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Abstract: Due to the strong capability of building complex nonlinear mapping without involving
linearization theory and high prediction efficiency; the deep learning (DL) technique applied to solve
geophysical inverse problems has been a subject of growing interest. Currently, most DL-based
inversion approaches are fully data-driven (namely standard deep learning), the performance of
which largely depends on the training sample sets. However, due to the heavy burden of time and
computational resources, it can be challenging to supply such a massive and exhaustive training
dataset for generic realistic exploration scenarios and to perform network training. In this work,
based on the recent advances in physics-based networks, the physical laws of magnetotelluric (MT)
wave propagation is incorporated into a purely data-driven DL approach (PlainDNN) and thus builds
a physics-driven DL MT inversion scheme (PhyDNN). In this scheme, the forward operator modeling
MT wave propagation is integrated into the network training loop, in the form of minimizing a hybrid
loss objective function composed of the data-driven model misfit and physics-based data misfit, to
guide the network training. Consequently, the proposed PhyDNN method will take the advantage
of the fully data-driven DL and conventional physics-based deterministic methods, allowing it
to deal with complex realistic exploration scenarios. Quantitative and qualitative analysis results
demonstrate that the PhyDNN can honor the physical laws of the MT inverse problem, and with
other conditions unchanged, the PhyDNN outperforms the PlainDNN and the classical deterministic
Occam inversion method. When processing field data, the PhyDNN method yields considerably
impressive inversion results compared to the Occam method, and the corresponding simulated MT
responses agree well with the real measurements, which confirms the effectiveness and applicability
of the PhyDNN method.

Keywords: deep learning; magnetotelluric; inversion; electromagnetics; subsurface imaging

1. Introduction

The Magnetotelluric (MT) method, as a remote sensing tool for the subsurface, has been
widely applied in geophysical prospecting scenarios, such as crust imaging, geothermal
exploration, and mineral, oil and gas exploration. This method images the subsurface
structures by inverting the collected natural geomagnetic and geoelectric fields at the
Earth’s surface [1,2]. Because inversion plays a critical role in the accurate estimation of
subsurface properties, it has been well studied by exploration geophysicists in the past
few decades. In general, mainstream MT inversion methods can be categorized into two
groups: deterministic and statistical inversion methods. The former, based on linearization
theory, such as Occam [3,4], nonlinear conjugate gradient [5,6] and Gauss–Newton [7,8]
methods, iteratively solves a nonlinear optimization problem by minimizing a so-called
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objective function (the data residual/misfit between the actual measurements and synthetic
responses in a L2 norm). The deterministic methods are efficient to search for the best
earth model, but usually suffer from the local optima problem and are sensitive to the
initial model. The statistical methods [9–11] convey the posterior probability distributions
of parameters by conditioning the model response on the measurements and providing
an assessment of non-uniqueness. These methods do not require linearizing the inverse
problem, and thus they are particularly desirable for highly nonlinear problems. However,
they often perform hundreds of forward simulations, which are extremely time-consuming
and demand extensive process power for large surveys. Along with all these challenges,
the aforementioned methods need to repeat the entire inversion process for each new
measurement dataset, which can be computationally intensive.

In recent years, using deep learning (DL) techniques to solve inverse problems has
been a topic of growing interest. In the DL inversion scheme, the basic idea is to train a deep
neural network (DNN) to approximate the inverse operator Γ−1. DL has a strong ability to
build complex nonlinear mapping from data (input) to models (output) without involving
linearization theory. Although the training process of a DNN may be time-consuming, once
the network is properly trained, it possesses extremely high inversion efficiency, which is
significantly convenient and practical for large surveys. For example, Araya-Polo et al. [12]
used a DNN to produce accurate tomography inversion. Das et al. [13] proposed a frame-
work based on a convolutional neural network (CNN) to realize seismic impedance inver-
sion successfully. Puzyrev [14] demonstrated that a CNN can be trained to realize onshore
carbon dioxide reservoir imaging using controlled source electromagnetic (CSEM) data.
Bai et al. [15] realized instantaneous inversion of airborne time-domain electromagnetic
data via DNN. Wu et al. [16] performed one-dimensional (1D) DL inversion for airborne
transient electromagnetic data using CNN. For MT inversion, Wang et al. [17] developed
a DL inversion strategy based on a deep belief network for MT resistivity imaging. Liu
et al. [18] applied a deep residual CNN for audio magnetotelluric (AMT) 1D inversion.
However, the aforementioned DL-based inversion approaches are fully data-driven and
thus the network performance largely depends on the training dataset. A fully data-driven
DL framework trained on an insufficient training dataset may not be able to accurately
reconstruct the nonlinear mapping between the data and models. In other words, it cannot
completely honor the physical laws of the inverse problem (e.g., electromagnetic wave
propagation). These purely data-driven DL approaches require massive representative
training sets to build robust networks and ensure good generalization capability. Neverthe-
less, supplying such large and rich data sets could be challenging. Due to the heavy burden
of time and computational power, it is difficult to build a set of complex synthetic models
(e.g., resistivity models) and generate the corresponding forwarding responses for generic
realistic exploration scenarios, and perform training. This in turn may make DL inversion
methods less appealing compared to conventional deterministic inversion.

