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Abstract: Infrared and visible image fusion is to combine the information of thermal radiation and
detailed texture from the two images into one informative fused image. Recently, deep learning
methods have been widely applied in this task; however, those methods usually fuse multiple
extracted features with the same fusion strategy, which ignores the differences in the representation
of these features, resulting in the loss of information in the fusion process. To address this issue, we
propose a novel method named multi-modal feature self-adaptive transformer (MFST) to preserve
more significant information about the source images. Firstly, multi-modal features are extracted
from the input images by a convolutional neural network (CNN). Then, these features are fused by
the focal transformer blocks that can be trained through an adaptive fusion strategy according to the
characteristics of different features. Finally, the fused features and saliency information of the infrared
image are considered to obtain the fused image. The proposed fusion framework is evaluated on
TNO, LLVIP, and FLIR datasets with various scenes. Experimental results demonstrate that our
method outperforms several state-of-the-art methods in terms of subjective and objective evaluation.

Keywords: infrared image; visible image; transformer; image fusion; multi-modal feature; focal
self-attention

1. Introduction

Image fusion refers to combining the images obtained by different types of sensors to
generate a robust or informative image for subsequent processing and decision-making [1,2].
The technique is important for the fields of target detection [3], image enhancement [4],
video surveillance [5], remote sensing [6–9], defogging [10], and so on. Due to differences
in the imaging mechanism of the sensors, the scene information captured by infrared
and visible images is very different in contrast and texture. Visible images are mainly
reflection imaging, which is strongly dependent on lighting conditions. They usually have
the characteristics of high spatial resolution, rich color, and texture details, which can offer
a good source of perception in favorable lighting conditions. However, they are vulnerable
to insufficient light or bad weather conditions. The infrared images reflect the thermal
radiation of an object and are almost unaffected by weather and light. However, they
usually have low spatial resolution and lack detailed texture information. Therefore, the
fusion of two images provides more comprehensive information than a single image, which
is very useful for subsequent high-level applications [11,12].

Currently, infrared and visible image fusion techniques can be divided into two
categories: traditional methods and deep learning-based methods. In the past decades,
traditional methods have been proposed for the fusion of pixel-level or fixed features. Tra-
ditional image fusion methods mainly include multi-scale transform (MST) [13,14], sparse
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representation (SR) [15,16], salience [17,18] and low rank representation (LRR) [19,20]. The
MST methods design appropriate fusion strategies to fuse the sub-layers obtained by using
some transform operators, and the result is achieved through the inverse transformation.
As a representative of MST method, Vanmali et al. [21] employed the laplacian pyramid
as the transform operator and generated the weight map that was used to fuse the cor-
responding layers by considering local entropy, contrast, and brightness; therefore, good
results can be achieved under the conditions of bad light. Yan et al. [22] constructed an
edge-preserving filter for image decomposition, which can not only preserve the edge
but also attenuate the influence of infrared background, ensuring that the fused image
contains rich background information and salient features. However, MST method has a
strong dependence on the choice of transformation, and its inappropriate fusion rules can
introduce artifacts to the results [23]. Compared with MST, the goal of SR is to learn an
over-complete dictionary to sparsely represent the source image, and the fused image can
be reconstructed from the fused sparse representation coefficients. Bin et al. [24] adopted a
fixed over-complete discrete cosine transform dictionary to represent infrared and visible
images. Veshki et al. [25] used a sparse representation with identical support and Pearson
correlation constraints without causing strength decay or loss of important information.
For target-oriented fusion methods, salience methods can maintain the integrity of the
significant target area and improve the visual quality of the fused images. Ma et al. [26]
employed the rolling guidance and Gaussian filter as a multi-scale decomposition operator
and used a visual saliency map to make the fusion result contain more visual details.
Liu et al. [27] proposed a method combining salient object extraction and low-light region
enhancement to improve the overall brightness of the image and make the results more
suitable for human perception. As an efficient representation method, LRR is to decompose
the images with low-rank representation and then fuse the sub-layers with appropriate
rules. Gao et al. [22] proposed the combination of latent low-rank representation (LatLRR)
and rolling guidance image filter (RGIF) to extract sub-layers from the images, which
improved the fusion quality in terms of image contrast, sharpness, and richness of detail
information. Although traditional methods have achieved indicated good performance,
they still have three drawbacks: (1) the quality of handcrafted features determines the effect
of fusion; (2) some traditional methods such as SR are very time-consuming; (3) specific
fusion strategies need to be designed for various image datasets.

Recently, due to the advantages of strong adaptability, fault tolerance, and anti-noise
capabilities, deep learning (DL) has been widely used in image fusion and has achieved
better performance than traditional ones. According to the difference in network structure
and output, DL-based fusion methods can be divided into two categories: non-end-to-end
learning and end-to-end learning. For the former, the neural networks only extract deep fea-
tures or output weights as the consideration of fusion strategy. Liu et al. [28,29] obtained the
activity level measurement of the images through the Siamese convolutional network and
combined it with the Laplace pyramid to realize the efficient fusion of infrared and visible
images. Jian et al. [30] proposed a fusion framework based on decomposition network and
salience analysis (DDNSA). They combined saliency map and bidirectional edge intensity
to fuse the structural and texture features, respectively, and the fusion result can retain more
details from the source images. While the end-to-end methods directly produce the fusion
results through the network without very sophisticated and time-consuming operations.
Xu et al. [31] proposed the FusionDN by employing a densely connected network to extract
features effectively, which can be applied to multiple fusion tasks with the same weights.
Ma et al. [32] proposed a new end-to-end model, termed DDcGAN, which established
an adversarial game between a generator and two discriminators for fusing infrared and
visible images at different resolutions. In the past two years, many methods have begun to
adopt the framework of feature extraction-fusion-image reconstruction. This framework
can maximize the capabilities of feature extraction and feature fusion, respectively, and
ultimately improve the quality of fusion. Yang et al. [33] proposed a method based on
dual-channel information cross fusion block (DICFB) for cross extraction and preliminary
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fusion of multi-scale features, and the final image is enhanced by saliency information. By
considering the illumination factor in the feature extraction stage, Tang et al. [34] proposed
a progressive image fusion network termed as PIAFusion, which can adaptively main-
tain the intensity distribution of significant targets and retain the texture information in
the background.

