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Abstract: Land cover classification (LCC) of heterogeneous mining areas is important for under-
standing the influence of mining activities on regional geo-environments. Hyperspectral remote
sensing images (HSI) provide spectral information and influence LCC. Convolutional neural net-
works (CNNs) improve the performance of hyperspectral image classification with their powerful
feature learning ability. However, if pixel-wise spectra are used as inputs to CNNs, they are inef-
fective in solving spatial relationships. To address the issue of insufficient spatial information in
CNNs, capsule networks adopt a vector to represent position transformation information. Herein,
we combine a clustering-based band selection method and residual and capsule networks to create a
deep model named ResCapsNet. We tested the robustness of ResCapsNet using Gaofen-5 Imagery.
The images covered two heterogeneous study areas in Wuhan City and Xinjiang Province, with
spatially weakly dependent and spatially basically independent datasets, respectively. Compared
with other methods, the model achieved the best performances, with averaged overall accuracies of
98.45 and 82.80% for Wuhan study area, and 92.82 and 70.88% for Xinjiang study area. Four transfer
learning methods were investigated for cross-training and prediction of those two areas and achieved
good results. In summary, the proposed model can effectively improve the classification accuracy of
HSI in heterogeneous environments.

Keywords: hyperspectral remote sensing image; convolutional neural network; capsule network;
land cover classification; Gaofen-5; mining area

1. Introduction

Land cover is a determinant of maintaining the stability of terrestrial ecosystems [1–7].
Different methods of land cover classification (LCC) have been developed, in large part
owing to increased satellite resolution and efficient algorithms. Using remote sensing
images for land surface classification can accurately obtain land cover change information.
This technology plays a crucial role in land resource management, urban planning, and
environmental protection, among others [8,9].

Classifying LCC associated with surface mining is important in areas with heteroge-
neous environments and offers an effective measure to manage the environment. Several
multi-spectral image-based data were used and proven to be effective for LCC in hetero-
geneous mining areas. For example, Li et al. [10] used multimodal spectral, spatial, and
topographic features of ZiYuan-3 satellite images to classify open-pit mining areas and
compared various aspects of machine learning algorithms. Chen et al. [11] studied an
optimized support vector machine (SVM) model to improve the pixel-wise classification
accuracy of WorldView-3 imagery.

Remote Sens. 2022, 14, 3216. https://doi.org/10.3390/rs14133216 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7785-2541
https://orcid.org/0000-0002-6272-1618
https://doi.org/10.3390/rs14133216
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133216?type=check_update&version=2


Remote Sens. 2022, 14, 3216 2 of 23

Chen et al. [12] reviewed LCC of mining areas using remote sensing data, while Li
et al. [13] used a modified deep belief network (DBN) with multi-level outputs to classify
mining areas. Qian et al. [14] proposed a multiscale kernel-based multistream convolutional
neural network (CNNs) model to input three data types for fine LCC. However, the utilized
multi-spectral images lack fine spectral information.

Since hyperspectral images (HSI) have rich spectral information, they are important
for extracting land cover information. The most typical feature of HSI is high spectral
resolution. Therefore, compared with multi-spectral data, HSI can enable finer and more
accurate detection of material on the earth’s surface [15–21].

During the early period of HSI classification, methods were mainly based on spectral
features; however, multiple spectral features contain redundant information. To eliminate
the information redundancy of high-dimensional features and reduce the computational
difficulty, most researchers have optimized and studied the classification methods based
on spectral features from the perspective of dimension reduction. Dimension reduction
methods include feature extraction and band selection. Feature extraction is used to map
data from high-dimensional space to low-dimensional space and is mainly performed via
linear discriminant methods (LDA) [22], principal component analysis (PCA) [23], and
other methods. Band selection refers to selecting a subset from the original band set with
lower dimension. Various strategies have been proposed to select a suitable subset of bands,
such as ranking strategy, search strategy, sparse strategy, and clustering strategy [24]. In
the unsupervised band selection method, the clustering-based approach aggregates all
bands into different classes or subspaces and selects the bands closest to the center of the
clusters. Xie et al. [25] used primarily the K-means algorithm to continuously calculate
the distance between all sample points and the current candidate centers to determine
the final clustering center, and then, by traversing all clusters, to select the feature bands.
Qian et al. [26] proposed a sample-based affinity propagation clustering algorithm that
considers the correlation between individual bands and obtained a subset of feature bands
by maximizing the objective function. For LCC in heterogeneous mining areas, it is essential
to select the effective band subset for HSI.

The method of joint spatial-spectral features utilizes both the spectral features of
hyperspectral data and the spatial feature information of images. Kang et al. [27] used
the SVM algorithm and spatial-spectral features to determine the probability of each pixel
belonging to a different category. With the continuous advances of deep learning (DL)
algorithms, more DL-based methods have been applied to HSI classification owing to their
powerful deep feature capture capabilities [28–34]. Zheng et al. [35] studied a learning
framework without patches to consider the global information of HSI. In addition, recurrent
neural networks (RNN) [36], DBNs [37], and generative adversarial networks (GAN) [38]
have also been frequently used for HSI classification. Chen et al. [39] used a joint channel-
space attention mechanism and GAN (JAGAN) model and HSI to classify complex mining
landscapes. However, CNNs are most widely used algorithms to capture deep features in
HSI classification tasks. Hu et al. [40] used a one-dimensional CNN for HSI classification,
and only used spectral information, while Zhong et al. [41] proposed a CNN model with a
separate two-channel to obtain spectral and spatial features. Makantasis et al. [42] used
a two-dimensional CNN (2D-CNN) that treat spectral bands as feature maps and encode
the spectral and spatial information of pixels. Chen et al. [43] proposed a 3D-CNN model
with an L2 regularization spectral and spatial feature extraction method in the classification
of HSI. Roy et al. [33] used 2D-CNN to learn high-level features and 3D-CNN to learn
low-level features, which improved classification performance with fewer parameters.

