In addition, NDVI-based
vegetation monitoring corresponds to the reflectance of leaves to radiation, while SIF-based
vegetation monitoring is related to photosynthetic intensity. The reflectance changes that
occur in evergreen forests are smaller than those of deciduous forests; therefore, the cor-
relations between NDVI and SIF are smaller in evergreen forest areas than in deciduous
forest areas.
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4.2. Reasons for the Different Performances of SIF and NDVI in GPP and Grain-Yield Monitoring

The comparison between the NDVI and SIF results (see Sections 3.2 and 3.3) indi-
cated that the SIF performed better than NDVI when applied to the GPP and grain-yield
monitoring (Figures 4 and 5). Previous studies have analyzed various characteristics of
vegetation-monitoring indicators. By estimating the performances of indicators when
monitoring vegetation characteristics, Chen et al. [32] reported that the SIF had a more
significant linear relationship with the GPP than the NDVI did with the NCP. The signifi-
cant relationship between the SIF and the GPP was also investigated by Ma et al. [55] on
a monthly scale in China. The results from these studies were confirmed and expanded
upon by our results. Wang et al. [34] pointed out that applying the SIF to urban mixed
forest and cropland ecosystems would result in a better ability to indicate the growing
season’s end date than the application of the NDVI. Chang et al. [56] analyzed the ability
of vegetation-monitoring indicators to reveal phenology characterizations in high-latitude
and snow-covered forests (including North America and North Eurasia), and the results
indicated that GPP and SIF had a high level of consistency in determining the start of the
growing season. Chang et al. [21] found that the SIF had a higher level of performance
than the NDVI when monitoring crop characteristics during weekly seasonal campaigns.
This result agreed with our consistency results obtained from the NDVI, SIF, and per-unit
grain yield (Figure 7). Although Jeong et al. [33] found that the SIF and the GPP indicated
similar vegetation phenology characterizations in different seasons, the NDVI usually
overestimated the GPP compared to the observations, especially during spring and au-
tumn, over high-latitude areas. Jeong et al. [33] also advised that the simulations of the
phenological characteristics of vegetation physiology (by SIF) and structure (by NDVI)
should be separated to reduce biases in the simulated GPP results. Our results showed that
the correlation between the SIF and the GPP was greater than that between the NDVI and
the GPP in different seasons; this may have been due to the vegetation producing organic
substances via photosynthesis [4,57]. Due to the physiological processes of plants, organic
substances can be converted into vegetation biomass (GPP or grain yields). In particular,
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the key to cropland vegetation simulations might be considering the amount of organic
matter present rather than the level of vegetation cover [58,59]. Therefore, based on the
principle of physiological vegetation characteristics, SIF might be more suitable than NDVI
for describing GPP [28] and grain yields [8].

4.3. Limitations

The limitations and uncertainties of the results in this study were highly influenced by
the quality of the GPP datasets. The MODIS GPP produces were based on the LUE model.
The LUE model relied on many types of ground parameter. Many inaccurate parameters
were inputted into the LUE model, which may lead to errors in GPP products [40]. The GPP
products obtained by the eddy covariance technique (EC, GPP flux tower) were considered
as the most accurate GPP data [60]. However, the sampling area of the flux tower was
small (<1 km2) and its distribution was not uniform, making it difficult to conduct a large-
scale evaluation. The mismatch between the observation range of the flux-tower site and
the monitoring range of the remote-sensing data was another important reason for the
limitation of the GPP flux tower [36]. As more high-resolution satellites are launched and
flux-tower data become available, more reliable GPP produces will be obtained in the future
to eliminate uncertainties. Therefore, we propose to improve the LUE model or control the
quality of the input parameters to improve the accuracy of the MODIS GPP produces. The
more precise and reliable GPP products can be used in future research for further detailed
analyses and to verify our results.