Although the above-mentioned methods have achieved competitive performance,
they still have as following disadvantages:

1. The design of the multi-feature fusion strategy is simple and does not make full use
of feature information.

2. CNN-based methods only consider local features in the fusion process without mod-
eling long-range dependencies, which will lose global context meaningful for the
fusion results.

3. End-to-end methods lack obvious feature extraction steps, resulting in poor fusion results.

In order to alleviate the drawbacks mentioned above, this paper presents a novel
fusion framework based on the focal Transformer fusion model and multi-modal feature
self-adaptive fusion strategy. The main contributions of our paper can be summarized
as follows:

1. To fully utilize both local information and global context, a new fusion model that
introduces the optimized focal self-attention is constructed.

2. To effectively utilize the multi-modal feature, an adaptive fusion strategy is designed
according to the representation of different layer features, which makes the fusion
results retain more structural features from the source images.

3. Experiments show that our method outperforms the existing state-of-the-art fusion
methods in both subjective appraisement and objective evaluation on multiple datasets.

The rest of this paper is organized as follows: The related works of fusion for visible
and infrared images are reviewed, and the development and superiority of the transformer
are described in Section 2. A detailed description of the multi-modal feature self-adaptive
transformer is given in Section 3. Comparative experiments and analysis are performed in
Section 4. Finally, conclusions are drawn in Section 5.

2. Related Works

In this section, we first review a special network structure: auto-encoder. It employs
a two-stage training strategy, which can improve the performance of feature extraction
and fusion. Then, we introduce the development of a transformer in the field of computer
vision and its great potential in image fusion.

2.1. Auto-Encoder-Based Methods

In CNN-based fusion methods, the last layer is often used as output features or to
produce fusion results, which will lose the meaningful information contained by the middle
layers. In order to solve this problem, Li et al. [35] proposed DenseFuse for infrared and
visible image fusion, which is composed of an encoder network, fusion strategy, and
decoder network. In which the encoder network comprised of convolution layers and
dense blocks are used to extract deep features, and the decoder network is applied to
reconstruct the image. In their fusion phase, the addition strategy or l1 − norm strategy is
adopted to fuse the deep features, which can preserve more details from the source images.

To improve DenseFuse, Li et al. [36] proposed Nestfuse, in which the encoder network
is changed to a multi-scale network, and the nest connection architecture is selected as the
decoding network. Due to their design of spatial/channel attention fusion strategies, the
model can better fuse the background details and salient regions in the image. However, this
handcrafted strategy cannot effectively utilize multi-modal features. Therefore, Li et al. [37]
further proposed RFN-nest, adopting a residual fusion network to learn the fusion weight.
Although these methods achieve good results to some extent, they adopt the same fusion
strategy for multi-modal features, which ignores the differences between these features
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at various modals. In order to improve the fusion quality, the focal transformer model is
adopted, and a self-adaptive fusion strategy is designed for multi-modal features.

2.2. Transformer-Based Method

Transformer [38] was first applied to natural language processing and has achieved
great success. Unlike CNN’s focus on local features, the transformer’s attention mechanism
can help it establish long-range dependence so as to make better use of global information
in both shallow and deep layers. The proposal of a vision transformer [39] shows that the
transformer has great potential in computer vision (CV). In recent years, more and more
researchers have introduced transformers into CV, such as object detection, segmentation,
multiple object tracking, and so on. Liu et al. [40] proposed VST, which adopts T2T-ViT
as the backbone, introducing a new multitask decoder and reverse T2T token upsampling
method. Unlike some methods in which class tokens are directly used in image classification
via using multilayer perceptron on the token embedding, VST recommends that patch-task-
attention should be carried out between patch tokens and task tokens to predict saliency
and boundary map.

Although the transformer has better representation ability, it needs enormous com-
putational overhead when processing high-resolution images. To alleviate the challenge
of adapting the transformer from language to vision, many researchers began to explore
the transformer structure more suitable for CV. Liu et al. [41] proposed a Swin transformer,
in which the key is the shift window scheme, which limits the self-attention calculation to
non-overlapping local windows and allows cross window connection so as to improve the
efficiency. Inspired by the Swin transformer, Li et al. [42] proposed a multi-path structure
of transformer called LG-Transformer, which can carry out local-to-global reasoning on
the multiple granularities of each stage and solve the problem of lack of global reasoning
in the early stages of the previous models. These methods of applying coarse-grained
global attention and fine-grained local attention improve the performance of the model but
also weaken the modeling ability of the transformer’s original self-attention mechanism.
Therefore, Yang et al. [43] proposed a focal transformer, which combines fine-grained local
interaction with coarse-grained global interaction. In the work of the focal transformer, a
new mechanism called focal self-attention is introduced, in which each token attends to its
nearest surrounding tokens in fine granularity and far away tokens in coarse granularity.
This method can capture both short-term and long-term visual dependencies, and the
computational efficiency is greatly improved.

In view of the advantages of the focal transformer, we introduce focal self-attention
into the fusion task and propose a novel self-adaptive fusion strategy according to the
characteristics of multi-modal features.

3. Methodology

In this section, the multi-modal feature self-adaptive transformer is presented. Section 3.1
introduces the architecture of the fusion model. Then, Section 3.2 presents the fusion
strategy in detail. Finally, the loss function and training phase are given in Section 3.3.

3.1. The Architecture of the Fusion Model

The proposed network is an end-to-end network consisting of three main parts: en-
coder, transformer fusion strategy, and decoder. The architecture of our fusion model is
illustrated in Figure 1, which can be described as follows:

(1) Encoder network: the multi-scale encoder network accepts one input image (infrared
image Ir and visible image Vi) and generates multi-modal deep features (Φi

ir and
Φi

vi), which contains one convolution layer and four encoder blocks. Each encoder
block contains two convolution layers followed by the ReLU operation and one
max-pooling layer.