However, traditional CNNs are limited by gradient vanish as the network depth
increases, the weights between the layers closer to the input layer cannot be effectively cor-
rected due to how the derivative tends to 0, which may ultimately reduce the classification
performance. The gradient often becomes extremely small during the conduction to the
input layer, which then causes the connection weights in the lower layers to virtually cease
to be updated, and the training never converges to an optimal solution [44]; to overcome



Remote Sens. 2022, 14, 3216 3 of 23

this, residual networks (ResNet) have been proposed [45]. The internal residual block adds
the block’s input directly to the block’s output and activates the ReLU function. A ResNet
is constructed by considering several of these residual blocks.

Furthermore, CNNs usually use scalars to represent information, and the ability to
exploit the relationships between features detected at different locations in an image is
rather limited. When the spatial location of feature information changes, it is difficult for
CNNs to identify features. To extract more information, it is necessary to continuously
deepen the network layer. The capsule network (CapsNet) [46] uses capsule vectors
and dynamic routing to represent features, which can effectively reveal and learn the
discriminative features, and expands new ideas for image classification. Unlike traditional
CNN models, these vectors in CapsNet can store the orientation of features. As a result,
CapsNet can accurately identify even when the position or angle of the same object changes.
Importantly, land covers in heterogeneous mining areas have spatial autocorrelation [47],
and the spatial pattern of remote sensing features may be captured by CapsNet.

Recently, CapsNet has been used in hyperspectral remote sensing image applications.
Wang et al. [48] designed the CapsNet-TripleGAN framework to generate samples and
classify HSI efficiently, while Zhu et al. [49] used a new CapsNet named Conv-CapsNet,
reducing the number of model parameters and alleviating the overfitting issue in classifica-
tion. Paoletti et al. [50] designed a spectral and spatial CapsNet, which can achieve high-
precision classification results of his, while Li et al. [51] developed a robust CapsNet-based
two-channel framework to fuse hyperspectral data with light detection and ranging-derived
elevation data for classification. To learn higher level features, Yin et al. [52] proposed a
new architecture to initialize the parameters of the CapsNet for better HSI classification.

To extract useful spatial and spectral features from HSI, a combined model of ResNet
and CapsNet (ResCapsNet) was proposed and tested with Gaofen-5 (GF-5) imagery in this
study. There were three main contributions as follows:

(1) A novel framework of ResCapsNet for LCC in heterogeneous mining areas was
proposed. First, a clustering-based semi-automated band selection method was conducted
to determine the input bands. The ResNet was then used for extraction of deep HSI features,
and the high-level features were put into a CapsNet for classification.

(2) The model was tested on two datasets (a spatially weakly dependent dataset and a
spatially basically independent dataset) of two different areas captured by the GF-5 satellite.
The purpose of designing two datasets is to test the spatial autocorrelation [47] of land
cover areas in the experimental area.

(3) Four transfer learning methods were investigated for cross-training and prediction
of those two areas, i.e., direct transfer of trained models for prediction of other areas
(hereafter referred to as direct transfer), fine-tuning of trained models (hereafter referred to
as fine-tuning), freeze of part structure and fine-tuning (hereafter referred to as free and
fine-tuning), and unsupervised feature learning based on maximum mean discrepancy
(MMD) [53] (hereafter referred to as unsupervised learning).

2. Study Areas and Remote Sensing Data Source

We selected an area in the Jiangxia District of Wuhan City, China (hereafter referred as
to Wuhan study area) [10,54] (Figure 1), which belongs to the northern subtropical mon-
soon and humid climate zone characterized by hot summers and cold winters, abundant
sunshine, four distinct seasons, and sufficient rainfall. This area also contains some surface
mining and agricultural activities.
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Figure 1. Gaofen-5 fused true color image (based on the bands of 59, 38, and 20) of the Wuhan study
area [39].

Another study area located in the Ili Kazakh Autonomous Prefecture of Xinjiang
Province, China (hereafter referred as to Xinjiang study area) (Figure 2) characterized by
mountains and vast inter-mountain plains, basins, and river valleys, and has a typical
temperate continental arid climate was also selected. The average natural precipitation is
155 mm. There are also some surface mining activities.
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Figure 2. Gaofen-5 fused true color image (based on the bands of 59, 38, and 20) in the Xinjiang study area.

The GF-5 images on 9 May 2018 and 25 September 2019 for the two areas were obtained.
Radiometrically calibrated and orthorectification correction were conducted [39]. The GF-5
satellite, successfully launched in May 2018, can conduct comprehensive observations of
the land and atmosphere at the same time, and can obtain the spectrum range from visible
and near-infrared (VNIR) to shortwave infrared (SWIR) (i.e., from 400 to 2500 nm) with a
width of 60 km and a spatial resolution of 30 m. There are 330 spectral channels. The GF-5
has two different spectral resolutions: 5 nm for VNIR and 10 nm for SWIR.
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According to the requirements of mine environmental monitoring in China and the
previous study [10], the LCC types were divided into seven categories namely road, crop-
land, water, residential land, forest land, bare land, and surface-mined land. Details are
shown in Table 1.

Table 1. Land cover classification scheme in the study.

No. Class Name Description

1 Surface-mined land Mining operation area including mine buildings,
waste rock piles, and mining fields.

2 Cropland
Crops with vegetation coverage mixed with

bushes, including paddy fields and small amount
fallow land

3 Forest land Areas with a lot of forests., including woodland,
nurseries, orchard, and shrubs.

4 Water Areas containing water, including lakes, ponds
and mining sumps.

5 Road
Roads are presented in strips with unique

topological properties, including cement and
asphalt roads.

6 Residential land
Commercial, industrial, and civil construction

land, including urban land and rural
residential areas.

7 Bare surface land Exposed land with little vegetation, including bare
soil lands, beaches.

3. Methods
3.1. ResCapsNet Model

The framework of the ResCapsNet model is presented in Figure 3. The network
structure consists of three parts: Band selection, ResNet for feature extraction and CapsNet
for classification.
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Figure 3. Structure of ResCapsNet model and flowchart of the experiment. N, input pixel neighbor;
C, number of input bands.

