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Abstract: Object recognition, as one of the most fundamental and challenging problems in high-
resolution remote sensing image interpretation, has received increasing attention in recent years.
However, most conventional object recognition pipelines aim to recognize instances with bounding
boxes in a supervised learning strategy, which require intensive and manual labor for instance
annotation creation. In this paper, we propose a weakly supervised learning method to alleviate
this problem. The core idea of our method is to recognize multiple objects in an image using only
image-level semantic labels and indicate the recognized objects with location points instead of box
extent. Specifically, a deep convolutional neural network is first trained to perform semantic scene
classification, of which the result is employed for the categorical determination of objects in an
image. Then, by back-propagating the categorical feature from the fully connected layer to the deep
convolutional layer, the categorical and spatial information of an image are combined to obtain an
object discriminative localization map, which can effectively indicate the salient regions of objects.
Next, a dynamic updating method of local response extremum is proposed to further determine the
locations of objects in an image. Finally, extensive experiments are conducted to localize aircraft and
oiltanks in remote sensing images based on different convolutional neural networks. Experimental
results show that the proposed method outperforms the-state-of-the-art methods, achieving the
precision, recall, and F1-score at 94.50%, 88.79%, and 91.56% for aircraft localization and 89.12%,
83.04%, and 85.97% for oiltank localization, respectively. We hope that our work could serve as a
basic reference for remote sensing object localization via a weakly supervised strategy and provide
new opportunities for further research.

Keywords: object localization; weakly supervised learning (WSL); deep convolutional features;
remote sensing images

1. Introduction

Advances in satellite technology have greatly improved the human ability to observe
the Earth surface in recent years [1,2]. With the tremendous progress in sensor technol-
ogy, the quality and quantity of remote sensing images have also undergone remarkable
improvements. Consequently, large-scale remote sensing images with high spatial and
spectral resolution, which provide abundant and detailed information of ground objects,
can be conveniently accessed. Thus, visual object recognition, which aims to determine the
location and category of ground objects, has been intensively approached to interpret the
content of remote sensing images and better understand our planet [3–9].

In the past years, object recognition problem are typically addressed by object detection
and localization, which have attracted increasing attention [3,7,10–18]. It should be noted
that there is a subtle difference between object detection and localization. Specifically, object
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detection aims to extract the accurate extent of every object from a given image scene,
where a detected object is typically indicated with a bounding box, either in horizontal,
oriented, or polygon styles [6,10,11,19]. In contrast, object localization requires an object
in the given image scene been recognized with its position but usually without extent
information [17,19,20]. However, the topic of object localization has been rarely addressed
in the remote sensing community. Intuitively, determination of object locations is of
paramount importance for a user to grasp the spatial distribution pattern of objects in a
remote sensing image. Furthermore, the location information of objects of interest is the
essential attributes reflected by remote sensing images and forms the cornerstone of a
wide range of practical applications such as vehicle surveillance [21] and military target
reconnaissance [22].

In this work, we focus on object localization in remote sensing images. Although re-
mote sensing object localization can be achieved through a fully-supervised object detection
pipeline, it suffers from the limitation of large-scale instance-level annotations that are
labor-intensive and time-consuming [6,7]. When labeling the instance-level bounding-
boxes, the rich and complex object background information contained in remote sensing
images may introduce annotation noises inadvertently, and thus, impart difficulty to object
detection. Moreover, the variance of object properties such as orientation, scale, and view-
point in remote sensing images also makes the object localization a much challenging
task in aspects such as region proposal, bounding-box regression, and semantic classifica-
tion [3,23,24]. Faced with this situation, localizing objects with the position information
using only image-level annotations, i.e., whether or not objects of interest are contained in a
remote sensing image, is of great importance to perform remote sensing object recognition.
With the aforementioned motivation, we address object localization in the form of (x, y)
positions rather than the bounding boxes using weakly labeled remote sensing images
based on deep convolutional neural networks (DCNNs). Generally, we proposed a weakly
supervised learning framework that utilizes image-level semantic label to achieve accurate
localization of multiple objects in remote sensing images based on convolutional neural
networks. In addition, a dynamic local response extremum updating method is developed
to determine the location of objects using the object discriminative localization map that
combines the fully connected and convolutional layer features to indicate the regions of
multiple objects in an image. The main contributions of this paper are as follows.

(1) We propose a weakly supervised learning (WSL) framework based on convolu-
tional neural networks (CNNs) for remote sensing object localization using only image-level
labels, where semantic scene classification is conducted for the determination of object cate-
gory. The semantic and spatial feature integration achieved by backpropagating the fully
connected feature to convolutional feature is introduced to generate an object discriminate
localization map (ODLM) that indicates the salient regions of objects in an image.

(2) A dynamic updating method of local response extremum is proposed for object
localization in remote sensing images based on the object discriminative localization map
(ODLM), of which the dynamic threshold based on the extremum value is designed to
suppress the noise of object response information. The proposed object localization method
adapts well to objects of different types, even when the number and positions of objects
vary in an image.

(3) Extensive experiments on the localization of different types of remote sensing
objects (i.e., airplane and oiltanks) are carried out. The experimental results show that the
proposed object localization method can outperform the state-of-the-art ones, demonstrat-
ing the rationality and effectiveness of the proposed framework.

The rest of this paper is organized as follows. Section 2 introduces the relevant
studies on weakly supervised object detection and localization. Section 3 presents the
proposed framework for object localization using only weakly labeled remote sensing
images. Experimental results and analyses are presented in Section 4. Finally, in Section 5,
we draw conclusions regarding this work.
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2. Related Work

As a challenging problem that arose first in the computer vision community, weakly su-
pervised object detection and localization have played a significant role in developing new
image interpretation systems and received dramatic attention in the past years [17]. Since
powerful feature representation is of great significance to establish a high-performance
object localization system, many researchers have dedicated significant effort to develop
feature descriptors to localize various types of objects, such as the histogram of oriented gra-
dients (HOG) [25], scale-invariant feature transform (SIFT) [26], and bag-of-visual-words
(BoVW) [27]. Based on the powerful representation ability of HOG, many researchers
have explored its functionality in weakly supervised object detection [28–30]. To tackle
the challenge of object detection in shape variation, the deformable part model (DPM) is
employed for weakly supervised object detection based on the improved version of HOG
features [29,31,32]. As objects with the same category may vary in appearances such as
scale, orientation, and brightness, SIFT feature is intensively explored for weakly super-
vised object detection owing to its robustness in describing the local key information for
discriminating different objects [33–35]. Lab color is employed to differentiate the objects
for their appearance difference in color space [35,36]. In order to enhance the description
ability for objects, the shallow vision feature is usually encoded as higher level representa-
tions for weakly supervised object detection, such as BoVW [29,33,36,37] and Fisher vector
feature [38]. Han et al. [39] proposed a weakly supervised learning strategy for object
detection by jointly exploring saliency, intraclass compactness, and interclass separability
to initialize a training example set in a Bayesian framework. Zhou et al. [40] integrated the
negative bootstrapping scheme into a WSL framework to achieve effective target detection
in remote sensing images. Zhang et al. [41] used weakly supervised learning combined with
saliency-based self-adaptive segmentation, a negative mining algorithm and a negative
evaluation mechanism for object recognition in remote sensing images. These methods
have achieved significant success in weakly supervised object detection and localization
with the well-designed low-level features. However, designing a stable and powerful
feature for object representation is a difficult problem owing to the complexity and variance
of image content. Consequently, the detectors based on low-level features inevitably face
challenges in generalization ability.