(2) Transformer fusion block: the multi-modal features (Φi
ir and Φi

vi) extracted from dif-
ferent source images are fed to the transformer fusion blocks (TFB) to obtain the fused
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features (Φi
f ), which carry out fine-grained local fusion and coarse-grained global

fusion at the same time, helping the model fuse both local features and global context.
(3) Decoder network: the fused features (Φi

f ) are input into the decoder to generate the
fusion result (fused image F). The decoder consists of 6 decoder blocks and one
convolution layer. As shown in Figure 1, these blocks are combined through nest
connection, which greatly improves the image reconstruction ability. The encoder and
decoder in this paper are constructed according to the structure in NestFuse.

Figure 1. Overview of the proposed Multi-modal Feature Self-adaptive Transformer fusion model.

3.2. Transformer Fusion Strategy

Most of fusion methods generally use a simple strategy to fuse all extracted features,
which causes the loss of feature information during the fusion process. Therefore, the
fusion strategy for features should be carefully designed. In this paper, our fusion strategy
consists of two parts, one is a self-adaptive fusion strategy designed according to the
characteristics of multi-modal features, and the other is transformer fusion blocks used to
fuse local features and global context. These two parts will be elaborated in the following
two subsections.

3.2.1. Multi-Modal Features Self-Adaptive Fusion Strategy

The extracted multi-modal deep features contain a variety of information. Multi-
modal features extracted by encoder are shown in Figure 2. It can be seen that the shallow
layer features have abundant details, the middle layer features represent the structural
information of the image and the deep features are mainly region features. Therefore, when
fusing multi-modal features, we design specific loss functions to ensure that the feature
information can be transferred to the fusion result to the greatest extent.

As mentioned above, the first layer feature contains more details, and detail feature
(pixel) loss Ld f is designed at the pixel level to retain more details and textures for fusion.
The detail feature loss Ld f is calculated as follows:

Ld f =
∥∥∥Φ1

f −
(

wirΦ1
ir + wviΦ1

vi

)∥∥∥2

F
, (1)
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where Φ1
ir, Φ1

vi denotes the first layer features of infrared image and visible image, respec-
tively, Φ1

f denotes the fused feature of the first layer features. wir and wvi are self-adaption
weights, which are defined as follows:

wir =

∥∥∥Φ1
ir

∥∥∥
1∥∥∥Φ1

ir

∥∥∥
1
+
∥∥∥Φ1

vi

∥∥∥
1

, wvi = 1− wir. (2)

while, the features of the middle layer contain more structural features such as contour and
edge. The purpose of the structural feature (correlation) loss Ls f is to retain the integrity of
structure and edges from extracted features. Ls f is defined as follows:

Ls f = 1−
cov
(

Φ2,3
f ,
(

wirΦ2,3
ir + wviΦ

2,3
vi

))
σΦ2,3

f
σ
(wirΦ2,3

ir +wviΦ
2,3
vi )

, (3)

where cov(·) denotes covariance function, and σ denotes the standard deviation function.
Furthermore, the deepest features have the lowest resolution, and their foreground

and background are obviously distinguished; hence, the region feature loss function Ls f is
defined as follows:

Lr f =
∥∥∥Φ4

f −
(

wir M4
irΦ4

ir + wvi M4
viΦ

4
vi

)∥∥∥2

F
, (4)

where M4
ir and M4

vi denotes the masks to remove the noise from the features, and the
calculation is as follows:

M4
ir =

{
1, Φ4

ir ≥ θ

0, Φ4
ir < θ

, (5)

M4
vi =

{
1, Φ4

vi ≥ θ

0, Φ4
vi < θ

, (6)

where θ is a constant set to control the degree of noise removal.

Figure 2. Multi-modal features extracted by encoder. (a) shows the features extracted from infrared
image, (b) shows the features extracted from visible image.

3.2.2. Transformer Fusion Block

Focal self-attention incorporates both fine-grained local interaction and coarse-grained
global interaction, which reduces quadratic computational overhead of processing high-
resolution images and make it more suitable for fusion tasks than traditional transformer.
Therefore, in this paper, focal transformer is employed as the fusion module. The feature
fusion stage contains four Transformation fusion blocks (TFB), and each TFB consists of
2 focal transformer layers. The structure of focal transformer layer is shown in Figure 3. The
focal transformer layer has two sub-layers. The first is the focal self-attention mechanism
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to capture local and global features, and the second is a multi-layer perception network to
improve the modeling ability of complex processes. Each sub-layer has layer normalization
to stabilize the data distribution and facilitate training and residual connection to solve the
problem of vanishing gradient.

Figure 3. The architecture of the Focal Transformer fusion layer.

The key mechanism of focal transformer is focal attention. Unlike the standard
self-attention, focal self-attention pays attention to fine-grained tokens locally and coarse-
grained tokens globally. Therefore, it can cover the areas covered by the standard self-
attention, while the cost is much lower. The detailed mechanism of focal self-attention is
shown in Figure 4. The focal self-attention is performed at the window level. Computational
steps of focal transformer can be described as follows:

(1) The input x of all layers L is split into sub-window with the size of sl
w × sl

w. After

sub-window pooling operation, we can obtain the feature map
{

xl
}L

1
which provide

rich information of both coarse-grained and fine-grained. Where focal level L is
the number of granularity, focal window size sl

w is the size of sub-window at level
l ∈ {1, . . . , L}, focal region size sl

r is the number of sub-windows horizontally and
vertically at level l.