A very recent trend is to impose the physics into the DL inversion scheme to control
the network training process. For instance, Adler and Oktem [19] performed conventional
iterative inversion using a well-trained CNN to adjust the gradients produced by the
gradient-descent algorithm for each successive iteration. Raissi et al. [20] employed the
physics constraint as a regularization term and added it to the loss objective function.
Fuks and Tchelepi [21] embedded the initial and boundary conditions in a composite loss
function and performed training on smaller datasets. Colombo et al. [22] incorporated DL
techniques into standard deterministic inversion schemes to obtain better, more stable and
unique transient electromagnetic (TEM) inversion results. Inspired by the conventional
inversion considering the governing wave equation, some other works incorporated the
physical laws of the inverse problem into the DL inversion architecture. For example,
Sun et al. [23] constructed an RNN-based forward operator Γ to emulate wave propagation
and implemented unsupervised DL seismic inversion, of which the training process is equiv-
alent to the optimization of conventional deterministic inversion methods. Wang et al. [24]
developed a closed-loop framework based on 1D CNN to model the seismic inversion
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and forward process simultaneously, and the forward process is responsible for providing
theoretical constraints for the inversion process. In this way, the incorporation of physics
could not only lead to a more reasonable and stable updating direction of parameters but
also reduce the dependency on an exhaustive training dataset.

In this work, the physical laws of MT wave propagation are incorporated into the
purely data-driven approach and a physics-driven DL MT inversion scheme is constructed.
In this scheme, the MT forward operator Γ simulating wave propagation is imposed into
the DL inversion architecture to help guide the network training by constructing a hybrid
loss function composed of the data-driven model misfit and physics-based data misfit.
The model misfit is the difference between the true models to the predicted models. The
data misfit is the difference between the measurements (input) and the forward responses
calculated by Γ from the predicted models. In fact, the conventional deterministic inversion
methods rely on the Γ and usually adopt the data misfit (or plus regularization term) as
the objective function to guide its search for the optimal solution. Therefore, the proposed
physics-driven DL inversion approach will benefit from both the fully data-driven DL and
deterministic methods, enabling it to reduce the dependency on extensive training sets
and to have the ability to deal with complex realistic exploration scenarios. To our best
knowledge, the MT inversion using such a physics-driven DL inversion scheme has not
been reported in the literature. This novel DL inversion method is demonstrated in both
synthetic and field MT cases, and it is expected to have promising application effects.

2. Methodology
2.1. Problem Statement

The MT method is used to reflect the subsurface geological structures by imaging
the spatial variation of the resistivity (or the equivalent conductivity) of the underground
medium. Since 3D MT forward modeling is a heavy burden of computational cost, it is
significant and practical to adopt 1D parameterization modeling and inversion in fieldwork
for instantaneous data interpretation and decision-making. It is common to stitch the 1D
inversion results together to form a pseudo-2D (or pseudo-3D) subsurface image. Moreover,
1D inversion results delivering horizontally layered models of resistivity versus depth can
provide a fundamental understanding of the subsurface structure for the survey area in
advance and then facilitate moving on to realistic 3D problems.

From the viewpoint of mathematics, two crucial MT problems illustrated in Figure 1
are introduced below.
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Figure 1. High-level illustration of the forward and inverse problems. 
Figure 1. High-level illustration of the forward and inverse problems.

Forward problem: Given a known geoelectric model (which, in our paper, is repre-
sented by the vector m for the resistivity distribution of the medium), the MT forward
modeling delivers the electric and magnetic fields, namely simulated MT responses (in our
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case, the derived apparent resistivity and phase are employed and denoted as a vector d̂) at
stations. The forward problem can then be expressed as follows:

d̂ = Γ(m), (1)

where Γ is the forward operator based on Maxwell’s equations governing the electro-
magnetic wave propagation phenomena. It is composed of an operator to calculate the
analytical electromagnetic responses and an operator to compute the apparent resistivities
and phases from the electric field and magnetic fields.

Inverse problem: Given a group of measurements d (real MT responses) acquired
at stations, the inverse problem can be formulated as an optimization problem aimed at
finding the optimal model m̂ that matches the measurements d. This can be described by
the following expressions:

m̂ = Γ−1(d), (2)

where Γ−1 denotes the generalized inverse operation of the forward operation Γ.
In the conventional deterministic inversion process, an optimization method is em-

ployed to iteratively improve the estimated geoelectric model m̂ until the difference between
the measurements d and the simulated MT responses d̂ from m̂ meets the misfit tolerance.
In the presented work, it is intended to approximate the inverse function Γ−1 using a
physics-driven DL approach. When training is well conducted, the network can be re-
garded as a generalized function that directly maps the input (apparent resistivity and
phase) to the output (resistivity model), and the process of inversion can be carried out to
instantly predict the subsurface property distribution.