Recently, weakly supervised object detection and localization based on deep learn-
ing method have received unprecedented attention and achieved favorable performance
in the past years [19]. The deep learning method represented by convolutional neural
networks have witnessed a great success in image classification [42–47] and the object
detection [3,7,11,13,23,24] domain owing to their adaptive feature learning ability. Inspired
by this success, convolutional neural network has been widely employed for candidate
object discovery, object feature representation, and semantic category determination that
significantly advance the performance of weakly supervised object detection and localiza-
tion. Readers may go to the review papers [17,19] for a more comprehensive perspective of
weakly supervised object detection and localization works. Generally, the current main-
stream of weakly supervised object localization and detection based on convolutional
neural network can be basically categorized into two groups, i.e., multiple instance learning
(MIL) and discriminative region localization methods.

In the MIL pipeline, an image is usually decomposed into a bag of individual region
proposals, namely instance proposals, based on which feature extraction and semantic clas-
sification are performed for object localization and category determination [48–56]. In order
to acquire accurate localization result, numerous methods are designed to generate region
proposals, including selective search (SS) [57], edge boxes (EB) [58], and sliding window
(SW) methods. The SS-based method is employed to generate proposals by exhaustive
searching of homogeneous regions in an over-segmented image [51–53]. The EB-based
methods first generate edge features of objects and then produce proposals using the circum-
scribed rectangles of relevant edges [48–50,56]. The SW-based methods generate multi-scale
and multi-aspect ratio proposals at each position in the image or feature maps [53–55].
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Zhang et al. [59] proposed a coupled CNN-based WSL method that combines a candidate
region proposal network and a localization network to extract the proposals and simul-
taneously locate the aircraft. Benefiting from the prior knowledge of location provided
by region proposals, the MIL-based methods are able to detect multiple objects with the
same semantic category in an image and have achieved significant success for weakly
supervised object detection and localization. However, the performance of object detection
and localization using MIL-based methods is vulnerable to the influence of incomplete
annotation information in the object bags. Moreover, the MIL-based methods usually fall
into a multi-step pipeline which is puzzled by the time-consuming procedure of object
proposal generation.

In the discriminative region localization pipeline, deep features are activated with
excitation backpropagation to generate visualized heatmaps that spotlight objects of inter-
est [60–68]. To obtain the discriminative region of objects, a class activation map (CAM) [60]
is produced by a weighted assumption of feature maps using the classification layer and the
last convolutional layer. However, the generation of CAM usually requires a convolutional
feature layer and classification layer with Softmax to be adjacent at the end of a network.
In order to generate class discriminative regions, Grad-CAM [61] is proposed by backprop-
agating the classification score of an image to the convolutional feature layer. Moreover,
the Grad-CAM++ [69], Ablation-CAM [70], and Score-CAM [71] are intensively developed
to generate more accurate and smoother class activation maps to better indicate the regions
of objects. With the extracted discriminative regions, localization of objects are typically
performed by using the segmentation technique. To improve the localization accuracy,
WCCN [72] is proposed to use cascaded network that trains object segmentation using the
class activation maps. ACoL [63] introduces an adversarial complementary learning strat-
egy for object segmentation using two parallel-classifiers. However, segmentation usually
produces a mask that covers the entire object instance, but it cannot distinguish whether
the region is an object of interest [73]. To alleviate this issue, the segmentation-detection
collaborative strategy is proposed by unifying the MIL and segmentation method [50,51].
Owing to the end-to-end training and inference pipeline, the CAM-based object detec-
tion and localization methods have an advantage in efficiency when comparing with the
MIL-based ones. Thus, the discriminative region localization pipeline has become one of
the most popular strategies for object detection and localization in a weakly supervised
learning way.

However, the discriminative region localization pipeline based on CAM focuses on
localizing a single instance in an image. There may even exist more than one proposals
around an object, the CAM-based methods tend to spotlight the most discriminative part
of the object rather than the whole object extent. The reason behind the phenomenon lies in
that the networks tend to learn the most compact features for image classification while sup-
pressing less discriminative ones [66,74]. That is, in the discriminative region localization
pipeline, the performance of object detection and localization relies heavily on the quality
of the class activation map. To alleviate the above problems, we address object localization
in remote sensing images by leveraging the proposed object discriminative localization
map that combines the deep convolutional and fully connected features. Specifically, we
aim to localize multiple objects but without extent in remote sensing image scenes. Inspired
by the CAM-based methods [60,61] for single object localization, our framework transits
the objects’ semantic information contained in fully connected layer to the convolutional
layer so that the regions of multiple objects can be distinctly discriminated for location
determination.
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3. Methods

In this section, we introduce the main procedures of the proposed remote sensing
object localization framework. First, the widely used DCNN frameworks are introduced
for remote sensing image scene classification, and then we present the ODLM generation
scheme for object localization based on the DCNN frameworks. Finally, a dynamic updating
method of local response extremum is proposed for object location extraction based on the
visualized object localization map. The overall framework is presented in Figure 1.

Figure 1. Framework of object Localization in Weakly Labeled Remote Sensing Images based on the
VGG network.

3.1. Scene Classification

The task of remote sensing object localization mainly covers two key problems. One is
the categorical determination for the objects in an image, and the other is the positional
information extraction for each object. In this paper, a DCNN model is trained for image
scene classification using the image-level labels. Then, the object’s category is determined by
the remote sensing image scene classification result. DCNN frameworks have been widely
employed for remote image scene classification because of their elaborate structural designs
and robust performance [75–77]. The conventional DCNN framework typically consists
of several basic modules, such as the input layer, convolutional layer, down sampling
layer, fully connected layer and output layer. The input layer is used to receive the original
image for data preprocessing. A convolutional layer receives data from its previous layer(s)
and computes the convolutional features via a certain number of kernels. To enhance
the nonlinearity of a DCNN framework, a convolutional layer is typically followed by
an activation layer, such as a rectified linear unit (ReLU) [42], leaky ReLU (LReLU) [78]
or an improved parametric ReLU (PReLU) [79], among others. These operations can
also significantly expedite the convergence of the training procedure and improve the
generalization capacity of the network. The down sampling layer is applied to map the
feature maps via an average or max pooling operation, which can compress the spatial
dimension of the feature maps and reduce the computational load. Typically, several
fully connected layers follow a convolutional layer or a pooling layer and transform
the convolutional features into a vector feature. The output layer receives input from
one or several fully connected layers and outputs the final predicted classification result.
The predicted class of a remote sensing image scene indicates whether one or more objects
of interest exist in an image. Thus, the image scene classification result is vital to the object’s
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categorical determination. In addition, effective object feature representation information
can also be acquired via the high-performance DCNN classification model, which provides
a valid foundation for the subsequent object location information extraction. The top part
of Figure 1 shows the main process of scene classification as introduced above.