(2) With the three linear projection layers, the query of the first layer and the key and
value of all layers are calculated as follows:

fq

(
xi
)
= Wqxi, (7)

fk

(
xi
)
= Wkxi, (8)

fv

(
xi
)
= Wvxi, (9)

Q = fq

(
x1
)

, K =
{

Kl
}L

1
= fk

({
x1, . . . , xL

})
, V =

{
V l
}L

1
= fv

({
x1, . . . , xL

})
, (10)
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where Wq, Wk and Wv are three matrices obtained by learning. For the queries inside
the i-th window Qi, we extract the sl

r × sl
r keys and values from Kl and V l around the

window where the query lies in, and then gather the keys and values from all L to obtain
Ki =

{
K1

i , . . . , KL
i
}
∈ Rs×d and Vi =

{
V1

i , . . . , VL
i
}
∈ Rs×d, where s is the sum of focal

region from all levels.

(3) Finally, with the learnable relative position bias B =
{

Bl
}L

1
, the focal self-attention

for Qi can be calculated as follows:

Attention(Qi, Ki, Vi) = Softmax

(
QiKT

i√
d

+ B

)
Vi, (11)

Figure 4. An illustration of focal self-attention mechanism. Each square in the figure is a visual
token from the input feature map. Assuming the input feature map is of size 10× 10, partition it
into 5× 5 windows of size 2× 2. The 2× 2 orange square in the middle is selected as a query, and
its surroundings tokens at multiple granularities are extracted as its keys and values. For the first
level, a 6× 6 grid around the query is extracted as fine-grained tokens. For the second level, focus on
the region of the entire feature map to obtain coarse-grained tokens, at which point 2× 2 tokens are
pooled into 1× 1 tokens. Then the tokens of two levels are concatenated, and the keys and values
corresponding to the query can be obtained through linear projection.

3.3. Loss Function

Inspired by RFN-Nest, our fusion network adopts two-stage training strategy as
well. Loss Lenco and loss L f usion are utilized to guide the optimization of the encoder and
transformer fusion blocks, respectively.

3.3.1. Loss Function of Encoder

In the first stage, the encoder and decoder are trained together to improve the ability
of feature extraction. Through the maximum pooling operation, the encoder receives one
input and generates four scale features. Then, the extracted features are directly sent to the
decoder to reconstruct the image. The decoder uses short cross-layer connections, which
can greatly improve the reconstruction ability of features.

The loss function of encoder–decoder network Lenco consists of two parts: the content
loss Lcon and the structural similarity loss Lssim, which can be formulated as follows:

Lenco = Lcon + λLssim, (12)
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where λ is a hyperparameter to balance these two terms. Content loss Lcon enables the
output to preserve more content details of the source image, which is calculated as follows:

Lcon = ‖O− I‖2
F, (13)

where ‖·‖2
F denotes the Frobenius norm, O is the output image and I is the input image.

SSIM loss helps the fused image contain more structural features from the source
images. The calculation of SSIM loss Lssim is defined as follows:

Lssim = 1− ssim(I, O), (14)

where ssim(·) denotes the structural similarity [44], which is an index to measure the
similarity of two images from three different aspects: brightness, contrast, and structure.
SSIM loss makes the output structurally more similar to the input image. The calculation
of SSIM can be formulated as follows:

SSIM(X, Y) = ∑
x, f

2µxµy + C1

µ2
x + µ2

y + C1
·

2σxσy + C2

σ2
x + σ2

y + C2
·

σxy + C3

σxσy + C3
, (15)

where SSIMx,y denotes the structural similarity between source images X and Y; x and y
denote the image patches of source images in a sliding window, respectively; µx and µy
denote the mean values of source images, respectively; σxy denotes the covariance of source
and fused images; σx and σy denote the standard deviation (SD). C1, C2, and C3 are the
parameters used to make the algorithm stable.

3.3.2. Loss Function of Fusion

In the second training phase, we connect the transformer fusion blocks between the
encoder and decoder and freeze the weight of the encoder and decoder. The loss function
L f usion in fusion phase consists of three parts: the structural similarity loss Lssim, the multi-
modal feature loss L f ea and the salience loss Lsal . The fusion loss L f usion is calculated
as follows:

L f usion = αLssim + βL f ea + Lsal , (16)

where α, β are hyperparameters to balance these three terms.
Visible image has significant and distinct structure, while the infrared image has lots

of noise and fuzzy structure. Hence Lssim here only restricts the similarity in structure
and details between the visible image and the fused image to make the fused image more
similar to the visible image. The calculation of SSIM loss Lssim is the same as Formula (5),
and the inputs are the fused image F and the visible image Ivi, respectively.

For multi-modal features, The feature loss L f ea contained three items: detail feature
loss Ld f , structure feature loss Ls f and region feature loss Lr f . The feature loss L f ea is
calculated as follows:

L f ea = Ld f + µLs f + ρLr f , (17)

where µ and ρ are the hyperparameters, which are used to balance the weight of these three
items. The calculation of Ld f , Ls f and Lr f are given in Section 3.2.2.

In order to preserve the salient objects in the infrared image, salience information is
introduced to the fusion process. Firstly, the LC salience extraction algorithm is employed
to detect the infrared source image to obtain the salience map Msal . Then the salience map

Msal is normalized to obtain the
ˆ

Msal . Finally, the salience loss is designed as shown in the
following formula:

Lsal =
∥∥M̂sal ∗ F− M̂sal ∗ Iir

∥∥2
F +

∥∥(1− M̂sal
)
∗ F−

(
1− M̂sal

)
∗ Ivi

∥∥2
F, (18)

Through the carefully designed loss function, the multi-modal feature information
is transferred to the fusion results to the greatest extent. The fused results of the pro-
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posed method contain abundant texture details, distinct edge contour, and good visual
salience. In Section 4, we will verify the effectiveness of the proposed method through
comparative experiments.

4. Experimental Results and Analysis

In this section, we conduct an experimental analysis of the proposed method on TNO,
FLIR, and LLVIP datasets with various scenes. The training details and parameter settings
are introduced in Section 4.1. In order to demonstrate the effectiveness of the proposed
MFST, three datasets and six quality metrics are employed in comparative and evaluative
experiments, which are introduced in Section 4.2. Then, the comparative experimental
results of the proposed method and state-of-the-art methods are analyzed in Section 4.3.