2.2. Network Architecture

The DL inversion workflow is comprised of three steps, namely sample data genera-
tion, network designing and training, and network prediction. These three steps jointly
determine the performance of the DL inversion. Hence, it is of significance to build a
reliable and efficient DNN model.

The built DNN model in this work combines the prevalently used U-Net [25] and
residual network (ResNet) [26] architectures. The U-Net is based on a fully CNN [27] and
consists of an encoder (or down-sampling) and a decoder (or up-sampling) part, and is
well-known for its skip connection operation, which concatenates the low-level feature
from the shallow layer (encoder part) to the high-level feature from the deep layer (decoder
part). It, together with convolution and deconvolution, enables the U-Net to have better
localization and feature representation capabilities and allows fewer training samples,
compared to other fully CNNs. The ResNet is built on the concept of shortcut connection
and can overcome the gradient vanishing and network degradation problems when the
network depth considerably increases.

As illustrated in Figure 2, to adapt to our 1D MT inverse regression problem, a Unet-
like 1D CNN model (1DUResNet) is designed and built by embedding the ResNet unit
into the U-Net architecture. The encoder path on the left side consists of four down-
sampling blocks. In every block, each repeated convolutional layer (3 × 1 kernel, 1 stride,
‘SAME’ padding) is followed by two cascading ResNet units (3 × 1 kernel, 1 stride, ‘SAME’
padding) and a max-pooling operation (2 × 2 kernel, 2 stride). The number of feature
channels increases from 32 to 512. The decoder path on the right side consists of four
up-sampling blocks. Each block is composed of a deconvolution operation (3 × 1 kernel,
2 stride, ‘SAME’ padding) and a concatenation operation of low-level and high-level
features, followed by a convolutional layer and two cascading ResNet units. In the last
block, a convolutional layer (1 × 1 kernel, 1 stride, 1 channel, ‘SAME’ padding) and a dense
layer (50 neurons) are added to adjust the network output to match the desired output. The
input and output sizes are 128 × 1 and 50 × 1, respectively. In order to reduce overfitting
and improve generalization ability, the dropout operation (0.1 ratio) after the max-pooling
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operation is applied in the encoder part and the concatenation operation in the decoder
part, to regulate the learning process.
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2.3. Physics-Driven DL Inversion Scheme

Most DL-based methods for solving MT inverse problems are fully data-driven. These
methods take the model misfit `m that measures the difference between the true models m
and the predicted models m̂ as the loss objective function Φ:

Φ(d, m, θ) = `m(m̂, m)

=

√
1

TN

T
∑

i=1

N
∑

j=1

(
m̂ij −mij

)2

=

√
1

TN

T
∑

i=1

N
∑

j=1

(
H(d, θ)ij −mij

)2

(3)

where T is the number of sample pairs (d, m) involved in training, N is the number of model
parameters, d is the measurements, and H is the feed-forward network parameterized by
θ. During the training process, the network performs the learning by minimizing the loss
function Φ, (written as):

θ̂ = argmin
θ

Φ(d, m, θ) (4)

Once the network is well trained, the feed-forward network H can be used as an
inverse operator, Γ−1, to produce predictions, m̂, from a new set of measurements, d.

Though a fully data-driven DL approach can be a powerful tool to solve the MT inverse
problem, it requires an exhaustive synthetic training dataset related to the exploration
scenario to build robust networks and ensure good generalization ability. Unlike the
purely data-driven DL methods, a physics-driven DL inversion scheme by integrating the
1D forward operation Γ modeling MT wave propagation into the DNN training loop is
proposed in this work. As shown in Figure 3, in this scheme, the loss objective function
is a weighted sum of model misfit `m and physics-based data misfit `d. The data misfit `d
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measures the difference between the measurements d and the simulated MT responses d̂
calculated by Γ from the predicted models m, defined as:

`d

(
d̂, d
)

=

√
1

TM

T
∑

i=1

M
∑

j=1

(
d̂ij − dij

)2

=

√
1
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∑

i=1
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∑

j=1

(
Γ(m̂)ij − dij

)2

=

√
1

TM

T
∑

i=1

M
∑

j=1

(
Γ(H(d, θ))ij − dij

)2

(5)

where M is the number of measurement parameters. Then, the loss objective function Φ
controlling the network training is as follows:

Φ(d, m, θ) = α · `m(m̂, m) + β · `d

(
d̂, d
)