3.2. ODLM Extraction

The key to acquire an object’s location information is to extract the object’s discrimina-
tive map based on the learned deep features for image classification. In this section, we
establish the weakly supervised object localization framework by addressing the convolu-
tional and fully connected features in the CNN framework. Typically, a CNN framework
processes the raw image through a certain number of convolutional layers and outputs
the image’s feature maps at the last convolutional layer. Specifically, a convolutional layer
processes the image using shared convolution kernels, which are able to retain the spatial
properties of the image content. The down-sampling (e.g., max pooling [80]) and regu-
larization (e.g., ReLU [42]) operations are able to filter redundant information, and thus,
retain the semantic information of specific objects for class recognition. Therefore, the last
convolutional layer can be regarded as the image’s spatial feature layer, which contains
the object’s localization information. Our goal is to integrate the spatial feature maps from
the last convolutional layer and generate the localization map corresponding to the image
content inspired by [60,61].

On the other hand, the vector features for image representation are typically extracted
from the fully connected layers and involved in the final classifier to predict the semantic
category of the image. For those images with the same category, a CNN classification model
can be trained to extract features with strong correlation owing to their shared semantics.
That is, the vector feature should be class-discriminative and therefore reflect the properties
of the image object. Our aim is to extend the class feature to the convolutional layer to
produce the spatial feature that contains discriminative regions of categorical objects. Thus,
a combination of the spatial feature and object’s class feature can be achieved, which helps
to generate the ODLM. Typically, each code in the class feature reflects the importance of
discriminating a certain class in the feature space. Therefore, we backpropagate the class
feature to the last convolutional layer as weights of the spatial feature maps, which are
finally integrated to generate the corresponding ODLM introduced from [62]. Specifically,
let Mi(x, y) denote the activation value of the i-th spatial feature map at position (x, y) and
aq the activated code at the q-th dimensionality of the vector feature. The contribution of
the vector feature learned from Mi(x, y) can be calculated as follows:

wi(x, y) =
Q

∑
q

∂aq

∂Mi(x, y)
(1)

where Q is the length of the extracted vector feature. Based on this operation, the contri-
butions of the spatial feature map at each position (x, y) can be easily acquired. However,
the final extracted vector feature may not be sufficiently pure for class discrimination since
it contains noises from the original image or shows instability because of the model training.
Taking this situation into consideration, we regard the contribution of the i-th spatial feature
map at every position as a whole and calculate the i-th spatial feature map’s contribution
by the following operation:

Wi = ∑
(x,y)

wi(x, y) (2)
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Since the last convolutional layer typically contains a certain number of spatial feature
maps, the final ODLM can be obtained by the weighted sum of the spatial feature maps:

ODLM =
n

∑
i

Wi

∑n
j Wj

∗Mi(x, y) (3)

where n is the number of spatial feature maps. Based on this method, we can visualize the
object localization information contained in the deep spatial and vector features, which
also help us to recognize the nature of the deep convolutional and fully connected features.

3.3. Object Localization

By employing the method described above, we can obtain the corresponding ODLM,
which is actually the object’s position-sensitive map. Moreover, the ODLM picture can
effectively indicate the salient regions of objects. Not content with the above results, we
aim to further determine the accurate positions of objects. In addition, a remote sensing
image may include more than one object, and different objects may manifest different levels
of response values. Therefore, a simple thresholding segmentation method may not be
effective to adapt to extract the object centers from an ODLM. Faced with this situation,
a dynamic local response extremum updating method is developed to further extract the
centers of objects in an image.

Specifically, a mean filter is first used to smooth the abnormal response values in an
ODLM by

h(x, y) =
1

s ∗ z ∑
(x,y)

L(x, y) (4)

where the L(x, y) is the response value in a filter window in an ODLM, and where s and z
represent the width and height of a mean filter window, respectively. h(x, y) denotes the
smoothed pixel values of an ODLM. Due to the effects of noises and the instability of model
training, some regions may show slight responses which appear as small values relative
to the most salient response values in an ODLM. To overcome this problem, a dynamic
threshold based on the extremum value of an ODLM is set to suppress the slight noise
response information by

t = (max h(x, y)−min h(x, y)) ∗ θ + min h(x, y)

= θ ∗max h(x, y) + (1− θ) ∗min h(x, y)
(5)

where θ ∈ [0, 1) is a parameter set to acquire an appropriate threshold t for generating the
noised-suppressed ODLM by

h
′
(x, y) =

{
min h(x, y), i f h(x, y) < t
h(x, y), i f h(x, y) ≥ t

(6)

For the same θ, the threshold of t varies considerably between different ODLMs since
the extremums of the object response values are different. Nevertheless, by simply normal-
izing the smoothed ODLM to [0, 1], Equations (5) and (6) can be effectively optimized as

h′(x, y) =
{

0, i f h(x, y) < t
h(x, y), i f h(x, y) ≥ t

t ∈ [0, 1) (7)

where t is the only threshold for generating the appropriate noised-suppressed ODLM.
In this work, multiple thresholds denoted by T = {t1, t2, . . . , tp} are applied to remove the
noise effects.
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Through the above operations, a refined object position-sensitive map of the ODLM
can be obtained. In fact, the salient areas in an ODLM correspond to object positions.
A larger response value corresponds to a higher likelihood that the corresponding position
holds an object. Therefore, the local extrema are dynamically updated to further extract
object localization as follows:

σ = max H
′
s∗z(x, y) (8)

p(x, y) =

{
0, i f h

′
(x, y) < σ

h
′
(x, y), i f h

′
(x, y) ≥ σ

(9)

where H
′
s∗z(x, y) are the pixel values from the refined object response map of the ODLM in

a filter window that shares the same size as the former mean filter. Generally, we perform
the above operations in the form of a sliding window with a step length of 1. In this way,
the refined response map is processed by extracting a continuous local extremum, which
we refer to as the dynamic extremum updating method. After this processing, an image
with the object location information can be acquired by the different connected components
that indicate the positions of objects. Finally, the accurate location of an object can be
determined by calculating the center of each connected component as ( 1

k ∑ px, 1
k ∑ py),

where (px, py) are the coordinates and k is the number of the pixels in the connected
components. By combining the main procedures of remote sensing scene classification,
ODLM extraction, and object localization as a whole, our proposed object localization
framework using only image-level labels is established, as shown in Figure 1.

4. Experimental Results
4.1. Experimental Setup
4.1.1. Dataset Description

The proposed framework is evaluated on a large-scale remote sensing image dataset
containing 2 classes with target images and 23 classes with scene images collected from
MapWorld (MapWorld web site: https://map.tianditu.gov.cn, accessed on 30 June 2022)
and Google Map (Google Map web site: https://www.google.com/maps, accessed on 30
June 2022) by referencing the RSD46-WHU dataset [62]. The 2 classes with target images
include oiltank and aircraft objects to be localized. The oiltank class has 500 images while
the aircraft class has 831 images. For the model training, 400 images from each class are
randomly selected as the training dataset and the remaining images as the test dataset.
Finally, there is a large-scale object set with 464 aircrafts and 572 oiltanks that need to be
localized. However, the proposed localization method is based on a DCNN framework
and 2 target classes with only 800 images are insufficient to effectively train a suitable
DCNN model, which may lead to overfitting for model training. Therefore, the 23 scene
classes (namely, agricultural, airport, basketball court, bridge, building, container, fishpond,
footbridge, forest, greenhouse, intersection, overpass, parking lot, playground, residential,
river, ship, solar power area, square, tennis court, water, wharf, and workshop) are used as
a supplement of the background classes. For the sake of fairness, each of the background
classes also consists of 400 images as the training dataset together with the oiltank and
aircraft training images. Two samples of each class are shown in Figure 2. The spatial
resolution of the scene images ranges from 0.5 m per pixel to 2.5 m per pixel, and the image
size is 256× 256 pixels. Typically, the aircraft and oiltank objects are characterized with
various scales, with the size changing from a dozen to hundreds of pixels. Each image may
contain one or several objects, and each object may appear at any location in the image.
In addition, the illumination changes strongly for different images and the background of
each object varies dramatically. Each of these factors poses challenges to the performance
of our proposed weakly supervised object localization method.

https://map.tianditu.gov.cn
https://www.google.com/maps
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Figure 2. Scene images of each class. Two samples from the following classes are shown: (a) aircraft;
(b) oiltank; (c) basketball court; (d) bridge; (e) building; (f) container; (g) fishpond; (h) footbridge;
(i) forest; (j) greenhouse; (k) intersection; (l) airport; (m) overpass; (n) parking lot; (o) agricultural;
(p) playground; (q) residential; (r) river; (s) ship; (t) solar power area; (u) square; (v) tennis court;
(w) water; (x) wharf, and (y) workshop.