We used a cluster-based band selection method to reduce the number of input bands.
We adopted the ResNet-34 structure and modified it to fit hyperspectral remote sensing
image data. ResNet-34 consists of four parts, having three, four, six, and three residual
blocks, respectively. There are 64, 128, 256, and 512 filters for each recognition block in each
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section, respectively. To adapt to the input of the subsequent CapsNet and improve the
accuracy of the model, we deleted the last filters. In our experiment, because the input size
is too small, we set the stride of the convolution layer in ResBlock2 and ResBlock3 to 1.

The size of the convolution kernel in PrimaryCaps was 3 × 3. As the datasets used
contained seven classes, the number of output capsules in FinalCaps was set to 7.

3.1.1. Band Selection

Directly processing the rich spectral information contained in hyperspectral images
requires enormous computational effort. Band selection is an effective and straightforward
method used to reduce redundancy without affecting the original content. Band selection
is to select a representative and unique set of bands from the original hyperspectral image.
In this study, we used the optimal clustering framework [55] to obtain the basic band
subsets. The basic idea of this clustering algorithm is to evaluate the contribution of each
band combination individually and then sum these contributions as a measure of the
result of the overall band combination. We then input the extracted band subsets into four
machine learning methods (SVM, random forest, decision tree, and k-nearest-neighbor
(KNN)) for image classification experiments. Subsequently, the determined band subset
was combined with the four true-color and false-color bands of the image. Finally, we used
a trial-and-error based ResCapsNet model to determine the optimal band subset.

3.1.2. The Basic Structure of Residual Network

To obtain more abundant and detailed features, the method of deepening the network
structure is generally adopted. However, traditional CNNs suffer from performance
degradation when the network layer is too deep. Using a ResNet model avoids the negative
feedback effect while deepening the number of network layers. The implementation of this
mechanism mainly relies on the unique residual learning module (Residual learning) of the
ResNet model. Figure 4 shows a schematic diagram of the residual learning module.
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Figure 4. Learning module of the residual block [44].

From Figure 4, in the process of backpropagation of the deeper network model, the
existence of the residual learning module can ensure the direct propagation of the gradient
and prevent the vanish and explosion of the gradient. The mathematical expression of the
residual learning module is expressed in Equations (1) and (2):

yl = xl + F(xl , wl) (1)

xl+1 = f (yl) (2)

where xl and xl+1 are the input feature data and output feature data of the lth residual
learning unit, F() is the transformation function of the residual learning unit, while f () is
the nonlinear activation function ReLU.
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Therefore, the mathematical relationship between the feature xl from the bottom layer
of the network model and the deep feature xL can be established as:

xL = xl +
L−1

∑
i=l

F(xi, wi) (3)

3.1.3. Basic Structure of CapsNet

CapsNet is a new network structure made up of capsules rather than neurons. CapsNet
uses vectorized neurons instead of traditional scalar neurons, which are more robust to the
affine transformation of classification targets and require fewer training samples. A capsule
consists of several scalar neurons, whose orientation indicates its properties, while the
length represents the existence probability of the specific object. CapsNet use this feature
to learn part–whole relationships between different objects and can deal with the problem
of traditional CNNs using fully connected layers, which are unable to effectively represent
the hierarchical structure of each detail of the objects. Figure 5 illustrates the way that
CapsNet routes the information from one layer to another layer by a dynamic routing
mechanism [56]. The essence of dynamic routing is that the low-level capsule sends its
output to the high-level capsule through voting, in which the consistency is measured by
the dot product of the vector [56].
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Figure 5. Different capsule from low to high level.

In addition to the basic input and output layers, CapsNet also consists of convolutional
layers, a PrimaryCaps layer, and a FinalCaps layer. The convolutional layers are used
to capture the low-level features of the ground object. The PrimaryCaps layer is used to
express the spatial relationship between the features. The extracted features are passed to
the FinalCaps layer. The dynamic routing algorithm is used for prediction. The objective
function of CapsNet is defined as:

Lk = Tkmax
(
0, m+ − ‖vk‖

)2
+ λ(1− Tk)max

(
0, ‖vk‖ −m−

)2 (4)

Here Tk = 1 if the true class is k and zero otherwise, vk represents the module length
of the capsule vector, m+ and m− are hyper-parameters that indicate enough confidence
of the existence or inexistence of a certain category, and λ is a coefficient to prevent the
network from falling into the local optimal weight coefficient.

The dynamic routing algorithm adjusts the coupling coefficient c according to the
similarity between the capsules of the lower level and the capsules of higher level and
updates the weights W between the networks accordingly. If the similarity between low-
level capsule i and the high-level capsule j is greater, the coupling coefficient cij is also
greater. The specific calculation formula is:

cij =
exp

(
bij

)
∑k exp

(
bij

) (5)
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where bij is the log probability of whether capsule i should be coupled with capsule j and
is set to 0 initially. The update mode is:

bij ← bij + ûj|ivj (6)

Among these, ûj|i is obtained from capsule ui through affinity transformation, and its
calculation method is shown in Equation (7). vj represents the output vector of capsule j,
and to make sure that the length of vj is between 0 and 1, the activation function is Squash
instead of ReLu. The activation function Squash is:

ûj|i = Wijui (7)

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(8)

where sj represents the output vector of capsule j, and can be calculated as follows:

sj = ∑
i

cijûj|i (9)

3.2. Training, Validation, and Test Sets

As shown in Figure 6a, we select training, validation, and test points from the data
polygons at the same time. The points are independent and located in the same data
polygons with small areas. Therefore, we refer to them as spatially weakly dependent
datasets. As shown in Figure 6b, we additionally select test samples outside the former
data polygons, which are spatially distant from the training data polygons. Therefore, we
refer to these as spatially independent datasets.
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Figure 6. Schematic diagram of developing training, validation, and test samples and the spatially
independent test samples (taking two classes as example) [57].

3.2.1. Spatially Weakly Dependent Datasets

We use two spatially weakly dependent datasets to initially evaluate the accuracy of
the model. For each of the seven land cover types in the study area, 200 sample points
(pixels) were selected as the training sets, 100 sample points (pixels) as the validation sets,
and 200 sample points (pixels) as the test sets. These samples are obtained by stratified
random sampling from within these solid digital polygons, independent of each other.