4.1. Datasets and Training Details

The four datasets adopted in the training and testing phases are as follows:

(1) MS-COCO dataset [45]: The COCO dataset has over 330,000 images and is a large,
rich dataset for object detection, segmentation, and captioning. The images in COCO
are mainly intercepted from daily scenes, with complex backgrounds, a large number
of targets, and a small target size.

(2) TNO dataset [46]: The TNO Image Fusion Dataset contains multispectral (intensified
visual, near-infrared, and longwave infrared or thermal) nighttime imagery of differ-
ent military relevant scenarios registered with different multiband camera systems.

(3) FLIR dataset: This dataset provides annotated thermography datasets and correspond-
ing unannotated RGB images. The dataset contains a total of 14,452 infrared images,
of which 10,228 are from multiple short videos; 4224 are from a video with a duration
of 144 s. All video scenes are streets and highways.

(4) LLVIP dataset [47]: This dataset contains 15,488 pairs of images, most of which were
taken at very dark scenes, and all of the images are strictly aligned in time and space.

The proposed model is implemented in Pytorch. All the experiments are conducted
on an NVIDIA GeForce RTX 2080Ti GPU and 3.6-GHz Intel Core i7-7700 CPU. The configu-
rations for encoder, decoder, and transformer fusion blocks are shown in Tables 1 and 2.
The encoder and decoder are trained in the first training stage. At this time, the features
extracted by the encoder are fed to the decoder directly. The dataset for training contains
80,000 images selected in MS-COCO. These pictures are converted into gray-scale and
reshaped into 256× 256. λ in Equation (12) is set to 100. Batch size and epoch are set to
four and two, respectively. The learning rate is 1× 10−4.

In the second training phase, the weights of the encoder and decoder are frozen, and
four TFBs are connected between the encoder and decoder. Some parameters of TFB are set
as follows: The window partition size is set to seven, and the focal self-attention layer is
set to two to obtain both fine-grain local attention and coarse-grain global attention. The
focal window size is set to one, and the focal region size is set to thirteen in the first focal
level. For the coarse-grain global attention, the focal window size is set the same as the
window partition size seven, but the focal region size is decreased to obtain {37, 19, 9, 5} for
the four blocks. The LLVIP dataset is employed to train our TFB. We selected 12,000 pairs
of infrared and visible images in the training set. These images are converted to gray-scale
and reshaped into 256× 256 as well. α and β in Equation (16) are set to 700 and 1, µ and
ρ in Equation (17) are set to 1000 and 1, respectively. Batch size and epoch are both set to
2. The learning rate is 1× 10−4. Figure 5 displays loss curves versus iteration index. It is
shown that all loss curves are very flat after 250 iterations. The training and validation loss
curves show that the model is able to converge with this configuration.



Remote Sens. 2022, 14, 3233 11 of 22

Table 1. Model configurations for encoder and decoder network. EB1 denotes the encoder block in
the first row, DB11 denotes the decoder in the first row and the first column.

Layer Input
Channel

Output
Channel Size Stride Activation

Encoder

EB1 1 64 3 1 ReLU
EB2 64 112 3 1 ReLU
EB3 112 160 3 1 ReLU
EB4 160 208 3 1 ReLU

Decoder

DB11 176 64 3 1 ReLU
DB12 240 64 3 1 ReLU
DB13 304 64 3 1 ReLU
DB21 272 112 3 1 ReLU
DB22 384 112 3 1 ReLU
DB33 368 160 3 1 ReLU

Table 2. Model configurations for Transformer Fusion Block network. TFB1 denotes the Transformer
Fusion Block in the first row.

Number of Layers Channel Window
Partition Size

Focal
Window Size

Focal
Region

Size

TFB1 2 64 7 1, 7 13, 37
TFB2 2 112 7 1, 7 13, 19
TFB3 2 160 7 1, 7 13, 9
TFB4 2 208 7 1, 7 13, 5

Figure 5. Fusion loss curves over 1800 iterations. (a) shows the training and the validation curves
of total loss. (b–d) are training and the validation curves of SSIM loss, feature loss and salience
loss respectively.
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4.2. Evaluation Metrics

To quantitatively evaluate the fusion performance, we select six evaluation metrics,
including entropy (EN), standard deviation (SD), the sum of the correlations of differences
(SCD), structural similarity index measure (SSIM), mutual information (MI), and root mean
square error (RMSE) [48]. These metrics measure the performance of the fusion method
from different aspects, such as the amount of information, the information transmitted by
the source images, visual quality, and so on. Their definitions are described as follows.

EN measures the amount of information contained in a fused image based on informa-
tion theory and can be defined as follows:

EN = −
L−1

∑
l=0

pl log2 pl , (19)

where L denotes the number of gray levels and pl denotes the normalized histogram
of the corresponding gray level in the fused image. The larger the value of EN, the
more information contained in the fused image, and the better the performance of the
fusion method.

The SD metric is based on the statistical concept that reflects the distribution and
contrast of the fused image, which is defined as follows:

SD =

√√√√ M

∑
i=1

N

∑
j=1

(F(i, j)− µ)2, (20)

where F denotes the fused image, F(i, j) is the pixel value at coordinate (i, j) in image F,
and µ denotes the mean value of F. A larger SD represents a higher contrast of the region,
which can attract more attention due to the sensitivity of the human visual system, which
means the fusion method achieves a good visual quality.

The SCD does not directly use the correlation between the source image and the fused
image to evaluate the quality of the fused image but considers the source images and their
influence on the fused images to calculate the quality. It is defined as follows:

SCD = r(D1, S1) + r(D2, S2), (21)

where difference images D1 and D2 can be obtained by D1 = F− S1 and D2 = F− S2. F,
S1 and S2 denote the fused image, the first and second input image, respectively. The r(·)
function calculates the correlation between S1 and D1, S2 and D2 as:

r(Dk, Sk) =

∑
i

∑
j

(
Dk(i, j)− Dk

)(
Sk(i, j)− Sk

)
√√√√(∑

i
∑
j

(
Dk(i, j)− Dk

))(
∑
i

∑
j

(
Sk(i, j)− Sk

)) , (22)

where k = 1, 2, Sk and Dk are the average of the pixel values of Sk and Dk, respectively. A
higher SCD index indicates that the fusion method achieves a good performance.