= α ·
√

1
TN

T
∑

i=1

N
∑

j=1

(
H(d, θ)ij −mij

)2

+β ·
√

1
TM

T
∑

i=1

M
∑

j=1

(
Γ(H(d, θ))ij − dij

)2

(6)

where the weighted parameters α, β are used to balance the relative contributions of the
two misfit terms and are both set to 0.5 in our work.
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Unlike other MT DL inversion works [17,18] which used the apparent resistivity as
network input alone, both the apparent resistivity and phase derived from measurements
are employed for inversion. Liu et al. [17] have demonstrated that the network performance
is worse using the concatenation of apparent resistivity and phase than individual apparent
resistivity as input, due to the significant difference between the apparent resistivity (usually
covers several orders of magnitude) and the phase (between 0 and 90). Hence, a multi-head
DNN is constructed as shown in Figure 3, which consists of two individual network paths
based on 1DUResNet with each using apparent resistivity and phase as input, respectively.
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Then the outputs of two paths are transferred to the scaling layer after the concatenation
operation. The scaling layer serves as the prior knowledge to constrain the predictions to a
proper value range and is defined as:

Hs(m̂c, θs) = (mmax −mmin)sigmoid(θsm̂c) + mmin (7)

where Hs denotes the scaling layer parameterized by θs, m̂c is the preceding concatenation
result, mmax, mmin represent the predetermined upper and lower bounds of
predictions, respectively.

Compared to the purely data-driven DL (PlainDNN), the proposed physics-driven DL
(PhyDNN) scheme will reduce the dependency on exhaustive training sets and produce
more accurate, stable and reliable inversion results. During the DL training, the early-
stopping technique with a patience of 50 (total epochs of 150 in our following work) is
used to avoid overfitting the training data. The popular Adam optimization algorithm
is employed to minimize the loss objective function with a batch size of 128. In order to
accelerate the convergence and prevent the DNN from falling into local optima prematurely,
a dynamic learning rate scheme that the learning rate will decrease by a factor of 0.8 if the
loss on the validation sets fails to reduce or remains constant for five consecutive epochs is
adopted. The implementation is based on TensorFlow using a desktop (system: Intel(R)
Core (TM) i7-9700 CPU @ 3.00GHz, 16.9 GB RAM. GPU: GeForce RTX3060 with 8G VRAM).

2.4. Sample Data Generation

Sample data generation is a key step of DL-based inversion methods. Though the
generation of 1D MT data typically does not pose significant problems because of the
low number of model parameters and the availability of analytical solutions, it could be
time-consuming to perform network training using an extremely massive dataset. Hence,
it is necessary to construct a reasonable-sized and high-quality sample dataset. In the
presented work, the number and thickness of layers for all synthetic resistivity models
are fixed. The number of layers is set to 50 and the bottom depth of the models is 50 km.
The thickness of layers is set following Krieger and Peacock [28], with 44 layers within the
10 km target depth and five extended layers between the target depth and bottom depth.
The deepest layer that is below 50 km is a uniform half-space whose thickness is infinite.

A popular method adopted by most 1D DL inversions in electromagnetic exploration is
to generate a set of layered geoelectric models with smooth resistivity using spline interpola-
tion methods. Nonetheless, the actual subsurface geoelectric structures are usually complex,
and the resistivity values of layers may not be strictly smooth and gradual-changing. Hence,
a novel method, that randomly adds perturbations of different amplitudes to the general
smooth resistivity models is proposed to generate fine resistivity model samples that could
better delineate the realistic subsurface structures. The specific steps are the following:

(a) Select eleven layers from layer one to layer fifty evenly, and randomly assign the
resistivity values ranging from 1 to 10,000 Ωm in the form of a logarithm to the
eleven layers.

(b) Calculate the resistivity values of the remaining layers by the cubic spline interpolation
method, and thus obtain the smooth resistivity model ρ.

(c) Use the following equations to add perturbations to the smooth resistivity model ρ,
and thus obtain the perturbed resistivity model ρ′:{

c = 1 + ((ρmax/ρmin)− 1) ρmax−ρ
ρmax−ρmin

ρ′ = ρ(1 + 0.015(k− 0.5)c)
(8)

where k with the same dimension as ρ returns random floats in the half-open interval [0, 1).

(d) Apply 1D interpolating spline to ρ′ to slightly smooth the perturbations.
(e) Replace the resistivity values outside the predetermined range with the upper and

lower bounds, and finally, obtain the fine resistivity model ρ f ine.
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Figure 4 shows three representative comparison examples of the general smooth and
our proposed fine resistivity models. The fine resistivity models are all evolved from the
smooth resistivity models. It can be clearly seen that the proposed fine resistivity model set
not only includes models that are noticeably not strictly smooth and gradual-changing but
also contains models that are similar and close to the smooth models because the added
perturbations are extremely small. Compared with the smooth model set, the proposed
fine model set is expected to delineate the realistic subsurface geoelectric structures.
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Figure 4. Three representative examples of comparison between the general smooth and the proposed
fine resistivity models. The fine resistivity models are evolved from the smooth resistivity models.