Figures 7 and 8 show the distribution of the data polygons over the study area, which
were used to randomly select the sample points. The training sets were used for model
training. Validation sets were mainly used to select and optimize parameters. The test sets
were used for accuracy assessment. The percentages and associated data polygons for each
set in the two study areas are listed in Tables 2 and 3.
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Table 2. Sampling description of spatially weakly dependent datasets in the Wuhan study area.

Types Number of DPs Area of DPs Ratio 1 Ratio 2

Surface-mined land 10 0.63 10.23 1.13
Cropland 20 3.53 9.52 0.24

Forest land 20 3.25 10.82 0.21
Water 20 1.36 9.86 0.1
Road 10 0.36 10.29 1.13

Residential land 25 1.71 10.15 0.19
Bare surface land 7 0.26 13.20 1.13

Number and area (km2) of data polygons (DPs). Ratio 1: ratio (%) of the area occupied by training, validation,
and test sets to the total area. Ratio 2: ratio (%) of the area occupied by the training pixels to the total area.

Table 3. Sampling description of spatially weakly dependent datasets in the Xinjiang study area.

Types Number of DPs Area of DPs Ratio 1 Ratio 2

Surface-mined land 10 2.82 9.86 1.57
Cropland 20 9.78 9.97 0.46

Forest land 10 17.81 10.47 0.26
Water 8 0.27 12.23 20.20
Road 10 1.04 10.57 4.59

Residential land 16 3.35 10.00 1.34
Bare surface land 20 43.52 9.97 0.10

Number and area (km2) of data polygons (DPs). Ratio 1: ratio (%) of the area occupied by training, validation,
and test sets to the total area. Ratio 2: ratio (%) of the area occupied by the training pixels to the total area.

3.2.2. Spatially Independent Datasets

The accuracy and robustness of the model were further evaluated using two spa-
tially basically independent datasets, where the data polygons were spatially independent
from those data polygons selected by spatially weakly dependent datasets. We selected
200 sample points (pixels) as the training sets, 100 sample points (pixels) as the validation
sets and 200 sample points (pixels) as test sets. The training and validation samples come
from solid data polygons in the weakly dependent dataset, but the test samples come from
dashed data polygons that are spatially independent. The percentages and associated data
polygons for each set in the two study areas are listed in Tables 4 and 5. Figures 7 and 8
show the distribution of the data polygons over the study area.

Table 4. Sampling description of spatially independent datasets in the Wuhan study area.

Types Number of DPs Area of DPs Ratio 1 Ratio 2

Surface-mined land 4 0.24 3.84 0.45
Cropland 10 0.73 1.95 0.24

Forest land 10 0.54 1.79 0.21
Water 20 0.38 2.74 0.10
Road 10 0.48 13.56 1.13

Residential land 25 0.48 2.71 0.19
Bare surface land 7 0.18 9.17 0.56

Number and area (km2) of data polygons (DPs). Ratio 1: ratio (%) of the area occupied by training, validation,
and test sets to the total area. Ratio 2: ratio (%) of the area occupied by the training pixels to the total area.

3.3. Parameter Optimization and Model Construction

In this study, input band, input size, batch size, and the number of dynamic routings
were selected for model optimization, where the number of dynamic routes refers to the
number of iterations of the dynamic routing algorithm. Five random experiments were
conducted for each parameter optimization. Those parameter values with highest averaged
validation accuracies were the results of parameter optimization. To simplify the parameter
selection procedure, a trial-and-error method and various empirical values were used to
set other parameters.
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Table 5. Sampling description of spatially independent datasets in the Xinjiang study area.

Types Number of DPs Area of DPs Ratio 1 Ratio 2

Surface-mined land 10 2.76 9.65 0.31
Cropland 10 6.30 6.42 0.09

Forest land 10 10.69 6.28 0.05
Water 6 0.11 5.01 4.04
Road 10 1.03 10.54 0.92

Residential land 10 2.71 8.08 0.2
Bare surface land 10 37.54 8.60 0.02

Number and area (km2) of data polygons (DPs). Ratio 1: ratio (%) of the area occupied by training, validation,
and test sets to the total area. Ratio 2: ratio (%) of the area occupied by the training pixels to the total area.

After parameter optimization, ResCapsNet and a combination of Res2Net [58] and
CapsNet (hereafter referred to as Res2CapsNet) were constructed.

Four transfer learning methods were investigated for cross-training and prediction of
those two areas, i.e., direct transfer, fine-tuning, freeze and fine-tuning, and unsupervised
learning. Finally, the test accuracies and predicted maps were assessed.

3.4. Accuracy Evaluation Criteria

The training and validation sets were used for model training and parameter selection,
while the test sets were used to conduct the quantitative evaluation. The averaged overall
accuracy (OA), F1-score, and kappa coefficient (Kappa) were computed to evaluate the
overall performances of the experimental results. In addition, we used the F1-measure of
each class to further evaluate the proposed models. F1-score is the average value of all the
F1-measures. F1-measure is a special case of F-score. F-measure is an index used to measure
the accuracy of binary classification model in statistics. It considers both the precision and
recall of the classification model. F-measure can be calculated by the following equation:

F−measure =
a2 + 1

a2 ∗ precision ∗ recall
precision + recall

(10)

where a is the weight. When the weight a is equal to 1, the F1 score is obtained as follows:

F1−measure =
2 ∗ precision ∗ recall

precision + recall
(11)

These four criteria are valuable measures that show the performance of the classifications.