The human visual system is sensitive to structure loss and distortion. The calculation
of the SSIM index is shown in Formula (11). Due to the visible images having more
structural features than the infrared ones, we calculate the SSIM between the fused images
and the visible source images. The larger the value of SSIM, the better the structure is
maintained from visible source images.

The MI metric is a quality index that measures the amount of information transferred
from source images to the fused image. MI is a fundamental concept in information theory
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and measures the dependence of two random variables. The definition of the MI metric is
given as follows:

MI = MIA,F + MIB,F, (23)

where MIA,F and MIB,F denote the amount of information that is transferred from infrared
and visible images to the fused image, respectively. The MI between two random variables
can be calculated by the Kullback–Leibler measure, which is defined as follows:

MIX,F = ∑
x, f

PX,F(x, f ) log
PX,F(x, f )

PX(x)PF( f )
, (24)

where PX(x) and PF( f ) denote the marginal histograms of source image X and fused image
F, respectively. PX,F(x, f ) denotes the joint histogram of source image X and fused image
F. A larger MI indicates that the more information transferred from the source image to the
fusion result, which means the better performance.

The root mean squared error (RMSE) metric is similar to the MSE metric and is defined
as follows:

RMSEF =
RMSEIF + RMSEVF

2
, (25)

RMSEXF =

√
1

MN ∑M−1
m=0 ∑N−1

n=0 (X(m, n)− F(m, n))2, (26)

where X denotes infrared images I or visible images V, RMSEIF and RMSEVF denote
the dissimilarity between the fused and infrared/visible images. A small RMSE metric
indicates that the fused image has a small amount of error and distortion and hence the
fusion method achieves a good performance.

4.3. Ablation Study

In this paper, focal self-attention is introduced to facilitate the model paying attention
to both local features and global context, and a self-adaptive fusion strategy is designed
to fuse and transmit multi-modal feature information more comprehensively. In order to
verify the effectiveness of these two parts for improving the fusion effect, we set up four
different configurations in the ablation experiment and used quantitative metrics to evaluate
and analyze the results. The four configurations including with focal self-attention and
self-adaptive fusion strategy (WS, WF), with focal self-attention and without self-adaptive
fusion strategy (WS, OF), without focal self-attention and with self-adaptive fusion strategy
(OS, WF), and without focal self-attention and self-adaptive fusion strategy (OS, OF). When
focal attention is not used, the feature dimension is reduced by two convolutional layers
with kernel size 1× 1. When the self-adaptive fusion strategy is not used, only the SSIM
loss and the saliency loss are included in the total loss function. Our ablation experiments
are conducted on the TNO dataset.

The average quantitative results of the ablation experiments are shown in Table 3.
The average performance of WS, OF, and WF, OS is better than OS, OF, which indicates
that both focal self-attention and self-adaptive fusion strategy play a certain role in the
fusion process. The performance of OS, WF is higher than that of WS, OF, which shows
that the self-adaptive fusion strategy has a relatively greater effect on fusion results than
focal self-attention. The models of WS, WF achieved the best average results in five metrics,
demonstrating that these two parts are indispensable in the proposed method, and both
have a great effect on the improvement of fusion performance. At the same time, we also
noticed that on MI metric, OS, WF performs better than WS, WF, because, without the
transformer fusion block, the loss of feature information is the least in the transmission
process. However, the absence of a transformer fusion block means that the model can only
focus on local areas when fusing features and lacks global context information, resulting in
OSWF’s performance not being as good as WSWF on other metrics.
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Table 3. Objective evaluation of outputs of with focal self-attention and self-adaptive fusion strategy
(WS, WF), with focal self-attention and without self-adaptive fusion strategy (WS, OF), without focal
self-attention and with self-adaptive fusion strategy (OS, WF) and without focal self-attention and
self-adaptive fusion strategy (OS, OF) on TNO dataset.

Method EN SD SCD SSIM MI RMSE

OS, OF 6.6784 35.7851 1.5017 0.7342 2.6247 10.2413
WS, OF 6.7561 38.1576 1.5578 0.7439 2.6782 10.1892
OS, WF 6.8242 39.0014 1.5876 0.7411 2.843 10.1678
WS, WF 6.9519 39.3726 1.6011 0.7466 2.7028 10.1066

4.4. Experimental Results Analysis

In order to verify the superiority of the proposed method, we tested it on three datasets:
TNO, FLIR, and LLVIP. A total of 21 pairs of images are selected from TNO, and 50 pairs
of images are selected from FLIR and LLVIP, respectively. Because the major scenes of
FLIR and LLVIP are both roads, including pedestrians, vehicles, and other targets, we
discuss the results of these two datasets together, and the results of TNO are discussed
separately. Eight existing state-of-art fusion methods are selected for comparison, including
four traditional methods (DWT [49], DTCWT [50], CVT [51] and NSCT [52]) and four deep
learning methods (DenseFuse [35], FusionGan [53], IFCNN [54], and RFN-Nest [37]). The
parameters of these methods are set in strict accordance with the relevant reference.