When the resistivity model set is built, the corresponding MT forward responses are
then calculated with a total number of 56 frequencies ranging from 0.001 Hz to 1000 Hz.
Herein, a dataset composed of 50,000 samples, of which each sample represents one
response-model pair, is constructed for network training. In the DNN training stage,
40,000 samples are used as the training sets and the remaining act as the validation sets,
which corresponds to an 80/20 split. The apparent resistivity and phase values derived
from the MT forward responses are used as the input and the corresponding resistivity
models serve as the desired output. Since the input size of the proposed 1DUResNet is
128 × 1, both the apparent resistivity and phase of 128 × 1 size are obtained by applying
the linear interpolation method to the original apparent resistivity and phase of 56 × 1 size.
The input and desired output data are standardized following:{

d̃ = d−µ
σ

m̃ = lg(m)
(9)

where µ and σ denote the mean and standard deviation values on the corresponding
training dataset.

3. Experiments
3.1. Comparison between the Smooth and the Fine Sample Sets

In order to examine the effectiveness of the proposed fine sample set, the DNN is
trained using the general smooth and the proposed fine sets of different sizes in a fully
data-driven way, and the results are evaluated using the smooth and fine test sets that
are not involved in training. The Fine 1 represents the aforementioned sample set. The
newly-created datasets, including Smooth 1, Smooth 2, Fine 2, smooth test set and fine test
set composed of 50,000, 100,000, 100,000, 10,000 and 10,000 samples, respectively, are also
built following the steps described in Section 2.4, and the fine sets are evolved from the
corresponding smooth sets.
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The quantitative comparison results are shown in Table 1. It can be clearly seen that
the DNN trained with smooth 1 and smooth 2 performs better for the smooth test set and
similarly, the DNN trained with fine 1 and fine 2 achieves better misfit results for the fine
test set. When the size of training sets increases from 50,000 to 100,000, the DNN trained
with a smooth set shows little improvement in model misfit for the fine test set, while
the DNN trained with a fine set demonstrates a significant improvement in model misfit
for the smooth test set. This means the DNN trained with the proposed fine sample set
can not only deal with the earth models with gradual-changing resistivity but also make
better predictions for complex subsurface structures whose resistivities appear to fluctuate.
Moreover, when the size of the training set doubles, the data misfit increases rather than
decreases, unlike the model misfit. This may be due to the fully data-driven DNN tending
to oversmooth or overfit the model misfit, which suggests the necessity of introducing the
physics to help guide the network training.

Table 1. Mean model and data misfits of test sets for the general smooth and the proposed fine
sample sets.

Training Set
Smooth Test Set Fine Test Set

Model Misfit Data Misfit Model Misfit Data Misfit

Smooth 1 0.1095 0.0205 0.3461 0.0867
Fine 1 0.1232 0.0278 0.2979 0.0516

Smooth 2 0.0862 0.0405 0.3434 0.1102
Fine 2 0.1006 0.0338 0.2784 0.0492

3.2. Comparison of DL Inversion Schemes with Different Drive Types

To demonstrate the validity of the proposed physics-driven DL approach (PhyDNN),
this part quantitatively compares the inversion results of the test set with the fully data-driven
DL approach (PlainDNN). The test set (the same is below) is a combination (20,000 samples)
of the smooth and fine test sets mentioned in Section 3.1.

Figure 5 shows the convergence curves of the model and data misfits during the
training process, respectively. The model and data misfits of the training and validation
sets decline with epochs (one epoch means training all sample data in training sets once)
gradually, indicating no overfitting phenomena. Due to the relatively large learning rate in
the early training stage, the validation curves appear as a sharp jitter, which would facilitate
the search for the global optimal network parameters. The comparison of the inversion
results from the test set between PlainDNN and PhyDNN is shown in Figure 6. The left
picture plots the model misfit scatter density. It is clear that the model misfit points are
evenly distributed on both sides of the line y = x overall. As the misfit value increases,
the trendline of the model misfit scatters slightly and tends to the side of PlainDNN. This
indicates that PhyDNN and PlainDNN are quite comparable in model misfit, but the latter
has slightly more extreme values. The right picture plots the data misfit density. The data
misfit points are mainly distributed on the side of PlainDNN and the trendline obviously
tends to PlainDNN, reflecting that the PhyDNN achieves a much smaller data misfit. The
comparison of mean misfit values shown in Table 2 also confirms the superiority of our
proposed PhyDNN.

Table 2. Mean model and data misfits of the test set for the PlainDNN and PhyDNN.

DL Inversion Scheme Model Misfit Data Misfit

PlainDNN 0.2280 0.0415
PhyDNN 0.2226 0.0215
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To obtain a further understanding of the potential of the proposed PhyDNN, the
anti-noise performance of PhyDNN and PlainDNN is investigated. With other conditions
unchanged, the test set mixed with Gaussian noise of different levels from 0.5% to 5% is
used to evaluate the well-trained PhyDNN and PlainDNN. The noise is added to the MT
responses (apparent resistivity and phase). It should be noted that herein, the PhyDNN and
PlainDNN are trained based on noise-free data but evaluated using noisy data. As shown
in Figure 7, the difference in model misfit between PhyDNN and PlainDNN gets larger
with the noise level and then tends to decrease. The difference in data misfit first becomes
larger and then keeps steady as the noise level increases. The PhyDNN outperforms
the PlainDNN in both model and data misfits at all noise levels. Evidently, owing to
the incorporation of the physical laws of MT wave propagation, the PhyDNN is more
noise-robust compared with the PlainDNN.
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Figure 7. Comparison of the anti-noise performance between PhyDNN and PlainDNN at different
levels of Gaussian noise. The left is the mean model misfit of the test set from PhyDNN and PlainDNN,
and the right presents the mean data misfit of the test set from PhyDNN and PlainDNN.