4. Results
4.1. Parameter Selection Results
4.1.1. Band Selection

Figure 9 shows that when more than eight bands (band set 1) are selected, the clas-
sification effect of the model begins to converge. However, these eight bands did not
fully cover the blue, green, and red near-infrared bands of the hyperspectral images. The
experiments in the discussion section in the literature [14] tested three models with dif-
ferent band combinations. This experiment demonstrated that using both true color and
false color images as inputs was effective. To make better use of spectral information, we
added the four true-color and false-color bands (20, 38, 59, 90) containing information on
band set 1 and forming band set 2. Finally, we conducted multiple sets of experiments on
the respapsnet model using a trial-and-error method. With high accuracy, we eliminated
similar bands that possessed little information and obtained the final six bands as set 3.
The parameters of input size, batch size, and number of dynamic routes were set to 12,
50, and 3 respectively, obtained by a simple trail-and-error method. From Table 6, when
the input bands are based on band sets 1 and 2, the validation accuracies of the model
are 97.42 ± 0.86% and 97.57 ± 0.41%, respectively. Meanwhile, when the input bands are
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based on band set 3, the validation accuracy of the model is 98.53 ± 0.52%. Combined with
the experimental efficiency and classification results, we selected band set 3 with six bands
for subsequent experiments.
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Figure 9. Validation accuracy of the number of bands under the four machine learning methods.
SVM, support vector machine; RF, random forest; DT, decision tree; KNN, k-nearest neighbor.

Table 6. Validation accuracy of different band sets under the ResCapsNet model.

Band Set Bands Validation Accuracy

1 22, 46, 59, 66, 90, 107, 118, 270 97.42 ± 0.86%
2 20, 22, 38, 46, 59, 66, 90, 107, 118, 270 97.57 ± 0.41%
3 20, 59, 38, 90, 118, 270 98.53 ± 0.52%

4.1.2. Input Size Selection

For this experiment, the input size started at 8 and increased to 18 in an interval of
2 (Figure 10). Each value of patch was applied to five random tests. Validation accuracies
were at the maximum values (99.17 ± 0.46% and 94.14 ± 0.71%) for the input size of 12.
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4.1.3. Batch Size Selection

For this experiment, we changed the size of the batch to select the most suitable
parameters. Each experimental result is the average of five replicate experiments. As
shown in Figure 11, when the batch size of 100 was applied, the networks achieved
the highest validation accuracy (99.14 ± 0.52%) in the Wuhan study area, with a 1.10%
improvement relative to the worst accuracy. When the batch size of 75 was applied, the
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networks achieved the highest validation accuracy (95.40 ± 0.58%) in the Xinjiang study
area, with a 2.80% improvement relative to the worst accuracy.
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4.1.4. Dynamic Routing Number Selection

The routing number is an important parameter in the dynamic routing algorithm,
the essence of which is that the lower-level capsules send their output to the higher-level
consistent capsules by voting [56]. Selecting a suitable routing number can make the
proposed models obtain the best coupling coefficient. Thus, a series of routing numbers
ranging from 3 to 21, in intervals of 3, were applied in this experiment. As shown in
Figure 12, when the iteration number was set to 15, the model achieved optimal results on
validation accuracies. Smaller values can lead to insufficient training, while larger values
will lead to a lack of optimal fit and increase the training time. Considering this, we selected
15 as the number of routes in the subsequent experiments.
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4.2. Accuracy Evaluation Result
4.2.1. Overall Performance

After the parameter adjustment step, the optimal model was obtained. Tables 7–10
present the overall performances of the four datasets using different models, considering
the OA, F1-score, Kappa as indicators.
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Table 7. Overall performance of different models on spatially weakly dependent datasets in the
Wuhan study area.

Model OA (%) F1-Score (%) Kappa (%)

SVM 82.73 ± 0.37 82.54 ± 0.43 79.56 ± 0.45
RF 82.58 ± 0.21 82.44 ± 0.27 79.51 ± 0.38

CapsNet 85.52 ± 0.67 85.31 ± 0.64 82.78 ± 0.67
ResNet 97.62 ± 0.31 97.59 ± 0.37 97.18 ± 0.32
CNN 94.14 ± 0.28 93.78 ± 0.59 93.69 ± 0.38

Res2CapsNet 96.01 ± 0.42 96.05 ± 0.35 95.35 ± 0.42
ResCapsNet 98.45 ± 0.23 98.43 ± 0.21 98.15 ± 0.30

SVM, support vector machine; RF, random forest; Resnet, deep residual network; CapsNet, capsule network;
CNN, convolutional neural network (Visual Geometry Group Network16); Res2CapsNet, combination of Res2Net
and CapsNet; ResCapsNet, combination of ResNet and CapsNet.

Table 8. Overall performance of different models on spatially independent datasets in the Wuhan
study area.

Model OA (%) F1-Score (%) Kappa (%)

SVM 79.94 ± 0.23 78.67 ± 0.26 79.56 ± 0.32
RF 73.84 ± 0.64 71.71 ± 0.47 70.26 ± 0.56

CapsNet 72.19 ± 0.46 70.11 ± 0.44 66.88 ± 0.46
ResNet 81.58 ± 0.33 80.30 ± 0.28 79.04 ± 0.31
CNN 80.33 ± 0.62 78.00 ± 0.58 75.32 ± 0.65

Res2CapsNet 80.44 ± 0.84 78.68 ± 0.92 77.05 ± 0.81
ResCapsNet 82.80 ± 0.25 81.34 ± 0.27 79.69 ± 0.24

SVM, support vector machine; RF, random forest; Resnet, deep residual network; CapsNet, capsule network;
CNN, convolutional neural network (Visual Geometry Group Network16); Res2CapsNet, combination of Res2Net
and CapsNet; ResCapsNet, combination of ResNet and CapsNet.

Table 9. Overall performance of different models on spatially weakly dependent datasets in the
Xinjiang study area.

Model OA (%) F1-Score (%) Kappa (%)

SVM 73.88 ± 0.26 73.03 ± 0.26 69.52 ± 0.30
RF 71.80 ± 0.57 71.72 ± 0.49 67.41 ± 0.54

CapsNet 86.34 ± 0.55 86.63 ± 0.58 84.61 ± 0.55
ResNet 92.03 ± 0.49 92.96 ± 0.53 91.32 ± 0.48
CNN 87.63 ± 0.57 86.47 ± 0.54 85.42 ± 0.71

Res2CapsNet 89.05 ± 0.13 88.86 ± 0.13 87.14 ± 0.14
ResCapsNet 92.82 ± 0.28 92.74 ± 0.24 91.60 ± 0.29

SVM, support vector machine; RF, random forest; Resnet, deep residual network; CapsNet, capsule network;
CNN, convolutional neural network (Visual Geometry Group Network16); Res2CapsNet, combination of Res2Net
and CapsNet; ResCapsNet, combination of ResNet and CapsNet.