4.1.2. Implementation

As introduced before, the experiments are performed using the popular AlexNet [42]
and VGG-16 [43] frameworks considering their reliable image representation ability by the
fully connected layers. The AlexNet network consists of five convolutional layers followed
by three fully connected layers, which constitutes a shallow CNN framework. The VGG-16
network is composed of thirteen convolutional layers followed by three fully connected
layers, which is known as a deep CNN framework. Generally, we use the described dataset
to train the image classification models based on these networks. Then, the proposed
method is employed to conduct the weakly supervised object localization. To satisfy the
input conditions, all images are resized to 227× 227 pixels for AlexNet and 224× 224 pixels
for VGG-16, respectively. For the training dataset, we randomly selected 350 images of
each class as training samples with the remaining 50 images of each class being used for
the validation dataset. Thus, there are no more than 10,000 images used for the CNN
model training, which may lead to overfitting because of the large-scale parameters in
the CNN framework. To overcome this problem, we employ simple data augmentations
to enrich the training dataset. Specifically, the form of the data augmentation consists of
horizontal image reflections and rotations of 90, 180, and 270 degrees. The initializations
of the weights are set as a Gaussian distribution for AlexNet and “Xavier” for VGG-16.
In addition, the initial learning rates are set to be 0.01 for AlexNet and 0.001 for VGG-16,
respectively. The batch sizes are set to be 256 for AlexNet and 48 for VGG-16, respectively.
All experiments are performed with the Ubuntu-16.04 operating system and a Nvidia GTX
Titan X GPU with 12 GB RAM.

4.1.3. Evaluation Protocols

Since weakly supervised object localization without extent has been rarely approached
in the remote sensing community, the standard evaluation method for the object localization
result is still lacking. In this situation, the object localization performance of the proposed
framework is measured using the commonly used criteria precision (P) and recall (R) as
introduced in the following context. Specifically, in the testing stage, each object in a test
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image is manually annotated with a bounding box. We regard the predicted location as
true positive (TP) if it falls within a bounding box; otherwise, the predicted location is
regarded as false positive (FP) if it is outside a bounding box. In addition, those objects
that are failed to be predicted with a location are regarded as false negative (FN). Thus,
the prediction Precision (P) and Recall (R) can be defined as follows:

P =
TP

TP + FP
R =

TP
TP + FN

(10)

where NP denotes the total number of annotated objects in the test images. In addition, we
employ an equal interval sampling strategy to set T = {0, 0.01, 0.02, . . .}, as introduced in
Formula (7). Based on this foundation, the F1-score measurement can be used to further
evaluate the overall performance of the object localization. Specifically, the F1-score can be
defined as a combination of localization precision and recall as follows:

F1 =
2RP

R + P
(11)

Moreover, since the objects are recognized by location but without extent, the distance
error (DE), which is defined as the standard deviation of the pixel distance between the
detected true positive locations of objects and the centers of the corresponding annotated
object bounding boxes, is employed to further evaluate the object localization ability of our
proposed framework.

4.2. Results and Analyses

In this section, we evaluate the object localization performance based on the proposed
framework. Generally, our proposed framework produces an ODLM by combining features
from the convolutional and fully connected layers of a DCNN framework. When the feature
from the last convolutional layer of AlexNet or VGG-16 is typically down-sampled by a
pooling layer, the vector feature from the penultimate fully connected layer is typically
extracted as an image feature presentation, and the vector feature from the last fully
connected layer can be regarded as a class discriminative feature in a CNN model. Based
on this understanding, we combine different fully connected layers with the last pooling
or convolutional layer to generate the corresponding ODLMs. The resulting comparisons
based on these foundations are then conducted to explore the localization performance.

4.2.1. Precision and Recall Evaluation

As introduced in Section 3, our proposed object localization method is closely related
to the threshold parameter t. In general, the threshold parameter t is set to be 0.50, and the
corresponding aircraft and oiltank localization results evaluated by the precision (P) and
recall (R) are shown in Tables 1 and 2, respectively. For convenience, we use “AF#C” to
represent the localization results obtained by the ODLM when spreading the #-th fully
connected layer feature to the last convolutional layer based on the AlexNet framework.
Similarly, we use “AF#P” to represent the localization results obtained by the ODLM when
spreading the #-th fully connected layer feature to the last pooling layer based on the
AlexNet framework.

Table 1. Object localization performance based on AlexNet (t = 0.5).

Class
AF6C AF6P AF7C AF7P AF8C AF8P

P R P R P R P R P R P R

Aircraft 0.2111 0.8922 0.3470 0.6552 0.3129 0.8901 0.2585 0.5711 0.3202 0.8966 0.2780 0.5991
Oiltank 0.7329 0.7881 0.5533 0.3905 0.7106 0.7653 0.4118 0.2942 0.7041 0.7583 0.4220 0.3030
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Table 2. Object localization performance based on VGG (t = 0.5).

Class
VF6C VF6P VF7C VF7P VF8C VF8P

P R P R P R P R P R P R

Aircraft 0.5447 0.9720 0.7427 0.9332 0.5180 0.9591 0.2186 0.7306 0.4923 0.9612 0.2612 0.7263
Oiltank 0.8761 0.6935 0.7781 0.497 0.9284 0.7040 0.7901 0.5009 0.9263 0.7040 0.7983 0.5061

As shown in Table 1, AF8C achieves the best localization performance for the aircraft
objects. However, the localization precision is as low as 32.02%, even the corresponding
localization recall rate reaches 89.66%. The comprehensive performance of oiltank object
localization is better than that of the aircraft. Specifically, the precision rates of the AF6C,
AF7C, and AF8C are all above 70.00% and the corresponding recall rates are all above
75.00%. In Table 2, the precision of aircraft localization has been improved to 74.27%
with a recall of 93.32% achieved by VF6P. In addition, the highest precision of oiltank
localization by the VGG network reaches 92.84% with a relatively low precision of 70.40%
achieved by VF7C. Taking Tables 1 and 2 together, the object localization performance
of the convolutional layer-based ODLMs is much better than that of pooling layer-based
ones. Furthermore, we can always acquire recall rates higher than the corresponding
precision rates for aircraft localization, as the t = 0.50 is too low to suppress the noise
information in ODLMs. By contrast, the precision rates of oiltank localization generally
show better performance than the corresponding recall rates, especially for the VGG-
based model. An overall comparison between Tables 1 and 2 indicates that the object
localization performance based on the VGG model is much better than that based on
AlexNet model, given that AlexNet is a shallow network while VGG is a much deeper
network. Consequently, the VGG model shows stronger ability to distinguish objects from
their backgrounds.