The spatial resolution and time-series length of the SIF limit its application. GOSIF
(0.05◦) provides better spatial resolution than other SIF products, providing an unprece-
dented opportunity to explore the estimation of GPP on large scale. In this study, we
explored the relationship between the GOSIF and the GPP/per-unit grain yield among
different land-cover types and in different seasons. Based on our results, we believe that
GOSIFs have great potential in GPP monitoring and per-unit grain-yield monitoring around
the world. However, GOSIF also involves uncertainty, including over meteorological re-
analysis data, the quality of OCO-2 SIF, the biases in the enhanced vegetation index, and
imperfect modeling methods [36,37]. There are currently no satellites dedicated to SIF
observations. Therefore, it is necessary to obtain more accurate SIF data sets in the future. In
the future, the availability of long-term SIF observations will help us to better understand
the differences between the SIF and the vegetation index (such as NDVI) in reflecting
GPP/per-unit grain yield, and improve our understanding of the function of ecosystems
under climate change.

In addition, our study only used a correlation analysis to study the relationship
between the SIF/NDVI and the per-unit grain yield, and described per-unit grain-yield
changes in drought years. Although we provided a link between the SIF/NDVI and per-
unit grain yield, further analysis needs to be combined with biophysical models to reveal
the potential mechanisms of drought affecting grain yields. Moreover, the responses of
different crops to drought are not the same due to the differences in photosynthetic capacity,
metabolic capacity, and the required growing periods. This study only briefly analyzed
the application of NDVI and SIF in yield monitoring. Future studies can use a drought
event as an example to analyze the effects of drought on specific crops (such as rice, corn,
and wheat).

5. Conclusions

This study compared the relationships between SIF and NDVI among different land-
cover types and in different seasons and evaluated their applicability for monitoring GPP
and grain yields in China. The results can provide a reference for the selection of NDVI or
SIF as vegetation-monitoring indicators in different applications. The main findings of this
study can be summarized as follows.

(1) The NDVI and SIF change trends showed that decreasing vegetation trends were
mainly concentrated in the northern part of Xinjiang, in part of the QTP, and in a small
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part of northeastern China. The NDVI and SIF were more closely related in all the
analyzed land-cover type regions than ENF and EBF areas.

(2) The spatial distribution characteristics of the relationships between the SIF (NDVI)
and the GPP were similar among different seasons, and the correlations were smaller
in southern China and northwestern China than in the other regions of China. In
general, the correlations between the SIF (NDVI) and the GPP were smaller in the
forest vegetation regions during summer than in other seasons. Moreover, the SIF had
a stronger correlation with the GPP than the NDVI did in different seasons.

(3) The PCC and R2 values obtained between the SIF and the per-unit grain yield were
generally higher than those obtained between the NDVI and the per-unit grain yield.
The percentage changes in the per-unit grain yield and SIF were similar, indicating
that the SIF could capture the effect of the drought on the grain yields better than the
NDVI could.

Furthermore, we also need to be fully aware of the following limitations of this study,
which are mainly related to three aspects. First, the temporal extent of the SIF data is still
relatively short and, thus, cannot describe long-term vegetation changes. As the temporal
extent of the available SIF data is extended, SIF will be more widely used. Second, desert
vegetation plays an important role in combating desertification, but neither NDVI nor
SIF can effectively reflect the changes in the GPP in BSV regions in the northwestern part
of China. It is therefore important that future investigations analyze desert vegetation
indicators. Third, the suitable vegetation-indicator selection may differ among different
applications. As more high-resolution satellites are launched, more precise and reliable
datasets can be used in future research to further analyze and verify our results. Never-
theless, notwithstanding the above limitations, the outcomes of this study can provide a
reference for selecting suitable vegetation indicators in future vegetation studies.

Author Contributions: Conceptualization: H.S.; data curation: Z.Z.; formal analysis: Z.Z.; funding
acquisition: H.S.; methodology: Z.Z. and Y.D.; supervision: H.S., Q.F. and S.L.; validation: Z.Z., Y.D.
and Y.W.; writing—original draft: Z.Z.; writing—reviewing and editing: H.S. and S.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by National Natural Science Foundation of China (51909117),
the Natural Science Foundation of Shenzhen (JCYJ20210324105014039), the Guangdong Provincial
Key Laboratory of Soil and Ground Water Pollution Control (2017B030301012), and the State Environ-
mental Protection Key Laboratory of Integrated Surface-Water–Groundwater Pollution Control.