To analyze the effect of the two misfit terms in the loss objective function on PhyDNN
inversion performance, a comparison experiment using different weighted parameter pairs
(α− β) is conducted. α and β represent the weighted parameters of model misfit term and
data misfit term, respectively, which sum to 1. The weighted parameter pairs (1–0) and
(0–1) denote the purely data-driven DL inversion scheme and the fully physics-based DL
inversion scheme similar to the deterministic method, respectively. As clearly shown in
Figure 8, the data misfit of the test set shows a downward trend when β increases from 0
to 0.7 (the corresponding α declines from 1 to 0.3). Meanwhile, the model misfit remains
stable at a low level and hits the bottom when (α− β) is (0.5–0.5). Then, as β varies from 0.7
to 0.9, the data misfit and model misfit of the test set both increase rapidly. When β reaches
1, due to the lack of the contribution of the model misfit term, though the data misfit drops
to a relatively low level, the corresponding model misfit of the test set experiences a serious
increase. Therefore, for balancing the two misfit terms, the reasonable β is 0.5, 0.6 and 0.7,
and the corresponding α is 0.5, 0.4, and 0.3. In this work, the chosen (α− β) is (0.5–0.5).
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3.3. Comparison between the PhyDNN and the Deterministic Method

This part presents a comparative experiment between the proposed PhyDNN and the
classical Occam [3] inversion methods to demonstrate the superiority of the PhyDNN over
the deterministic methods. The above-mentioned test set composed of 20,000 samples is
employed for inversion. Occam inversions are all performed using a number of 30 iterations
and an initial model of 100 Ωm homogeneous half space and run in Matlab 2020b.

Figure 9 plots the model and data misfit scatter density between Occam and PhyDNN
for the test set. It is noticeable that PhyDNN achieves a much better inversion effect than
Occam for the synthetic samples in the test set. The PhyDNN is greatly superior to the
Occam in both the model and data misfits, as also shown in Table 3. Table 4 exhibits the
computational time of Occam and PhyDNN for inverting the test set. The Occam method
requires 4.8 h on the used desktop computer to complete the inversion process for all
20,000 synthetic samples. Though the PhyDNN may be a little time-consuming in the
extra stage of sample data generation and network training, it can achieve instantaneous
inversion once the network is well-trained in advance, which is particularly desirable for
large-scale measurements and practical for instant decision-making in fieldwork. The time
consumed by PhyDNN inversion includes loading the well-trained network model and
producing the network prediction.

Table 3. Mean model and data misfits of the test set for Occam and PhyDNN.

Inversion Method Model Misfit Data Misfit

Occam 0.8405 0.1928
PhyDNN 0.2226 0.0215

Table 4. Computational loads of the Occam and PhyDNN for inverting the test set.

Inversion Method Data Generation
(Hour) Training (Hour) Inversion (Hour)

Occam - - 4.8
PhyDNN 1.25 21.8 0.01
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3.4. Comparison of Different Types of MT Data

This section means to confirm the validity of the proposed multi-head DNN that uses
the joint data of apparent resistivity and phase as input, by comparison with the other
two input data types of individual apparent resistivity and phase. When the input data
type is individual apparent resistivity or phase, the multi-head DNN that consists of two
individual network paths in Figure 3 is replaced with the corresponding single-path DNN
based on 1DUResNet with other conditions unchanged.

Figure 10 shows the training and validation convergence curves of PhyDNN for three
types of MT data. The training and validation losses decrease with epochs progressively,
and the joint data of apparent resistivity and phase performs best on both training and
validation sets. Figure 11 illustrates the model and data misfit scatter density between the
apparent resistivity, phase and joint data for the test set. The distribution characteristics
of model and data misfit points and the trend of trendlines indicate that the joint data
surpasses the other two data types in inversion effect for the test set, which coincides with
the comparison result of mean model and data misfits in Table 5. Therefore, the proposed
multi-head DNN can take full advantage of the subsurface information provided by the
apparent resistivity and phase, and thus improve the inversion effect.

Table 5. Mean model and data misfits of the test set for the apparent resistivity, phase and joint data.

MT Data Model Misfit Data Misfit

Phase 0.2657 0.0541
Apparent resistivity 0.2371 0.0265

Joint data 0.2226 0.0215
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Figure 11. The model and data misfit scatter density plots between the apparent resistivity, phase and
joint data for the test set. The left and right columns are the comparison results of model misfit and
data misfit separately. The top row places the comparison results between the apparent resistivity
and joint data. The bottom row shows the comparison results between the phase and joint data.