4.2.2. Threshold Analysis

The object localization performance may vary with the change of the threshold t.
Tables 3–6 show the object localization results based on different threshold values ranging
from 0 to 0.99. Note that the aircraft and oiltank localization results based on the AlexNet
framework are shown in Tables 3 and 4, respectively. The results based on the VGG
framework are shown in Tables 5 and 6, respectively. In each column, the maximum
precision and recall values are reported in bold.

Table 3. Localization performance of aircrafts with different thresholds of t based on AlexNet.

Threshold (t) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

AF6C P 0.0562 0.0632 0.0847 0.1156 0.1553 0.2111 0.2707 0.3395 0.4128 0.4790 0.5714
R 0.9526 0.9526 0.9483 0.9440 0.9246 0.8922 0.8384 0.7866 0.7091 0.6142 0.5431

AF6P P 0.1345 0.1476 0.1829 0.2281 0.2888 0.3470 0.4079 0.4706 0.5143 0.5513 0.5964
R 0.6573 0.6573 0.6573 0.6573 0.6573 0.6552 0.6487 0.6379 0.6207 0.5905 0.5668

AF7C P 0.0520 0.0604 0.1024 0.1673 0.2331 0.3129 0.4141 0.5151 0.6275 0.6961 0.7432
R 0.9203 0.9203 0.9138 0.9095 0.8987 0.8901 0.8728 0.847 0.8060 0.7651 0.7047

AF7P P 0.1201 0.1218 0.1303 0.1500 0.1875 0.2585 0.3377 0.4051 0.4526 0.4858 0.5249
R 0.5862 0.5862 0.5862 0.5841 0.5797 0.5711 0.5603 0.5517 0.5345 0.5172 0.5000

AF8C P 0.0521 0.0612 0.1046 0.1683 0.2353 0.3202 0.4215 0.5211 0.6269 0.6860 0.7460
R 0.9267 0.9246 0.9246 0.9159 0.9030 0.8966 0.8793 0.8534 0.8147 0.7629 0.7026

AF8P P 0.1267 0.1296 0.1450 0.1708 0.2099 0.2780 0.3640 0.4482 0.5028 0.5311 0.5753
R 0.6142 0.6142 0.6142 0.6121 0.6099 0.5991 0.5970 0.5970 0.5884 0.5711 0.5517

The bold values in each column denote the best performance indicators under the corresponding threshold.
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Table 4. Localization performance of oiltanks with different thresholds of t based on AlexNet.

Threshold (t) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

AF6C P 0.2753 0.3459 0.4907 0.5939 0.6709 0.7329 0.8032 0.8568 0.9049 0.9223 0.9189
R 0.8827 0.8827 0.8757 0.8476 0.8249 0.7881 0.7075 0.6287 0.4834 0.3327 0.1786

AF6P P 0.3883 0.3979 0.4321 0.4913 0.5332 0.5533 0.5597 0.5667 0.5774 0.5464 0.5315
R 0.3958 0.3958 0.3958 0.3958 0.3940 0.3905 0.3695 0.3275 0.2680 0.1856 0.1033

AF7C P 0.2671 0.2834 0.4544 0.5890 0.6647 0.7106 0.7400 0.7638 0.7774 0.7876 0.7615
R 0.8704 0.8704 0.8634 0.8406 0.8056 0.7653 0.6830 0.5832 0.4343 0.2662 0.1454

AF7P P 0.3280 0.3316 0.3509 0.3755 0.4000 0.4118 0.4237 0.4389 0.4545 0.4880 0.4667
R 0.3257 0.3257 0.3257 0.3222 0.3152 0.2942 0.2820 0.2452 0.1926 0.1419 0.0858

AF8C P 0.2604 0.2832 0.4567 0.5878 0.6580 0.7041 0.7355 0.7661 0.7850 0.7722 0.7593
R 0.8546 0.8546 0.8494 0.8266 0.7951 0.7583 0.6673 0.5622 0.4221 0.2434 0.1436

AF8P P 0.3345 0.3381 0.3574 0.3814 0.4049 0.4220 0.4342 0.4427 0.4560 0.4793 0.4766
R 0.3292 0.3292 0.3292 0.3240 0.3170 0.3030 0.2890 0.2504 0.1996 0.1419 0.0893

The bold values in each column denote the best performance indicators under the corresponding threshold.

Table 5. Localization performance of aircrafts with different thresholds of t based on VGG.

Threshold (t) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

VF6C P 0.0513 0.0942 0.1851 0.2921 0.4136 0.5447 0.6825 0.7778 0.8621 0.9147 0.9446
R 0.9914 0.9914 0.9892 0.9871 0.9806 0.9720 0.9591 0.9353 0.9159 0.9009 0.8815

VF6P P 0.1408 0.2368 0.3948 0.5300 0.6542 0.7427 0.8079 0.8508 0.8787 0.9040 0.9215
R 0.9547 0.9547 0.9547 0.9504 0.9418 0.9332 0.9246 0.9095 0.8901 0.8728 0.8599

VF7C P 0.0472 0.0722 0.1689 0.2927 0.4023 0.5180 0.6279 0.7107 0.7837 0.8486 0.8822
R 0.9784 0.9784 0.9741 0.9720 0.9677 0.9591 0.9418 0.9159 0.8901 0.8578 0.8233

VF7P P 0.0867 0.0869 0.0897 0.1038 0.1382 0.2186 0.3235 0.4124 0.4739 0.5267 0.5545
R 0.7522 0.7522 0.7522 0.7522 0.7478 0.7306 0.6875 0.6444 0.6078 0.5733 0.5259

VF8C P 0.0471 0.0696 0.1589 0.2745 0.3806 0.4923 0.5932 0.6873 0.7645 0.8344 0.8776
R 0.9828 0.9828 0.9784 0.9763 0.9720 0.9612 0.9397 0.9095 0.8815 0.8578 0.8190

VF8P P 0.0878 0.0892 0.1019 0.1283 0.1807 0.2616 0.3807 0.4444 0.5104 0.5660 0.6009
R 0.7435 0.7435 0.7435 0.7435 0.7349 0.7263 0.7047 0.6638 0.6358 0.6099 0.5711

The bold values in each column denote the best performance indicators under the corresponding threshold.

Table 6. Localization performance of oiltanks with different thresholds of t based on VGG.