Table 10. Overall performance of different models on spatially independent datasets in the Xinjiang
study area.

Model OA (%) F1-Score (%) Kappa (%)

SVM 63.43 ± 0.39 61.73 ± 0.43 57.47 ± 0.36
RF 59.43 ± 0.82 56.99 ± 0.78 50.58 ± 0.83

CapsNet 64.91 ± 0.67 62.09 ± 0.71 56.83 ± 0.66
ResNet 68.93 ± 0.54 63.24 ± 0.58 59.93 ± 0.56
CNN 65.58 ± 0.84 65.01 ± 0.63 59.85 ± 0.86

Res2CapsNet 66.69 ± 0.12 62.28 ± 0.11 58.23 ± 0.17
ResCapsNet 70.88 ± 0.39 65.22 ± 0.35 62.32 ± 0.39

SVM, support vector machine; RF, random forest; Resnet, deep residual network; CapsNet, capsule network;
CNN, convolutional neural network (Visual Geometry Group Network16); Res2CapsNet, combination of Res2Net
and CapsNet; ResCapsNet, combination of ResNet and CapsNet.
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In comparison, the SVM and RF algorithms showed the worst performance, while the
rest of the DL-based algorithms performed significantly better. ResCapNet achieved the
best OA, with 98.45 ± 0.23% and 82.80 ± 0.25% for the datasets in Wuhan. The best OA
of the spatially weakly dependent datasets in Wuhan was 19.00%, 19.22%, 15.12%, 0.85%,
4.58%, 2.54% higher than those for SVM, RF, CapsNet, ResNet, CNN, and Res2NetCapsNet,
respectively. The best OA of the spatially independent datasets in Wuhan increased 3.58%,
12.13%, 14.70%, 1.50%, 3.07%, and 2.93% compared with SVM, RF, CapsNet, ResNet, CNN,
and Res2NetCapsNet, respectively.

The DL based methods mostly outperform the machine learning methods on both
datasets. The results also illustrate the superiority of DL-based methods, hence the wide
usage of DL algorithms in HSI classification. Compared with other methods, our model
performs better on these metrics. For the spatially weakly dependent and independent
datasets, the ResCapsNet achieves a test accuracy of 92.82% ± 0.28% and 70.88% ± 0.39%.

The best OA of the spatially weakly dependent datasets in Xinjiang is 25.64%, 29.28%,
7.51%, 0.86%, 5.92% and 4.01% higher than those of SVM, RF, CapsNet, ResNet, CNN,
and Res2NetCapsNet, respectively. The best OA of the spatially independent datasets in
Xinjiang increased by 11.75%, 19.27%, 9.20%, 2.83%, 8.08%, and 6.28% compared with SVM,
RF, CapsNet, ResNet, CNN, and Res2NetCapsNet, respectively.

4.2.2. Class-Specific Performance

Tables S1–S4 quantitatively represent the individual class accuracies obtained by
different methods for the various datasets in the two study areas.

In the weakly dependent datasets in Wuhan, ResCapsNet provided the highest F1-
measure values for surface-mined land (99.27%), cropland (98.44%), forest land (95.71%),
water (99.32%), residential land (97.69%), and bare surface land (100%). ResNet provided
the highest values for roads (99.53%). In the spatially independent datasets in Wuhan,
ResCapsNet provided the highest F1-measure values for forest land (100%), residential
land (85.24%) and bare surface land (76.44%). ResNet provided the highest values for
surface-mined land (79.04%) and cropland (93.25%). SVM provided the highest value for
roads (81.02%). Moreover, both methods based on machine learning performed better in
the classification of roads.

In the weakly dependent datasets in Xinjiang, ResCapsNet provided the highest F1-
measure values for cropland (95.91%), forest land (97.86%), water (98.98%), residential
land (96.84%), and bare surface land (79.76%); ResNet provided the highest values for
surface-mined land (93.69%) and roads (92.75%). In the spatially independent datasets in
Xinjiang, ResCapsNet provided the highest F1-measure values for cropland (85.29%), forest
land (96.27%), roads (28.85%), and residential land (90.13%); ResNet provided the highest
value for bare surface land (66.27%), and SVM provided the highest value for surface-mined
land (82.24%). RF and CapsNet outperformed the other models in the classification of
water. In the spatially independent dataset, the overall classification accuracy of roads was
low, which may be due to the large difference between roads in mountainous areas and
urban and rural roads.

4.2.3. Assessment of Predicted Maps

To qualitatively evaluate the results, classification maps based on each well-trained
model are illustrated in Figures 13 and 14. Compared with those derived from the other
models, ResCapsNet achieved better results. The ResCapsNet classification map has less
noise and a lower rate of misclassification. From the visualization results, using CapsNet
alone had a better effect on land classification with low spatial complexity, since it is
more sensitive to spatial features. When ResNet was used alone, the land classification
results with high spatial complexity were better. Their combination reduced the impact
of spatial complexity on the classification results. As such, we achieved relatively robust
representations compared with the two models.
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Figure 13. Classification maps obtained using different methods in the Wuhan study area. (a) Support vector
machine (SVM), (b) random forest (RF), (c) capsule network (CapsNet), (d) residual network (ResNet),
(e) convolutional neural network (CNN; Visual Geometry Group Network16), (f) Res2CapsNet
(combination of Res2Net and CapsNet), and (g) ResCapsNet (combination of ResNet and CapsNet).
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Figure 14. Classification maps obtained by different methods in the Xinjiang study area. (a) Support vector
machine (SVM), (b) random forest (RF), (c) capsule network (CapsNet), (d) residual network (ResNet),
(e) convolutional neural network (CNN; Visual Geometry Group Network16), (f) Res2CapsNet (com-
bination of Res2Net and CapsNet), and (g) ResCapsNet (combination of ResNet and CapsNet).
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From Figure 13, one can see that our model has better land cover classification accuracy
in the Wuhan study area. For example, in the yellow box in the upper left corner of
Figure 13g, our model better distinguished forest land from roads compared with the
CNN. Within the black box, our model was obviously better than the other models in
classifying the mining land, and could also identify the water body in the mining land and
surrounding residential land well. Within the blue oval area, our model had less salt and
pepper noise in the classification of cultivated land, while the other models had obvious
errors (e.g., misclassification as roads).