4. Examples and Results
4.1. Synthetic Data

To examine the inversion performance of the proposed PhyDNN inversion scheme,
a 2D synthetic subsurface resistivity model (Figure 12a) with a length of 50 km and a
depth of 10 km is designed for the inversion trial. The resistivity model has 101 sites at a
distance interval of 500 m and the 1D resistivity model of each site is used to calculate the
corresponding synthetic noise-free MT responses to be inverted.

Figure 12 shows the true model and the inversion results of the PlainDNN, PhyDNN
and Occam methods, and Figure 13 illustrates the corresponding simulated MT responses
(only the apparent resistivity is shown here). The maps are produced in the Surfer software
with an application of the Kriging interpolation method [29] (the same is below). It is
clear that all three methods can accurately delineate the subsurface resistivity distribution,
and the corresponding simulated MT responses of the retrieved resistivity models are
in great agreement with the true values. Compared with PlainDNN, PhyDNN output
is overall closer to the true model and delivers more accurate resistivity values at some
local depths. The same comparison results of the simulated responses between PlainDNN
and PhyDNNare supported in Figures 12e and 13e, where the PhyDNN has lower overall
misfit and fewer extreme misfit values, particularly in data misfit. In contrast, the built
DL-based inversion methods produce noticeably more accurate resistivity values than the
deterministic Occam method.
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Figure 12. Comparison of the inversion results of the PlainDNN, PhyDNN and Occam methods.
(a–d) are the true model, the recovered models of the PlainDNN, PhyDNN and Occam, respectively.
(e) shows the individual model misfit for all sites and the overall model misfit of the whole model.

To further assess the robustness and stability of the PhyDNN, the anti-noise perfor-
mance of PlainDNN, PhyDNN and Occam inversion methods is evaluated using synthetic
noisy data. A 2D synthetic subsurface resistivity model is redesigned in Figure 14a, and
then contaminates the corresponding simulated MT responses (apparent resistivity and
phase) with Gaussian noise at a 1% level. The PlainDNN and PhyDNN are all trained
on the built noise-free synthetic sample dataset. As shown in Figures 14 and 15, all three
methods can reflect the overall distribution characteristics of the electrical properties, and
the recovered simulated apparent resistivity sections agree well with the original section.
However, compared with the other two methods, the PhyDNN produces more faithful
and accurate inversion results in retrieving the resistivity values and delineating the shape,
range and boundary of the anomaly. In contrast, the recovered resistivity from PlainDNN
and Occam and the simulated apparent resistivity from PlainDNN have relatively larger
deviations from the true values. Hence, owing to the incorporation of the physical laws
of MT wave propagation, the proposed PhyDNN could be better at dealing with noisy
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measurements and yield more reliable inversion results than PlainDNN and Occam, which
shows its promising prospect in practical applications.
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Figure 13. Comparison of the corresponding simulated apparent resistivity sections of the models
shown in Figure 12. (a–d) are the real apparent resistivity, the simulated apparent resistivity of the
PlainDNN, PhyDNN and Occam, respectively. (e) shows the individual data misfit for all sites and
the overall data misfit of the whole model.

Moreover, it can be observed in two inversion examples that though the Occam
inversion method is inferior to the built DL-based inversion methods in retrieving the
resistivity value, it produces accurate simulated MT responses, even more accurate than
PhyDNN in the second example. This is due to the deterministic inversion methods usually
employing the data misfit (or plus regularization term) as the objective function to search for
the optimal solution. In addition, it is demonstrated that the proposed PhyDNN inversion
method is quite robust, as it accurately recovers the lateral coherence of the resistivity
section, though the resistivity models of all sites are inverted individually.
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Figure 14. Comparison of the inversion results for subsurface resistivity model (a–d) are the retrieved
models of the PlainDNN, PhyDNN and Occam, respectively. (e) shows the individual model misfit
for all sites and the overall model misfit of the whole model. The MT responses used for inversion
are mixed with Gaussian noise at 1% level.
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Figure 15. Comparison of the corresponding simulated apparent resistivity sections of the models
shown in Figure 14. (a–d) are the real apparent resistivity, the simulated apparent resistivity of the
PlainDNN, PhyDNN and Occam, respectively. (e) shows the individual data misfit for all sites and
the overall data misfit of the whole model.

4.2. Field Data

To verify the applicability of the proposed PhyDNN inversion scheme to field mea-
surements, the MT data sets collected in South Australia, Australia by Adelaide University,
which are publicly available from Krieger and Peacock [28], are employed for inversion. As
shown in Figure 16, a total of 15 sites were recorded with a frequency range of 0.0046 Hz to
78 Hz. The topography of the survey area is quite flat and varies from 22 m to 56 m along
the survey line.