Threshold (t) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

VF6C P 0.2400 0.3876 0.5914 0.7362 0.8189 0.8761 0.9079 0.9136 0.9277 0.9398 0.9615
R 0.8511 0.8511 0.8214 0.7916 0.7443 0.6935 0.6217 0.5184 0.4046 0.2732 0.1751

VF6P P 0.4000 0.4604 0.5832 0.6695 0.7306 0.7781 0.7917 0.8150 0.8137 0.8079 0.8364
R 0.5604 0.5604 0.5587 0.5464 0.5271 0.4974 0.4326 0.3625 0.2907 0.2137 0.1611

VF7C P 0.2202 0.5580 0.8662 0.9057 0.9151 0.9284 0.9346 0.9444 0.9494 0.9613 0.9720
R 0.8809 0.8757 0.8389 0.8074 0.7741 0.7040 0.6252 0.5359 0.3940 0.2609 0.1821

VF7P P 0.3972 0.4637 0.6674 0.7445 0.7726 0.7901 0.8055 0.8321 0.8473 0.8483 0.8654
R 0.5482 0.5482 0.5447 0.5359 0.5236 0.5009 0.4641 0.3818 0.3012 0.2154 0.1576

VF8C P 0.2046 0.5900 0.8700 0.9051 0.9148 0.9263 0.9302 0.9421 0.9538 0.9563 0.9717
R 0.8722 0.8669 0.8319 0.8021 0.7706 0.7040 0.6305 0.5412 0.3975 0.2680 0.1804

VF8P P 0.3943 0.5343 0.6945 0.7567 0.7829 0.7983 0.8116 0.8452 0.8450 0.8690 0.8796
R 0.5587 0.5587 0.5534 0.5447 0.5306 0.5061 0.4676 0.3730 0.2960 0.2207 0.1664

The bold values in each column denote the best performance indicators under the corresponding threshold.

As shown in Tables 3–6, the localization precision rates improve along with the
increment of threshold t while the corresponding recall rates decrease gradually. When
comparing the convolutional and pooling layer-based ODLMs in Table 3, we can find
that the recall rates acquired by the convolutional layer-based ODLMs (e.g., AF6C, AF7C,
and AF8C) can significantly outperform the corresponding pooling layer-based ODLMs
(e.g., AF6P, AF7P, and AF8P). To take a further investigation, we can see that most of the
recall rates for aircraft localization are over 90% when the threshold t is less than 0.50



Remote Sens. 2022, 14, 3230 13 of 25

when using ODLMs based on AF6C, AF7C, and AF8C. However, the localization precision
rates are much lower than the corresponding localization recall rates when the thresholds
are set as small values because there are many local minimum response values appeared
as noises in the ODLMs. Nevertheless, the pooling layer-based ODLMs can achieve
higher localization precision than the convolutional layer-based ODLMs since the pooling
operation can smooth the influence of noise response values. It is worth noting that, when
setting the thresholds greater than 0.50, the aircraft localization precision rates achieved
by AF7C and AF8C improve significantly even if the corresponding recall rates decrease
to a certain extent. Specifically, for the AF7C and AF8C-based ODLMs, the localization
precision rates are close to 70.00% while the corresponding recall rates remain above 75.00%
when t = 0.90. In addition, both the recall and precision rates with the threshold of 0.99
surpass 70.00% and 74.00%, respectively, indicating that the noise response information
contained in the ODLM can be effectively suppressed by a high threshold.

The oiltank localization results based on AlexNet are shown in Table 4. Different from
the result of aircraft localization, both the recall and precision achieved by the convolutional
layer-based ODLMs (e.g., AF6C, AF7C, and AF8C) outperform the corresponding pooling
layer-based ODLMs (e.g., AF6P, AF7P, and AF8P) when t > 0.10. Furthermore, the AF6C-
based ODLMs consistently achieve the best localization results that outperform those from
AF7C- and AF8C-based ODLMs even under different threshold settings. It is interesting
to find that the satisfactory overall performance of oiltank localization can be obtained by
setting the threshold t around 0.50. For example, the precision and recall rates can reach
73.29% and 78.81%, respectively, which is consistent with Table 1. In addition, the maximum
recall rate for aircraft localization based on AlexNet framework can reach 95.26% by AF6C
as described in Table 3. The maximum recall rate for oiltank localization is 88.27% by AF6C,
as shown in Table 4. These results can be achieved by setting the threshold t to be 0.0 or
0.10, which means the disregard of noise suppression.

The object localization results for aircraft and oiltank images based on the VGG
framework are shown in Tables 5 and 6, respectively. As can be seen from Table 5, the VGG
model can produce the best recall rates by VF6C-based ODLMs under different thresholds.
Typically, the VF6P-based ODLMs achieve the best precision rates when t ≤ 0.80, which is
similar to the phenomenon of AlexNet-based aircraft localization shown in Table 3. Note
that the VF6C also achieves the highest localization precision when t ≥ 0.90. By further
observation, we can find that both VF7C and VF8C can achieve high recall rates for aircraft
localization, where the lowest recall rate can reach 81.90%. This result verifies the stability
of the VGG-based network for aircraft localization. That is, the ODLMs based on features
of different fully connected layer can effectively indicate most of the aircraft locations in a
remote sensing image.

As shown in Table 6, the best oiltank localization results are mainly achieved by
VF7C and VF8C under different threshold levels. Specifically, the recall rate of 80.74% and
precision rate of 90.57% can be obtained when the threshold is 0.30 for VF7C. With the same
threshold of 0.30, the VF8C can also achieve similar recall and precision rates, i.e., 80.21%
and 90.51%, respectively. In addition, the best recall rate of oiltank achieved by the VGG
framework is 88.09%, as shown in Table 6, which is similar to that of the Alexnet-based
result. The best aircraft localization recall achieved by the VGG framework is 98.28%,
as shown in Table 5, which is 5.61% higher than that from the Alexnet-based framework.

In general, the precision rates typically decrease with the increment of corresponding
recall values. The high localization recall can be acquired with a small threshold value,
while the comparatively high localization precision can be achieved by setting a larger
threshold t close to 1 for noise suppression. Thus, we can achieve different recall and
precision rates based on our proposed dynamic threshold strategy.

4.2.3. Overall Performance

From Tables 3–6, we can find that the object localization performance varies signifi-
cantly when spreading different fully connected layer features to the last convolutional
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or pooling layer. To further explore the comprehensive object localization performance
of different feature layers, the F1-score measurement is employed to evaluate the object
localization results of the different ODLM generalization schemes as shown in Figure 3.
For a visual display, the ODLM samples from the test dataset are presented to further
evaluate and understand the localization performance, as shown in Figures 4 and 5.

Figure 3. Overall object localization performance by F1-score measurement. (a) Aircraft localization
based on AlexNet. (b) Oiltank localization based on AlexNet. (c) Aircraft localization based on VGG.
(d) Oiltank localization based on VGG.

As it can be seen, the curves in Figure 3 show similar variation trend for the objects
with the same category. For example, the F1-score curves for oiltank localization shown
in Figure 3b,d increase first and then decrease with the value increment of threshold
t. However, the different ODLM generation schemes have different object localization
performance even with the same threshold and CNN model. Specifically, for the AlexNet-
based framework, the aircraft localization performance from AF6P, AF7P and AF8P are
much better than those from AF6C, AF7C and AF8C when the threshold is below 0.20,
as shown in Figure 3a. The similar result can also be observed in the VGG-based framework
when the threshold t is smaller than 0.10 as shown in Figure 3c. This is because there is more
light scattering noise response information contained in the ODLM when spreading the
fully connected layer feature back to the last convolutional layer. By contrast, the response
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information is much smoother in the pooling layer-based ODLM which helps to improve
the object localization precision, as shown in the first columns of Figures 4a and 5a where the
threshold is set as t = 0.0, corresponding to the original ODLMs. Thus, more false locations
are detected as positive ones through the proposed object location determination method,
resulting in a negative influence on the localization precision performance. The locations
represented by blue points in the first columns of Figures 4a and 5a indicate this situation.