Data Availability Statement: The GOSIF data are available at https://globalecology.unh.edu/data/
GOSIF.html, accessed on 21 October 2021. The NDVI and GPP data are available at https://modis.gsfc.
nasa.gov/data/, accessed on 21 October 2021. The grain yields and cropland area data recorded from
2001 to 2019 are available at the Ministry of Agriculture and Rural Affairs of China (http://zdscxx.
moa.gov.cn:8080/nyb/pc/index.jsp, accessed on 21 October 2021) and the China Statistical Yearbook,
published by the National Bureau of statistics (http://www.stats.gov.cn/tjsj/ndsj/, accessed on
21 October 2021).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Chatterjee, A.; Chatterjee, S.; Smith, B.; Cresswell, J.E.; Basu, P. Predicted thresholds for natural vegetation cover to safeguard

pollinator services in agricultural landscapes. Agric. Ecosyst. Environ. 2020, 290, 106785. [CrossRef]
2. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al.

Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [CrossRef]
[PubMed]

3. Higgins, S.I.; Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 2012, 488, 209–212.
[CrossRef]

4. Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.;
Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens.
Environ. 2019, 231, 111177. [CrossRef] [PubMed]

https://globalecology.unh.edu/data/GOSIF.html
https://globalecology.unh.edu/data/GOSIF.html
https://modis.gsfc.nasa.gov/data/
https://modis.gsfc.nasa.gov/data/
http://zdscxx.moa.gov.cn:8080/nyb/pc/index.jsp
http://zdscxx.moa.gov.cn:8080/nyb/pc/index.jsp
http://www.stats.gov.cn/tjsj/ndsj/
http://doi.org/10.1016/j.agee.2019.106785
http://doi.org/10.1038/nature03972
http://www.ncbi.nlm.nih.gov/pubmed/16177786
http://doi.org/10.1038/nature11238
http://doi.org/10.1016/j.rse.2019.04.030
http://www.ncbi.nlm.nih.gov/pubmed/33414568


Remote Sens. 2022, 14, 3237 13 of 15

5. Zhou, Z.Q.; Ding, Y.B.; Shi, H.Y.; Cai, H.J.; Fu, Q.; Liu, S.N.; Li, T.X. Analysis and prediction of vegetation dynamic changes in
China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [CrossRef]

6. He, L.; Chen, J.M.; Liu, J.; Zheng, T.; Wang, R.; Joiner, J.; Chou, S.; Chen, B.; Liu, Y.; Liu, R.G.; et al. Diverse photosynthetic
capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements. Remote Sens. Environ. 2019, 232,
111344. [CrossRef]

7. Kern, A.; Barcza, Z.; Marjanovic, H.; Arendas, T.; Fodor, N.; Bonts, P.; Bognar, P.; Lichtenberger, J. Statistical modelling of crop
yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260–261, 300–320.
[CrossRef]

8. Peña-Gallardo, M.; Vicente-Serrano, S.M.; Quiring, S.; Svoboda, M.; Hannaford, J.; Tomas-Burguera, M.; Martín-Hernández,
N.; Domínguez-Castro, F.; Kenawy, A.E. Response of crop yield to different time-scales of drought in the United States: Spatio-
temporal patterns and climatic and environmental drivers. Agric. For. Meteorol. 2019, 264, 40–55. [CrossRef]

9. Zhou, J.; Zhang, Z.Q.; Sun, G.; Fang, X.R.; Zha, T.G.; Mcnulty, S.; Chen, J.Q.; Jin, Y.; Noormets, A. Response of ecosystem carbon
fluxes to drought events in a poplar plantation in Northern China. For. Ecol. Manag. 2013, 300, 33–42. [CrossRef]

10. Trabucco, A.; Zomer, R.J.; Bossio, D.A.; van Straaten, O.; Verchot, L.V. Climate change mitigation through afforesta-
tion/reforestation: A global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 2008, 126, 81–97.
[CrossRef]