4.4.1. Fusion Results Analysis on TNO

Six pairs of typical image fusion results obtained by the proposed method and the
other eight methods on the TNO dataset are shown in Figure 6, in which source images
include people, cars, umbrellas, houses, ships, trenches, rivers, and other targets and scenes.
It can be seen that most of the methods can achieve ordinary fusion results. However,
there are still deficiencies in the fusion of salience targets and texture details. At the
same time, these methods are easy to introduce artifacts that reduce the quality of fusion
results. Results of DWT, NSCT, CVT, and DTCWT have an indistinct edge, dim significant
target, and some artifacts. This is because they all use manual methods to decompose the
source images and employ the “weighted-average” or “choose-max” strategy to fuse the
decomposed components, which leads to the loss of texture details from the source images
and the decline of the quality of fusion results. The FusionGan method is to preserve
more infrared image content so that some details in the visible images are lost, and the
edges are blurred. By contrast, for RFN-Nest, the texture information in the visible images
can be completely retained, while the thermal target from the infrared source is dimmed.
This poor performance can be seen from the first and sixth pair of image fusion results.
DenseFuse and IFCNN can better complete the fusion task; however, they adopt a general
strategy to fuse the extracted features, which leads to the loss of contour information and
an increase in noise.

Compared with the above fusion methods, the fusion results of the proposed method
have a richer texture and sharper edge, and the thermal targets from infrared images
are more prominent and have higher visual quality, which is due to two points: (1) the
specific loss functions could help the learning of self-adaptive fusion strategy, making edges
features can be transferred to the results commendably. (2) focal self-attention facilitates
the fusion of local and global multi-modal features. In turn, the visual quality of the fusion
results is significantly improved.
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Figure 6. Subjective comparison between the proposed method and other state-of-art methods on
6 pairs of images from TNO dataset.

In order to evaluate the proposed method more comprehensively, nine methods are
compared in terms of six metrics on 21 pairs of images from TNO datasets. The comparative
results are given in Figure 7. In the view of informativeness (EN) and texture richness (SD)
of fused results, we can see that the proposed method and RFN-nest are in the first echelon,
while FusionGan and NSCT perform poorly because FusionGan only preserves details of
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the infrared images and NSCT has information loss during the transformation process.
IFCNN mainly focuses on the pixel error between the fused image and the original image,
while the proposed method pays attention to more comprehensive information such as
structural information and texture information. Therefore, the proposed method is inferior
to IFCNN on RMSE. Since the SSIM in our experiments denotes the similarity measure
between the fused image and the visible image, the performance of FusionGan is very poor,
while other methods have good performance. On MI and SCD that measure the amount
of information transferred from the source images to the fused images, FusionGan and
traditional methods perform poorly; this is because FusionGan’s generative adversarial
networks are not mature enough, and traditional methods will lose a lot of information
during transform. In contrast, the proposed method performs best on MI and SCD, which
is due to the contribution of the multi-modal feature self-adaptive fusion strategy and
transformer fusion block.

Figure 7. Quantitative comparison of the proposed method against eight existing fusion methods by
using six metrics on 21 pairs of images from TNO dataset. (a–f) are the comparison results of the nine
methods on EN, SD, RMSE, SSIM, MI and SCD respectively.
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The average comparison results of the proposed method with eight other methods
on the TNO dataset are given in Table 4. It can be seen that the proposed method has
achieved the best value in four indexes (EN, SD, SSIM, MI), the second-best result in one
index (RMSE), and the third-best result in one index (SCD). This demonstrates that with
the help of focal self-attention, the proposed method outperforms the existing methods
in transmitting and preserving information from the source images to the fused results.
Moreover, since the multi-modal feature self-adaptive fusion strategy is efficient for feature
fusion, the fused images obtained by the proposed method contain more natural and
sharper content, which is more suitable for human perception.

Table 4. Quantitative results on 21 pairs of images from TNO dataset. The best values, the second-best
values and the third-best values are indicated in bold, red and blue, respectively.

Method EN SD SCD SSIM MI RMSE

DWT 6.5964 29.6984 1.5552 0.6745 2.051 10.2507
NSCT 6.5107 29.1414 1.6018 0.7318 1.9575 10.2494
CVT 6.5371 28.1056 1.5735 0.7149 1.8108 10.2445

DTCWT 6.4773 27.4436 1.5794 0.7237 1.9163 10.2514
DenseFuse 6.7378 34.7623 1.5599 0.7001 2.4726 10.2377
FusionGan 6.4919 27.9282 1.0647 0.514 2.3137 10.2673

IFCNN 6.6265 31.869 1.6153 0.7155 2.5111 9.939
RFN-Nest 6.9271 37.7383 1.4686 0.7151 2.3238 10.2609
Proposed 6.9519 39.3726 1.6011 0.7466 2.7028 10.1066

4.4.2. Fusion Results Analysis on FLIR and LLVIP

Further, to verify the generalization performance and the fusion ability for complex
scenes, we conduct comparative experiments on the FLIR and LLVIP datasets. The major
scenes of FLIR and LLVIP are roads, including pedestrians, vehicles, and other targets.
These images also include different lighting conditions, such as day and night. The intuitive
comparison fusion results of the proposed method and the other eight methods on the
FLIR and LLVIP are shown in Figure 8. It is observed that DWT, NSCT, CVT, and DTCWT
cannot suppress noise, which results in poor visual effect. Densefuse does not perform well
on FLIR, and some texture details of visible images are lost. The fused images obtained by
FusionGan have very blurred edges. The images obtained by IFCNN have high brightness
and a certain deformation. RFN-nest performs well on FLIR with a sharpened background
and prominent edges of people and vehicles, but there are blurred edges and unobtrusive
human targets on LLVIP. Compared with the above methods, our fusion framework has
competitive performance on both FLIR and LLVIP datasets, with rich background texture,
clear edge contour, salient thermal objects, and high contrast. The rich texture and clear
edges are attributed to the ingenious design of the multi-modal self-adaptive fusion strategy,
and the salient infrared objects and high contrast are achieved under the combined effect of
the fusion strategy and saliency information.