Figure 4. AlexNet-based ODLMs and the corresponding object localization results with different
thresholds. (a) Aircraft localization for different feature layers. (b) Oiltank localization for different
feature layers. The green boxes are manually annotated object bounding boxes. The detected true
positive locations are indicated with red points while the false positive locations with blue points.
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Figure 5. VGG-based ODLMs and the corresponding object localization results with different thresh-
olds. (a) Aircraft localization for different feature layers. (b) Oiltank localization for different feature
layers. The green boxes are manually annotated object bounding boxes. The detected true positive
locations are indicated with red points while the false positive locations with blue points.

Nevertheless, with the increase of the threshold t, the overall performance of the
convolutional layer-based ODLMs improves quickly for aircraft localization. Particularly,
the F1-score curves of AF7C and AF8C are far above those of AF6P, AF7P, and AF8P when
t ≥ 0.50 as shown in Figure 3a. Similarly, the F1-score curves of VF6C, VF7C, and VF8C
significantly outperform those of VF7P and VF8P when t ≥ 0.20 as shown in Figure 3c.
This is because the light scattering object location response information in the convolutional
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layer-based ODLMs is effectively suppressed by the threshold parameter as shown in
Figures 4 and 5. Consequently, the precision rate of aircraft localization by the convolutional
layers improves quickly, which is consistent with the results in Tables 3 and 5. Note that
the curve of VF6P shows comparable performance with those of VF6C, VF7C, and VF8C.
This result is mainly attributed to the high recall rate achieved by the VF6P-based ODLM
as shown in Table 5. Nevertheless, the AF6C-based ODLM can achieve higher precision of
aircraft localization when the threshold value goes beyond 0.8, resulting in better overall
localization performance as shown in Table 5 and Figure 3c. On the other hand, the pooling
layers in a CNN structure can easily lead to the loss of the spatial information for localizing
local objects. Therefore, the pooling layer-based ODLMs (e.g., AF6P, AF7P, AF8P, VF7P,
and VF8P) show weak localization ability if more than one aircraft appears in an image,
as shown in Figures 4 and 5.

As for the oiltank localization results, the F1-score curves of the convolutional feature-
based ODLMs in general are all above those of the pooling layer-based ODLMs, as shown
in Figure 3b,d. This indicates that the convolutional feature-based ODLMs can achieve
higher recall and precision for oiltank localization, which is consistent with the results
from Tables 4 and 6. Corresponding to the above observation, the ODLMs presented in
Figures 4b and 5b show that the convolutional layer-based ODLMs can effectively recognize
the location of each oiltank, while the pooling layer-based ODLMs tend to discriminate the
regions of all oiltank locations as a whole. As a result, the oiltank localization performance
of the convolutional layer-based ODLMs is much better than that of the pooling layer-
based ODLMs. Specifically, though the noise response information is scattered over the
background areas in the original ODLMs, the most salient regions can indicate the locations
of oiltanks, allowing the oiltanks in an image to be effectively recognized and localized.
Furthermore, it is interesting to find that the F1-score curves produced by the features from
the last two fully connected layers always show the same performance, i.e., the he VF7C
and VF8C shown in Figure 3d. The same phenomenon can also be observed in Figure 3a–c.
A potential explanation is that the features from the last two fully connected layers can be
trained well to represent the semantic content of a scene image. Comparatively, the feature
from the shallower fully connected layer are immediately produced by the feature from
the last convolutional layer. Thus, the combination of the features from the shallower fully
connected layer and the last convolutional layer may lead to instability for the object’s
position and semantics integration, i.e., AF6C and VF6C for aircraft and oiltank localization,
respectively. Therefore, the ODLMs generated by features from the deep fully connected
layers show better stability for object localization.

Note that there are an unexpected number of oiltanks in a remote sensing image,
as shown in Figures 4b and 5b. These oiltanks may appear at any location in an image and
vary in scale and distribution density. These properties pose challenges to our proposed
weakly supervised object localization method. Consequently, the degrees of response
information may change for different oiltanks in an image. This effect is normal because
the proposed weakly supervised object localization framework is merely constructed on
the basis of a remote sensing image scene classifier of a CNN model. Moreover, the CNN
classifier may focus on parts of the object regions in an image. As a result, the recall
rate is high and the precision rate is much lower with a small noise threshold value.
Similarly, the precision rate becomes high while the recall rate declines sharply as the
threshold value increases. Thus, the F1-score curve rises at first and then drops sharply
with the change of threshold values, which is different from the F1-score curves of aircraft
localization. Nevertheless, the F1-score curves show that the proposed method can retain
high comprehensive localization performance when the threshold values are approximately
0.5 for AlexNet-based and 0.3 for VGG-based localization schemes, as shown in Figure 3b,d,
respectively. It is actually a balance between the localization precision and recall rates.
In addition, these results are also consistent with those shown in Tables 4 and 6.

Generally, the convolutional layer-based ODLMs show much better object localization
abilities, as reflected in Tables 3–6 and Figures 3–5 since the ODLMs can effectively dis-
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criminate different objects and their backgrounds in a remote sensing image, as shown in
Figures 4 and 5. This capability ensures high recall rates while using a small threshold value
for noise response information suppression, which is consistent with the results shown
in Tables 3–6. Specifically, Figure 3 shows that both the AlexNet and VGG framework
can achieve excellent performance for aircraft localization with t ≥ 0.80. In addition,
satisfactory oiltank localization results can be obtained by setting the threshold between
0.30 and 0.50 for different CNN models.

4.2.4. Performance Comparison

Comparison of different networks: Tables 7 and 8 show the best object localization
performance measured by F1-score with the corresponding precision, recall, noise oppres-
sion parameter, distance error (DE), and the accuracy of image classification (Pc) achieved
by the employed AlexNet and VGG frameworks, respectively. The corresponding ODLMs
and object localization results are also shown in Figure 6. As shown in Table 7, the F1-score
of aircraft localization achieved by AlexNet-based framework reaches 73.06%. The F1-
score of oiltank localization reaches 76.49%, which is 3.43% higher than that of the aircraft
localization. Compared with AlexNet, the VGG-based framework shows much better
localization performance with F1-scores of 91.56% and 85.97% for aircraft and oiltank local-
ization, respectively. In fact, the shallower AlexNet framework mainly focuses on the local
content while the deeper VGG framework can accurately localize different objects in an
image to adapt to the semantic scene classification task. As shown in the first four lines
of Figure 6, the VGG-based framework can localize most of the aircrafts even if they vary
in appearance, scale, orientation, position, and spatial arrangement. The last column of
the first four lines, which show the localization results for a small aircraft, also indicate
the localization ability difference between different CNN models. Similarly, the oiltanks
can also be localized with excellent performance, as shown in last column of lines 5–8 in
Figure 6. Benefiting from the deep CNN architecture, the VGG-based framework achieved
18.5.% and 9.48% higher F1-scores than those of the AlexNet framework for aircraft and
oiltank localization, respectively. However, both the AlexNet and VGG frameworks show
weaknesses in localizing the mini-scale oiltanks, especially when they are adjacent to those
oiltanks of large sizes. Nevertheless, both the AlexNet-based and VGG-based frameworks
show remarkable effectivity in localizing the oiltanks, although there are an unexpected
number of objects holding different positions, as shown in the last four lines of Figure 6.