From the overall classification of the Xinjiang research area (Figure 14), the method
based on DL was better than that based on machine learning. DL could identify the image
information in a patch and make better use of the spatial information. ResCapsNet was
better than the other models in several areas. For example, in the black area in Figure 14g,
our model could better identify woodland and bare land, and the error rate was lower
than that of the other models. Within the blue box, the other models had omission errors
in the classification of bare land and roads. Although some roads were misclassified as
residential or bare surface land, the overall shape and length of the roads could be easily
discerned. The main factors lie in the following aspects: (1) The samples randomly selected
for training, validation, and testing did not have complete independence, which may have
caused the samples to be less representative, and (2) Owing to the resolution of the GF-5
satellite, the width values of some roads were less than 1 pixel and could be easily divided
into neighboring types.

4.3. Model Transfer between the Two Study Areas

We conducted four sets of experiments to compare the results of different methods for
model transfer in two study areas, i.e., Wuhan and Xinjiang.

For direct transfer, after the model was trained on the dataset in the source study area,
we directly predicted the test sets and the target study area. For fine-tuning, we used a
small amount of data from the target study area (50 samples for each class) to train the
model from the source study area. Then we used the trained model for prediction of the
target area. For freeze and fine-tuning, we froze the ResNet part of the model that trained
on the source study area, and then used the target study area data (50 samples for each
class) to fine-tune the CapsNet. For unsupervised learning, we used the MMD to train the
model, and then predicted the target area.

Tables 11 and 12 present the results, while Figure 15 shows the predicted image of
model transfer from the Xinjiang study area to the Wuhan study area though different
methods. Results show that the fine-turning method achieves the highest precision in the
testing of samples and prediction map.

Table 11. Results of transforming from the Xinjiang study area to the Wuhan study area using
different methods on spatially weakly dependent datasets.

Method OA (%) F1-Score (%) Kappa (%)

Direct transfer 32.14 30.97 28.90
Fine-turning 96.29 96.30 95.67

Freeze and fine-tuning 83.93 83.80 81.10
Unsupervised learning 73.35 71.32 67.71

Table 12. Results of transforming from the Xinjiang study area to the Wuhan study area using
different methods on spatially independent datasets.

Method OA (%) F1-Score (%) Kappa (%)

Direct transfer 26.99 25.21 14.77
Fine-tuning 67.34 61.79 56.85

Freeze and fine-tuning 53.10 50.17 44.39
Unsupervised learning 61.68 58.31 55.72
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Figure 15. Prediction results of model transfer from the Xinjiang study area to the Wuhan study area.

Tables 13 and 14 show the results of transforming from the Wuhan study area to
the Xinjiang study area. Figure 16 shows the predicted image of model transfer from the
Wuhan study area to the Xinjiang study area though different methods. Results show that
the fine-tuning method performs the best in the transfer experiments, while the methods
based on freeze also have good accuracy in the testing of samples, but do not perform as
well as the fine-turning-based method in the prediction map.

Table 13. Results of transforming from the Wuhan study area to the Xinjiang study area using
different methods on spatially weakly dependent datasets.

Method OA (%) F1-Score (%) Kappa (%)

Direct transfer 33.16 26.36 24.63
Fine-tuning 93.18 93.14 92.04

Freeze and fine-tuning 78.22 77.84 74.23
Unsupervised learning 59.48 53.30 48.66

Table 14. Results of transforming from the Wuhan study area to the Xinjiang study area using
different methods on spatially independent datasets.

Method OA (%) F1-Score (%) Kappa (%)

Direct transfer 27.49 24.01 19.81
Fine-tuning 71.19 72.07 66.39

Freeze and fine-tuning 57.96 56.26 55.49
Unsupervised learning 43.55 38.32 35.47
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Figure 16. Full-map prediction results of model transform from the Wuhan study area to the Xinjiang
study area.

5. Discussion
5.1. Performances of ResCapsNet with Limited Samples

To assess the effectiveness of ResCapsNet with limited samples, we took 20, 30, and
50 points from the dataset of 200 points in each category as training sets. The same test
sets were used for accuracy assessment. Table S5 lists the results of various models under
different limited samples in the Wuhan study area, while Table S6 lists the results of various
models under different limited samples in the Xinjiang study area.

From the experimental results, with increasing training data, the accuracy of ResCap-
sNet improved fastest, indicating that ResCapsNet has a relatively high demand for training
data. For a small amount of samples, machine learning-based methods also produced
excellent results, with some being better than DL-based models. The effect of the CNN
model was close to optimal in the case of 20 samples, but with the increase in training
samples, the improvement of experimental accuracy was less than that of other models.

For limited samples (e.g., 50 training sample points), in the Wuhan experimental area,
ResNet’s OA was 85.54% and the Kappa was 82.29%; for CapsNet, the OA was 86.18% and
the Kappa was 85.04%, which was second only to ResCapsNet’s OA.

In the Xinjiang experimental area, also taking 50 samples as an example, compared
with the CNN, ResCapsNet was 2.2%, 6.4%, and 5.4% higher in terms of OA, F1-score, and
Kappa, respectively.

In summary, by combining ResNet and CapsNet, we effectively extracted key features
under limited samples and improved the classification accuracy.

5.2. Effectiveness of Different Data Input Sizes

As shown in Figure 10, different sizes of input data led to different classification
accuracies. We conducted multiple sets of experiments on this parameter with models
using deep networks and showed that different models require different input data sizes.
In the Wuhan research area, the best field size for CapsNet was 12, and that for ResNet,
CNN, and ResCapsNet were 10, 18, and 12, respectively. At the same time, there were also
differences in the optimal input size of different study areas. For example, the best input
size of ResNet in the Wuhan research area was 10, and 18 in the Xinjiang.