11. Jiang, C.; Zhang, H.Y.; Zhang, Z.D.; Wang, D.W. Model-based assessment soil loss by wind and water erosion in China’s Loess
Plateau: Dynamic change, conservation effectiveness, and strategies for sustainable restoration. Glob. Planet. Change 2019, 172,
396–413. [CrossRef]

12. Liu, Y.F.; Liu, Y.; Shi, Z.H.; López-Vicente, M.; Wu, G.L. Effectiveness of re-vegetated forest and grassland on soil erosion control
in the semi-arid Loess Plateau. Catena 2020, 195, 104787. [CrossRef]

13. Ye, W.T.; van Dijk, A.I.J.M.; Huete, A.; Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their
robustness. Int. J. Appl. Earth Obs. 2021, 94, 102238. [CrossRef]

14. Li, X.; Xiao, J.F. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and
Reanalysis Data. Remote Sens. 2019, 11, 517. [CrossRef]

15. Wei, T.F.; Shangguan, D.H.; Yi, S.H.; Ding, Y.J. Characteristics and controls of vegetation and diversity changes monitored with an
unmanned aerial vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China. Sci. Total Environ. 2021, 771, 145433.
[CrossRef] [PubMed]

16. Wan, J.Z.; Wang, C.J.; Qu, H.; Liu, R.; Zhang, Z.X. Vulnerability of forest vegetation to anthropogenic climate change in China. Sci.
Total Environ. 2018, 621, 1633–1641. [CrossRef]

17. Yang, J.L.; Ding, J.W.; Xiao, X.M.; Dai, J.H.; Wu, C.Y.; Xia, J.Y.; Zhao, G.S.; Zhao, M.M.; Li, Z.L.; Zhang, Y.; et al. Divergent shifts in
peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [CrossRef]

18. Liu, F.; Wang, C.K.; Wang, X.C. Sampling protocols of specific leaf area for improving accuracy of the estimation of forest leaf area
index. Agric. For. Meteorol. 2021, 298–299, 108286. [CrossRef]

19. Xu, J.T.; Cai, H.J.; Saddique, Q.; Wang, X.Y.; Li, L.; Ma, C.J.; Liu, Y.J. Evaluation and optimization of border irrigation in different
irrigation seasons based on temporal variation of infiltration and roughness. Agric. Water Manag. 2019, 214, 64–77. [CrossRef]

20. Pinzon, J.; Tucker, C. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [CrossRef]
21. Chang, C.Y.; Zhou, R.Q.; Kria, O.; Marri, S.; Skovira, J.; Gu, L.H.; Sun, Y. An Unmanned Aerial System (UAS) for concurrent

measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring. Agric.
For. Meteorol. 2020, 294, 108145. [CrossRef]

22. Fan, X.; Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J. Photogramm. 2016, 121,
177–191. [CrossRef]

23. Pengra, B.; Long, J.; Dahal, D.; Stehman, S.V.; Loveland, T.R. A global reference database from very high resolution commercial
satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens. Environ.
2015, 165, 234–248. [CrossRef]

24. Shi, H.Y.; Chen, J. Characteristics of climate change and its relationship with land use/cover change in Yunnan Province, China.
Int. J. Climatol. 2018, 38, 2520–2537. [CrossRef]

25. Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in
Texas. Agric. For. Meteorol. 2010, 150, 330–339. [CrossRef]

26. Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Trigo, I.F. A climatological assessment of drought impact on vegetation health index.
Agric. For. Meteorol. 2018, 259, 286–295. [CrossRef]

27. Shammi, S.A.; Meng, Q.M. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol.
Indic. 2021, 121, 107124. [CrossRef]

28. Chen, S.; Huang, Y.; Wang, G. Detecting drought-induced GPP spatiotemporal variabilities with sun-induced chlorophyll
fluorescence during the 2009/2010 droughts in China. Ecol. Indic. 2021, 121, 107092. [CrossRef]