Through aborative observation, we find that both the AlexNet-based and VGG-based
frameworks tend to localize an oiltank by the borders between the object and its background.
One possible explanation is that the trained CNN models tend to discriminate an oiltank
from its backgrounds by focusing on the image content around object borders. Therefore,
the AlexNet and VGG frameworks share approximate distance errors of oiltank localization,
i.e., 18.27% and 15.64%, respectively. Similarly, the AlexNet-based framework localizes
an aircraft by focusing on the aerofoil, tail, and head of an aircraft. Different from the
aircraft localization results from AlexNet, the deeper CNN framework can recognize an
aircraft with the location falling onto its body. Furthermore, the localized position by the
VGG is much closer to the center of an aircraft’s annotated bounding box than that by
AlexNet. As a result, the distance error of the aircraft localization by the VGG is much
lower than that by AlexNet, as shown in Tables 7 and 8. Furthermore, both the AlexNet and
VGG frameworks achieve high accuracy of oiltank image scene classification, i.e., 93.20%
and 98.00%, respectively. And the scene classification accuracy of aircraft images also
reaches 94.40% and 95.20% by AlexNet and VGG, respectively. These results confirm
that the extracted fully connected layer features can be powerful and class discriminative.
Thus, the class information and spatial information could be effectively integrated while
spreading the fully connected layer features back to the convolutional layers. Then, the
excellent object localization performance can be achieved, which proves the rationality and
effectivity of our proposed weakly supervised object localization framework.
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Table 7. Best localization performance of F1-score measurement based on AlexNet.

Class F1 P R t DE Pc

aircraft 0.7306 0.7306 0.7306 0.95 26.03 0.9440
oiltank 0.7649 0.7752 0.7548 0.55 18.27 0.9320

Table 8. Best localization performance of F1-score measurement based on VGG.

Class F1 P R t DE Pc

aircraft 0.9156 0.9450 0.8879 0.98 14.86 0.9520
oiltank 0.8597 0.8912 0.8304 0.23 15.64 0.9800

Figure 6. Object localization results based on the AlexNet and VGG frameworks. The green boxes
are manually annotated object bounding boxes. The detected true positive locations are represented
by red points while the false positive locations are represented by blue points.

Comparison with existing methods: From above analyses, we can see that the proposed
object localization method relies heavily on the quality of object discriminative localization
map. Therefore, we compare our proposed method with the existing state-of-the-art (SOTA)
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class activation methods, including LayerCAM [81], XGradCAM [82], ScoreCAM [71],
and ISCAM [83], etc. Specifically, we employ the VGG-based framework to generate
ODLMs using different class activation methods. Then, the proposed dynamic updating
method of local response extremum is utilized to obtain the object localization result.
The quantitative results of object localization using different methods are presented in
Table 9. As can be seen, our proposed method achieves the highest on F1-scores for both
aircraft and oiltank localization. XGradCAM [82] typically propagates the class score at
classification layer to the convolutional layer and generates class-related ODLMs. Thus,
they achieve approximate performance of aircraft localization. LayerCAM [81] utilizes
pixel-wise weights to integrate the convolutional features and generates an ODLM that
can indicate the key parts of an object. However, the pixel-wise integration strategy can
make the discriminative region of an object presented with scattered components, yielding
massive noise and resulting in low aircraft localization precision, i.e., 52.17% and 10.22%
for aircraft and oiltank, respectively. Score-CAM [71] and its improved version ISCAM [83]
generate ODLMs by a linear combination of weights and activation maps, which can
suppress the noise information. Thus, the ISCAM achieves the 91.31% of F1-score for aircraft
localization. Nevertheless, our proposed method obtains comparable F1-score (91.56%) of
aircraft localization. When it comes to the oiltank object localization, the compared methods
observe sharp declines of localization performance. By contrast, our presented method can
consistently outperform the compared methods on F1-score, precision, and recall, showing
the strong stability of object localization ability of our proposed method.

Table 9. Comparison of object localization performance among different methods.

Method
Aircraft Oiltank

F1 P R t DE F1 P R t DE

LayerCAM [81] 0.6628 0.5217 0.9083 0.93 12.55 0.1661 0.1022 0.4431 0.70 15.77
ScoreCAM [71] 0.7531 0.6577 0.8807 0.99 8.84 0.6602 0.7825 0.5709 0.39 17.33

XGradCAM [82] 0.7725 0.6623 0.9266 0.87 9.54 0.2850 0.2978 0.2732 0.89 13.43
ISCAM [83] 0.9131 0.8833 0.9450 0.81 9.92 0.4483 0.4483 0.4483 0.62 19.58

Ours 0.9156 0.9450 0.8879 0.98 14.86 0.8597 0.8912 0.8304 0.23 15.64

The bold value in each column denotes the best result of the corresponding performance indicator.

Figure 7 provides the intuitive visualization of object localization results. As can be
seen from the first and second rows, the ISCAM, XGradCAM, and our proposed method
can accurately localize the aircrafts in the image while the ScoreCAM and LayerCAM
only focus on localizing one object in the image. Particularly, our proposed method can
discriminate the aircraft of small size in the image while the compared methods fail to
recognize the aircraft, as shown in the third and fourth rows of Figure 7. Consequently,
our proposed method can achieve high aircraft localization precision that outperforms the
compared methods as shown in Table 9. However, conventional class activation methods
are usually designed to discriminate single object in an image. Thus, they tend to recognize
the object areas as a whole, which makes the discrimination of multiple objects difficult
as shown in the last four rows of Figure 7. By contrast, our proposed method tends to
discriminate each object in the image, and thus, achieving significantly higher precision
and recall for oiltank localization as shown in Table 9. Intuitively, conventional methods
generate the ODLM only using the class score, which may cause the loss of information
contained in the fully connected feature from classification layer. By contrast, our presented
method backpropagates the class discriminative feature of the fully convolutional layer to
the convolutional layer, which achieves the combination of class semantic and spatial infor-
mation of objects. Therefore, the regions of multiple objects can be distinctly discriminated
from theirs backgrounds, achieving high precision and recall of object localization.
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Figure 7. Object localization results among different methods. The detected true positive locations
are indicated with red points while the false positive locations with blue points.
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5. Conclusions

In this work, we proposed a weakly supervised object localization framework to
recognize objects using only image-level labels. To this end, semantic scene classification is
conducted for the determination of object category. We backpropagate the class discrimina-
tive feature from the fully connected layer to the convolutional feature layer and generate
an object discriminative localization map (ODLM) that can vividly indicate the salient
regions of multiple objects in an image. In addition, a method of dynamic updating of
local response extremum is proposed to further determine the location of different objects.
Visualization results show that the ODLM established on the convolutional feature presents
more accurate discriminative regions of objects than the pooling layer does. Extensive
experiments and analyses show that the proposed framework can achieve satisfactory
performance for the localization of remote sensing objects, i.e., aircrafts and oiltanks. In
addition, the deeper CNN framework (VGG) can achieve significantly better localization
result than the shallow one (AlexNet). Comparisons with the state-of-the-art methods
indicate that our proposed method can achieve better performance and stability for the lo-
calization of multiple objects in remote sensing images. We hope that this work can provide
new opportunities for further research concerning weakly supervised object localization
and detection in remote sensing images. Our future work will focus on enhancing the
framework and achieving the end-to-end method for weakly supervised object localization
in remote sensing images.
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