The Xinjiang study area contains several bigger patches of forest land and unused bare
land, more suitable for a larger input size. Therefore, according to the study area, we should
adjust the input size of the model. Input size that is too small cannot fully utilize spatial in-
formation, while an excessively large input size contains too much interference information.
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5.3. Comparisons of Different Methods

We compared results with those of the JAGAN model [39] applied to a GF-5 image
of the Wuhan study area. The OA, F1-score, and Kappa values of JAGAN were 86.09%,
85.86%, 79.41%, respectively. Those accuracies were much lower than our model.

The training points used by JAGAN were with the same numbers as for our study.
However, our selected data polygons only accounted for 10% of the total area, which was
smaller than that of Chen et al. [39] who used more test samples.

Besides, we produced a spatially independent dataset in our experiments for Wuhan
study area. The predicted maps of those two models are shown in Figure 17. The prediction
results by the JAGAN framework is more refined, but there are some areas of salt and
pepper noise. The prediction map by ResCapsNet is smoother. Moreover, the bare surface
land was not classified by Chen et al. [39].

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 24 
 

 

Besides, we produced a spatially independent dataset in our experiments for Wuhan 

study area. The predicted maps of those two models are shown in Figure 17. The predic-

tion results by the JAGAN framework is more refined, but there are some areas of salt and 

pepper noise. The prediction map by ResCapsNet is smoother. Moreover, the bare surface 

land was not classified by Chen et al. [39]. 

 

Figure 17. Comparison of prediction results using two methods. (a) The predicted maps based on 

the model of JAGAN [39] and (b) the predicted maps based on the model of ResCapsNet. 

6. Conclusions 

For better LCC results in heterogeneous mining areas, we proposed a ResCapsNet 

model based on GF-5 imagery. The model took advantages of the clustering-based semi-

automated band selection method, ResNet, and CapsNet. 

Spatially weakly dependent and independent datasets in the Wuhan and Xinjiang 

study areas were used to test the proposed model. Our proposed method provided the 

best results for both datasets. Four transfer learning methods were investigated for cross-

training and prediction of those two areas and achieved good results. In summary, our 

proposed model has high robustness and generalizability. 

In the future we will focus on leveraging various hyperspectral images at different 

areas, as well as larger datasets, and will attempt more experiments on publicly classical 

hyperspectral image datasets. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1. Table S1. F1-measure (%) of the seven categories with different classifica-

tion methods on spatially weakly dependent datasets in the Wuhan study area. SVM: support vector 

machine; RF: random forest; Resnet: deep residual network; CapsNet: capsule network; CNN: con-

volutional neural network (Visual Geometry Group Network16); Res2CapsNet: combination of 

Res2Net and CapsNet; ResCapsNet: combination of ResNet and CapsNet. Table S2. F1-measure (%) 

of the seven categories with different classification methods on spatially independent datasets in 

the Wuhan study area. SVM: support vector machine; RF: random forest; Resnet: deep residual net-

work; CapsNet: capsule network; CNN: convolutional neural network (Visual Geometry Group 

Network16); Res2CapsNet: combination of Res2Net and CapsNet; ResCapsNet: combination of Res-

Net and CapsNet. Table S3. F1-measure (%) of the seven categories with different classification 

methods on spatially weakly dependent datasets in the Xinjiang study area. SVM: support vector 

machine; RF: random forest; Resnet: deep residual network; CapsNet: capsule network; CNN: 
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the model of JAGAN [39] and (b) the predicted maps based on the model of ResCapsNet.

6. Conclusions

For better LCC results in heterogeneous mining areas, we proposed a ResCapsNet
model based on GF-5 imagery. The model took advantages of the clustering-based semi-
automated band selection method, ResNet, and CapsNet.

Spatially weakly dependent and independent datasets in the Wuhan and Xinjiang
study areas were used to test the proposed model. Our proposed method provided the
best results for both datasets. Four transfer learning methods were investigated for cross-
training and prediction of those two areas and achieved good results. In summary, our
proposed model has high robustness and generalizability.

In the future we will focus on leveraging various hyperspectral images at different
areas, as well as larger datasets, and will attempt more experiments on publicly classical
hyperspectral image datasets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133216/s1. Table S1. F1-measure (%) of the seven categories
with different classification methods on spatially weakly dependent datasets in the Wuhan study area.
SVM: support vector machine; RF: random forest; Resnet: deep residual network; CapsNet: capsule
network; CNN: convolutional neural network (Visual Geometry Group Network16); Res2CapsNet:

https://www.mdpi.com/article/10.3390/rs14133216/s1
https://www.mdpi.com/article/10.3390/rs14133216/s1
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combination of Res2Net and CapsNet; ResCapsNet: combination of ResNet and CapsNet. Table S2.
F1-measure (%) of the seven categories with different classification methods on spatially independent
datasets in the Wuhan study area. SVM: support vector machine; RF: random forest; Resnet: deep
residual network; CapsNet: capsule network; CNN: convolutional neural network (Visual Geometry
Group Network16); Res2CapsNet: combination of Res2Net and CapsNet; ResCapsNet: combination
of ResNet and CapsNet. Table S3. F1-measure (%) of the seven categories with different classification
methods on spatially weakly dependent datasets in the Xinjiang study area. SVM: support vector
machine; RF: random forest; Resnet: deep residual network; CapsNet: capsule network; CNN:
convolutional neural network (Visual Geometry Group Network16); Res2CapsNet: combination of
Res2Net and CapsNet; ResCapsNet: combination of ResNet and CapsNet. Table S4. F1-measure
(%) of the seven categories with different classification methods on spatially independent datasets
in the Xinjiang study area. SVM: support vector machine; RF: random forest; Resnet: deep residual
network; CapsNet: capsule network; CNN: convolutional neural network (Visual Geometry Group
Network16); Res2CapsNet: combination of Res2Net and CapsNet; ResCapsNet: combination of
ResNet and CapsNet. Table S5. Classification results using different methods under limited samples
in the Wuhan study area. Table S6. Classification results using different methods under limited
samples in the Xinjiang study area.
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