29. Ding, Y.B.; Xu, J.T.; Wang, X.W.; Peng, X.B.; Cai, H.J. Spatial and temporal effects of drought on Chinese vegetation under different
coverage levels. Sci. Total Environ. 2020, 716, 137166. [CrossRef]

30. Xu, H.J.; Wang, X.P.; Zhao, C.Y.; Yang, X.M. Diverse responses of vegetation growth to meteorological drought across climate
zones and land biomes in northern China from 1981 to 2014. Agric. For. Meteorol. 2018, 262, 1–13. [CrossRef]

http://doi.org/10.1016/j.ecolind.2020.106642
http://doi.org/10.1016/j.rse.2019.111344
http://doi.org/10.1016/j.agrformet.2018.06.009
http://doi.org/10.1016/j.agrformet.2018.09.019
http://doi.org/10.1016/j.foreco.2013.01.007
http://doi.org/10.1016/j.agee.2008.01.015
http://doi.org/10.1016/j.gloplacha.2018.11.002
http://doi.org/10.1016/j.catena.2020.104787
http://doi.org/10.1016/j.jag.2020.102238
http://doi.org/10.3390/rs11050517
http://doi.org/10.1016/j.scitotenv.2021.145433
http://www.ncbi.nlm.nih.gov/pubmed/33736172
http://doi.org/10.1016/j.scitotenv.2017.10.065
http://doi.org/10.1016/j.rse.2019.111395
http://doi.org/10.1016/j.agrformet.2020.108286
http://doi.org/10.1016/j.agwat.2019.01.003
http://doi.org/10.3390/rs6086929
http://doi.org/10.1016/j.agrformet.2020.108145
http://doi.org/10.1016/j.isprsjprs.2016.09.008
http://doi.org/10.1016/j.rse.2015.01.018
http://doi.org/10.1002/joc.5404
http://doi.org/10.1016/j.agrformet.2009.11.015
http://doi.org/10.1016/j.agrformet.2018.05.014
http://doi.org/10.1016/j.ecolind.2020.107124
http://doi.org/10.1016/j.ecolind.2020.107092
http://doi.org/10.1016/j.scitotenv.2020.137166
http://doi.org/10.1016/j.agrformet.2018.06.027


Remote Sens. 2022, 14, 3237 14 of 15

31. Liu, Y.; Dang, C.Y.; Yue, H.; Lyu, C.G.; Dang, X.H. Enhanced drought detection and monitoring using sun-induced chlorophyll
fluorescence over Hulun Buir Grassland, China. Sci. Total Environ. 2021, 770, 145271. [CrossRef] [PubMed]

32. Chen, X.J.; Mo, X.G.; Zhang, Y.C.; Sun, Z.G.; Liu, Y.; Hu, S.; Liu, S.X. Drought detection and assessment with solar-induced
chlorophyll fluorescence in summer maize growth period over North China Plain. Ecol. Indic. 2019, 104, 347–356. [CrossRef]

33. Jeong, S.J.; Schimel, D.; Frankenberg, C.; Drewry, D.T.; Fisher, J.B.; Verma, M.; Berry, J.A.; Lee, J.E.; Joiner, J. Application of
satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function
over northern high latitude forests. Remote Sens. Environ. 2017, 190, 178–187. [CrossRef]

34. Wang, F.; Chen, B.Z.; Lin, X.F.; Zhang, H.F. Solar-induced chlorophyll fluorescence as an indicator for determining the end date of
the vegetation growing season. Ecol. Indic. 2020, 109, 105755. [CrossRef]

35. Ding, Y.B.; Xu, J.T.; Wang, X.W.; Cai, H.J.; Zhou, Z.Q.; Sun, Y.N.; Shi, H.Y. Propagation of meteorological to hydrological drought
for different climate regions in China. J. Environ. Manag. 2021, 283, 111980. [CrossRef]

36. Qiu, R.N.; Han, G.; Ma, X.; Xu, H.; Shi, T.Q.; Zhang, M. A comparison of OCO-2 SIF, MODIS GPP, and GOSIF data from Gross
Primary Production (GPP) estimation and seasonal cycles in North America. Remote Sens. 2020, 12, 258. [CrossRef]