For institutively comparing the fusion ability of the nine methods on the FLIR dataset,
the average performances of these methods on the FLIR dataset are shown in Table 5. The
best values, the second-best values, and the third-best values are indicated in bold, red, and
blue. For metrics of EN, SD, SCD, and SSIM, RFN-nest achieves the best results because the
model is trained on KAIST datasets similar to FLIR, so it can also have strong robustness
when tested on FLIR. Our method is second only to RFN-nest but still far better than
traditional methods because the self-adaptive fusion strategy helps the fusion of features
to be more comprehensive and reduces information loss. Our method achieves the best
results on MI, which indicates that the proposed method is robust to the transmission of
information during the fusion process of complex scenes. This is because the transformer
fusion block not only considers local features but also transmits the global context when
fusing feature information, making the subsequent image reconstruction process more
robust to obtain higher-quality results.
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Figure 8. Subjective comparison between the proposed method and other state-of-art methods on
6 pairs of images from FLIR and LLVIP datasets. The first three pairs of images are selected from the
FLIR dataset, and the last three pairs of images are selected from LLVIP dataset.

Table 5. Quantitative results on 50 pairs of images from FLIR dataset. The best values, the second-best
values and the third-best values are indicated in bold, red and blue, respectively.

Method EN SD SCD SSIM MI RMSE

DWT 7.2733 43.5689 1.1043 0.5272 3.1864 10.1828
NSCT 7.2323 42.6921 1.1386 0.5722 3.1431 10.183
CVT 7.3018 43.8735 1.1106 0.5383 2.8208 10.1606

DTCWT 7.2096 41.9806 1.1051 0.5622 3.0607 10.1848
DenseFuse 7.4005 52.7755 1.2739 0.6014 3.7431 10.0585
FusionGan 7.3209 47.5473 0.5866 0.5947 3.3429 10.2062

IFCNN 7.185 40.4748 1.136 0.6112 3.3764 9.6982
RFN-Nest 7.5439 58.9438 1.3638 0.7006 3.5457 10.1004
Proposed 7.4811 52.4626 1.3064 0.6435 3.7815 10.103
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Table 5 also shows that we can not achieve the best fusion performance for some
images in FLIR. In order to find the reason for the decline in fusion performance, we
put a pair of representative images in the third column in Figure 8 (termed Image 3).
The objective evaluation results of Image 3 are shown in Table 6. Table 6 only shows the
comparison between the proposed method and DenseFuse and RFN-Nest, which have good
performance. Our method only achieves the best value on SCD, while other metrics are not
optimal. There are many images in the FLIR dataset with open scenes and insignificant
structural features, such as Image 3. Both DenseFuse and RFN-nest mainly constrain the
pixels between the fused image and the source images and only consider local information
during fusion processing, which can have better fusion performance for Figure 3. While
the proposed method tends to fuse images more comprehensively in terms of structural
features and saliency features and has more advantages in processing images with obvious
structures and clear edges.

Table 6. Quantitative evaluation of images in the third column in Figure 8. This table only shows the
comparison between the proposed method and DenseFuse and RFN-Nest which have good performance.

Method EN SD SCD SSIM MI RMSE

DenseFuse 7.6602 56.5542 1.455 0.8319 4.2070 10.3664
RFN-nest 7.7641 60.1371 1.4058 0.5231 3.8915 10.2250
Proposed 7.5851 50.2960 1.4921 0.7507 3.4256 10.3871

The average performances of these methods on the LLVIP dataset are shown in Table 7.
In the test of the LLVIP dataset, our method obtains the best value in three indexes (SCD,
SSIM, MI), the second-best result in two indexes (SD, RMSE), and the third best result in
one index (EN). Our method has achieved the best comprehensive results among these
comparative methods, which demonstrates that the proposed method can perform well on
different datasets and can preserve abundant texture and salience information from the
source images.

Table 7. Quantitative results on 50 pairs of images from LLVIP dataset. The best values, the second-
best values and the third-best values are indicated in bold, red and blue, respectively.

Method EN SD SCD SSIM MI RMSE

DWT 7.1622 46.1461 1.3735 0.5756 2.834 10.0145
NSCT 7.1521 45.3417 1.4294 0.6318 2.7803 10.0127
CVT 7.1547 44.6028 1.3968 0.5984 2.5841 10.0227

DTCWT 7.1415 44.4009 1.3993 0.6177 2.701 10.0087
DenseFuse 7.1227 41.7651 1.4932 0.6027 3.2511 9.9555
FusionGan 6.7159 30.4424 0.7712 0.4887 2.7055 10.1182

IFCNN 7.3332 48.2112 1.4468 0.5971 3.1225 9.7326
RFN-Nest 7.2456 45.1502 1.5039 0.5533 2.8533 9.9285
Proposed 7.1779 46.9661 1.5255 0.6875 3.2941 9.9281

The above verification and comparison experiments show that the proposed MFST
can generate fused images with a large amount of information and rich textures and is also
robust to the fusion of complex scenes, which is mainly due to the following two points:
(1) Automatic encoder for multi-modal feature extraction; (2) The design of multi-modal
feature self-adaptive fusion strategy and transformer fusion block in the feature fusion
stage greatly improve the efficiency of information transmission.

5. Conclusions

In order to improve the fusion quality of images and the fusion efficiency of multi-
modal features, a novel infrared and visible image fusion method (MFST) is developed
in this paper. The self-adaptive fusion strategy was firstly designed to more effectively
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utilize the information of multi-modal features. Then, the focal self-attention mechanism
facilitates the model to pay attention to both local and global information in the fusion
process. Finally, the introduction of saliency information enables the fusion results to
preserve more salient objects of infrared images. Three different infrared and visible image
datasets were used to verify the effectiveness of the proposed method, and the results
show that our method has a strong generalization ability and good ability to fuse complex
scenes. Through the comparative experimental analysis with the current eight popular
methods, it shows that the fusion quality and fusion efficiency of the method in this paper
are better than the eight popular eight methods, which confirms the superiority of the
proposed method.

However, the proposed method cannot perform the best on some images, which
indicates that our model has much room for improvement. There are several key issues
deserving to be further studied: (1) Are there other modal featuress that can be extracted?
(2) How to lighten the model so that it can fuse higher resolution images? (3) Could
choosing other FR-IQA metrics as the basis for the loss function improve the quality of the
results? In the future, we will concentrate on these issues, improve and optimize the model,
and make further contributions to this research topic.
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