A phase tensor analysis of the field measurements is performed and the results are
illustrated in Figure 17. In Figure 17a, the ellipses are colored according to the minimum
phase tensor value φmin [30]. It is clear that the phase tensors can be divided into three parts
with frequency decreasing. In the frequency range of 78 Hz to 1 Hz, φmin is mostly larger
than 45◦, which means there exist conductive layers near the surface. For the frequency
of 1 Hz to 0.1 Hz, φmin is much lower than 45◦, indicating the existence of highly resistive
layers at the corresponding depths. For the frequency of 0.1 Hz to 0.0046 Hz, φmin is slightly
higher than 45◦, suggesting there follows a relatively conductive zone. Figure 17b illustrates
the phase tensor ellipses colored by the skew angle [30,31]. For frequencies higher than
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1 Hz, the skew angles of phase tensor ellipses are mostly less than 3 in absolute value,
meaning the resistivity structure near the surface tends to be 1D. The rest phase tensor
ellipses with larger absolute values of skew angle suggest that the resistivity structure of
the relatively deeper zone is more likely to be 2D or 3D.
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Figure 16. Field map of the MT survey line in South Australia, Australia. The black triangles represent
the MT stations collecting the surface measurements. The box on the top-left and the red star denote
the worldwide location of the MT exploration project.
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Figure 17. Pseudosection plots of phase tensor ellipses along the measurement profile. The ellipses
in (a,b) are normalized by the maximum phase value and colored according to the minimum phase
tensor value φmin or skew angle.

Following the steps in Section 2.4, the training sets composed of 50,000 samples are
regenerated using the same configurations of synthetic resistivity models and resistivity
values range but a different frequency band of 0.0046 Hz to 78 Hz. Then the PhyDNN is
retained and the well-trained network is applied to produce predictions. This work also
benchmarks it against the classical Occam inversion method using a number of 30 iterations
and an initial model of 100 Ωm homogeneous half space. As shown in Figure 18, the 2D
pseudo section maps along the survey profile are generated by stitching the 1D inversion
results or the corresponding MT responses together. Figure 19 shows the data misfit of
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each individual site and the overall data misfit for all sites. It can be clearly seen that
the inversion results of the two methods are quite compatible and show synchronous
changes, and the corresponding apparent resistivity values also agree well with the real
measurements. The inverted resistivity models overall present a low-high-low resistivity
change trend with increasing depth. The resistivity structure near the subsurface tends
to be 1D, whereas that at the deeper depth is more likely to be 2D or 3D. These findings
coincide with the phase tensor analysis results.
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Figure 18. The inversion results and the corresponding MT responses of filed data. (a) shows the
elevation section along the survey profile. (b,c) are the pseudo cross-sections of the inverted resistivity
models recovered by the Occam and PhyDNN methods, respectively. (d–f) show the real responses
and the corresponding simulated responses (only the apparent resistivity is shown here) of the
inversion results for the Occam and PhyDNN methods separately.
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5. Discussion and Conclusions

This work proposes a novel physics-driven DL-based MT inversion method (named
PhyDNN), which embeds the forward operator modeling MT wave propagation into
the network architecture in the form of using the weighted sum of model misfit `m and
physics-based data misfit `d as the loss objective function to guide the network training.
Consequently, the proposed PhyDNN can take advantage of the fully data-driven DL
and deterministic methods, thus reducing the dependency on extensive training sets and
having the ability to deal with complex realistic exploration scenarios. It is demonstrated
that the PhyDNN can honor the physical laws of the MT inverse problem and accurately
reconstruct the nonlinear mapping from the input (apparent resistivity and phase) to the
output (resistivity model). Quantitative and qualitative analysis results show that the
PhyDNN inversion outperforms the PlainDNN inversion in model misfit and particularly
in physics-based data misfit and that the former is more robust and can yield more reliable
inversion results when dealing with noisy measurements. Compared with the classical
deterministic Occam inversion method, the built DL-based inversion methods, particularly
the proposed PhyDNN, perform better in retrieving the resistivity values and delineating
the resistivity distribution. To further verify the feasibility and applicability of PhyDNN, a
comparison inversion for field data between the PhyDNN and Occam methods is imple-
mented. The PhyDNN inversion results are quite compatible with the Occam method, and
the corresponding simulated MT responses are in good agreement with the actual measure-
ments. Moreover, compared with the conventional deterministic method, the DL-based
method can realize instantaneous inversion without any iterations once the network is
well-trained in advance, which is particularly desirable for large-scale measurements and
practical for instant decision-making in fieldwork. In addition, the fine resistivity models
generated by the proposed novel method could better delineate the real-world subsurface
structure compared to the commonly-used smooth resistivity models, which facilitates the
DL inversion for complex subsurface structures whose resistivities appear to fluctuate. This
model construction method could be applied to other existing geophysical techniques for
solving 1D inverse problems.

The proposed physics-driven DL inversion strategy can be extended to 2D and 3D
MT inverse problems. However, unless sufficient computational power is available, it is
extremely difficult or impossible to perform T (the number of samples involved in training)
times 2D (or 3D) MT forwarding in every training loop. Hence, how to reasonably introduce
the 2D (or 3D) forward operator simulating the MT wave propagation into the network
architecture to improve MT inversion is a challenging problem and will be our future work.
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