37. Li, X.; Xiao, J.F. Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences
inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index. Agric. For. Meteorol. 2020, 288–289, 108018.
[CrossRef]

38. Shim, C.; Hong, J.; Hong, J.Y.; Kim, Y.; Kang, M.; Thakuri, B.M.; Kim, Y.; Chun, J. Evaluation of MODIS GPP over a complex
ecosystem in East Asia: A case study at Gwangneung flux tower in Korea. Adv. Space Res. 2014, 54, 2296–2308. [CrossRef]

39. Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Kimball, J.S.; Nemannpi, R.R.; et al.
User’s Guide GPP and NPP (MOD17A2/A3) Products, NASA MODIS Land Algorithm; MOD17 User’s Guide; University of Montana:
Missoula, MT, USA, 2003; pp. 1–57.

40. Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production
global data set. Remote Sens. Environ. 2005, 95, 164–176. [CrossRef]

41. Wang, S.H.; Zhang, L.F.; Huang, C.P.; Qiao, N. An NDVI-Based Vegetation Phenology Is Improved to be More Consistent with
Photosynthesis Dynamics through Applying a Light Use Efficiency Model over Boreal High-Latitude Forests. Remote Sens. 2017,
9, 695. [CrossRef]

42. Tian, F.; Wu, J.J.; Liu, L.Z.; Leng, S.; Yang, J.H.; Zhao, W.H.; Shen, Q. Exceptional drought across Southeastern Australia caused by
extreme lack of precipitation and its impacts on NDVI and SIF in 2018. Remote Sens. 2019, 12, 54. [CrossRef]

43. Zhou, Z.Q.; Shi, H.Y.; Fu, Q.; Ding, Y.B.; Li, T.X.; Wang, Y.; Liu, S.N. Characteristics of propagation from meteorological drought
to hydrological drought in the Pearl River Basin. J. Geophys. Res. Atmos. 2021, 126, e2020JD033959. [CrossRef]

44. Wang, S.P.; Wang, J.S.; Feng, J.Y. Drought in China and its impact and causes in the autumn of 2010. J. Arid. Meteorol. 2010, 4,
499–504. (In Chinese)

45. Wang, J.S.; Zhang, Q.; Wang, S.P.; Wang, Y.; Wang, J.; Yao, Y.B.; Ren, Y.L. Characteristic analysis of drought disaster chain in
Southwest and South China. J. Arid. Meteorol. 2015, 33, 187–194.

46. Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Chrisrtoffersen, B.O.; Wang, E.S.; Middleton, R.S. Increasing impacts of
extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 2019, 9, 948–953. [CrossRef]

47. Wang, G.Q.; Liu, S.M.; Liu, T.X.; Fu, Z.Y.; Yu, J.S.; Xue, B.L. Modelling above-ground biomass based on vegetation indexes: A
modified approach for biomass estimation in semi-arid grasslands. Int. J. Remote Sens. 2019, 40, 3835–3854. [CrossRef]

48. Liu, F.; Qin, Q.M.; Zhan, Z.M. A novel dynamic stretching solution to eliminate saturation effect in NDVI and its application in
drought monitoring. Chin. Geogr. Sci. 2012, 22, 683–694. [CrossRef]

49. Cui, T.X.; Sun, R.; Xiao, Z.Q.; Liang, Z.Y.; Wang, J. Simulating spatially distributed solar-induced chlorophyll fluorescence using a
BEPS-SCOPE coupling framework. Agric. For. Meteorol. 2020, 295, 108169. [CrossRef]

50. Wu, W.; Tang, X.P.; Yang, C.; Guo, N.J.; Liu, H.B. Spatial estimation of monthly mean daily sunshine hours and solar radiation
across mainland China. Renew. Energy 2013, 57, 546–553. [CrossRef]

51. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ.
1997, 62, 241–252. [CrossRef]

52. Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and
MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [CrossRef]

53. Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T. Improving the estimation of leaf area index by using remotely sensed
NDVI with BRDF signatures. Remote Sens. Environ. 2010, 114, 514–519. [CrossRef]

54. Rokni, K.; Musa, T.A. Normalized difference vegetation change index: A technique for detecting vegetation changes using
Landsat imagery. Catena 2019, 178, 59–63. [CrossRef]

55. Ma, J.; Xiao, X.; Zhang, Y.; Chen, B.; Zhao, B. Spatial-temporal consistency between gross primary productivity and solar-induced
chlorophyll fluorescence of vegetation in China during 2007–2014. Sci. Total Environ. 2018, 639, 1241–1253. [CrossRef]

56. Chang, Q.; Xiao, X.M.; Jiao, W.Z.; Wu, X.C.; Doughty, R.; Wang, J.; Du, L.; Zou, Z.H.; Qin, Y.W. Assessing consistency of spring
phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll
fluorescence. Agric. For. Meteorol. 2019, 275, 305–316. [CrossRef]

57. Guo, P.P.; Guo, K.J.; Ren, Y.; Shi, Y.; Chang, J.; Tani, A.; Ge, Y. Biogenic volatile organic compound emissions in relation to plant
carbon fixation in a subtropical urban–rural complex. Landsc. Urban Plan. 2013, 119, 74–84. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2021.145271
http://www.ncbi.nlm.nih.gov/pubmed/33513493
http://doi.org/10.1016/j.ecolind.2019.05.017
http://doi.org/10.1016/j.rse.2016.11.021
http://doi.org/10.1016/j.ecolind.2019.105755
http://doi.org/10.1016/j.jenvman.2021.111980
http://doi.org/10.3390/rs12020258
http://doi.org/10.1016/j.agrformet.2020.108018
http://doi.org/10.1016/j.asr.2014.08.031
http://doi.org/10.1016/j.rse.2004.12.011
http://doi.org/10.3390/rs9070695
http://doi.org/10.3390/rs12010054
http://doi.org/10.1029/2020JD033959
http://doi.org/10.1038/s41558-019-0630-6
http://doi.org/10.1080/01431161.2018.1553319
http://doi.org/10.1007/s11769-012-0574-5
http://doi.org/10.1016/j.agrformet.2020.108169
http://doi.org/10.1016/j.renene.2013.02.027
http://doi.org/10.1016/S0034-4257(97)00104-1
http://doi.org/10.1016/j.rse.2011.12.015
http://doi.org/10.1016/j.rse.2009.10.005
http://doi.org/10.1016/j.catena.2019.03.007
http://doi.org/10.1016/j.scitotenv.2018.05.245
http://doi.org/10.1016/j.agrformet.2019.06.002
http://doi.org/10.1016/j.landurbplan.2013.07.003


Remote Sens. 2022, 14, 3237 15 of 15

58. Xu, J.T.; Cai, H.J.; Wang, X.Y.; Ma, C.G.; Lu, Y.J.; Ding, Y.B.; Wang, X.W.; Chen, H.; Wang, Y.F.; Saddique, Q. Exploring optimal
irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing
water and nitrogen leaching. Agric. Water Manag. 2020, 228, 105904. [CrossRef]

59. Zhou, Z.Q.; Shi, H.Y.; Fu, Q.; Li, T.X.; Gan, T.Y.; Liu, S.N. Assessing spatiotemporal characteristics of drought and its effects on
climate-induced yield of maize in Northeast China. J. Hydrol. 2020, 588, 125097. [CrossRef]

60. Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced
chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous
forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [CrossRef]

http://doi.org/10.1016/j.agwat.2019.105904
http://doi.org/10.1016/j.jhydrol.2020.125097
http://doi.org/10.1002/2015GL063201

	Introduction 
	Data and Methods 
	Study Area 
	Datasets 
	Analysis 

	Results 
	Consistency between SIF and NDVI 
	Relationships between SIF and GPP and between NDVI and GPP 
	Performances of SIF and NDVI in Grain-Yield Monitoring 

	Discussion 
	Differences between SIF and NDVI 
	Reasons for the Different Performances of SIF and NDVI in GPP and Grain-Yield Monitoring 
	Limitations 

	Conclusions 
	References

