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Abstract: Nondestructive inspection technology based on machine vision can effectively improve
the efficiency of fresh fruit quality inspection. However, fruits with smooth skin and less texture are
easily affected by specular highlights during the image acquisition, resulting in light spots appearing
on the surface of fruits, which severely affects the subsequent quality inspection. Aiming at this issue,
we propose a new specular highlight removal algorithm based on multi-band polarization imaging.
First of all, we realize real-time image acquisition by designing a new multi-band polarization imager,
which can acquire all the spectral and polarization information through single image capture. Then
we propose a joint multi-band-polarization characteristic vector constraint to realize the detection of
specular highlight, and next we put forward a Max-Min multi-band-polarization differencing scheme
combined with an ergodic least-squares separation for specular highlight removal, and finally, the
chromaticity consistency regularization is used to compensate the missing details. Experimental
results demonstrate that the proposed algorithm can effectively and stably remove the specular
highlight and provide more accurate information for subsequent fruit quality inspection. Besides,
the comparison of algorithm speed further shows that our proposed algorithm has a good tradeoff
between accuracy and complexity.

Keywords: specular highlight removal; multi-band polarization imaging; imaging processing; non-
destructive inspection technology; quality inspection of fresh fruits; machine vision

1. Introduction

Traditional fruit quality inspection methods that rely on human eye detection have
disadvantages such as easy fatigue, high labor intensity, long labor time and lack of
objectivity, which is far from meeting the ever-increasing market demand. How to realize
the fruit quality inspection efficiently and non-destructively has become an important
issue in the fruits industry. Non-destructive testing (NDT), as the name suggests, is a
technique to evaluate the quality of fruits according to their physical characteristics without
destroying the fruit samples [1]. At present, the most used NDT methods for fresh fruits
are spectroscopy measurement [2], electronic nose (e-nose) [3], infrared thermography [4],
image processing methods based on machine vision [5], dielectric properties [6] and so on.

Machine vision-based methods can evaluate the fruit quality based on characteristic
information such as size, color, texture and so on, which is contactless, unified standards,
highly efficient and of great importance to save manpower and material resources. Nowa-
days, this type of testing method is widely applied to the automatic fruit quality testing
system, and the main working principle consists of image acquisition and specular highlight
removal. When the fruit sample to be tested reach the image acquisition room, the camera
captures the fruit image to the computer for processing, and finally the quality inspection
result will be given based on the image processing result [7]. The schematic diagram of the
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automatic quality testing system based on machine vision is shown in Figure 1. To improve
the accuracy and efficiency of fruit quality inspection, the researchers have been working
to improve the performance of existing machine vision-based image processing algorithms.
However, an important issue existing in the image acquisition process is ignored. Owing
to the integrated influence of illumination and physical properties of target’s surface, the
quality of target image is easily degraded by specular highlight [8]. For fruits with smooth
skin and less texture as shown in Figure 2, they are easily affected by specular highlight
during the image acquisition, resulting in light spots appearing on the surface of fruits,
which severely affects the accuracy of subsequent quality inspection [9,10]. Specifically,
the specular highlight areas existing on the surface may be misjudged as damage or fruit
russeting and so on, which leads to an inaccurate quality inspection and evaluation results.
Aiming at this issue, we need to propose a specular highlight removal algorithm that can be
embedded into existing quality inspection systems to improve the accuracy and efficiency.

Figure 1. The schematic diagram of the automatic fruit quality inspection system where our proposed
specular highlight removal algorithm can be integrated.

Figure 2. Fruits with smooth skin and less texture.

To solve the problem of specular highlight interference in machine vision-based quality
inspection, we propose a new specular highlight removal algorithm based on multi-band
polarization imaging, which combines the advantages of single image and multiple images
methods. The proposed specular highlight removal algorithm can be integrated into
existing quality inspection equipment to achieve effective specular highlight removal and
thus ensure the accuracy of quality inspection and evaluation. Our proposed algorithm is
composed of two parts, one is image acquisition and the other is specular highlight removal
as shown in Figure 1. The image captured by the multi-band polarization imager is a mosaic
image including all the spectral and polarization information, so we use a demosaicing
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algorithm [11] to reconstruct color sub-images with different polarization angles (0°, 45°,
90°). Then the two primary polarization parameters, Degree of Linear Polarization (DoLP)
and Angle of Polarization (AoP), can be further calculated by these sub-images based on
the following equations:

S0 = I0 + I90; S1 = I0 − I90;
S2 = 2I45 − I0 − I90

(1)

DoLP =

√
S2

1 + S2
2

S0
; AoP =

1
2

arctan(
S2

S1
) (2)

In the second part, we propose a specular highlight removal method based on multi-
band polarization imaging. Firstly, we propose a joint multi-band-polarization characteris-
tic vector constraint to realize the detection of specular highlights. Then, we put forward
a Max-Min multi-band-polarization differencing scheme; meanwhile, an ergodic least-
squares separation is combined to remove the specular highlight. Finally, the chromaticity
consistency regularization is utilized to compensate for the missing details. Experimental
results show that both visual effects and quantitative evaluation of our proposed algorithm
are better.

2. Related Work

When incident light passes through the surface of a medium, there are two different
reflection effects, diffuse reflection and specular reflection [12]. Under ideal lighting con-
ditions, the surface of an object is often assumed to be a Lambertian surface with only
diffuse reflection. The surface of the object presents the same brightness from all viewpoints
and the brightness of a certain point on the surface of the object does not vary with the
observation angles. Diffuse reflection is related to the surface material and reflects the
physical and chemical properties of the target surface (such as roughness) [13], while, in
fact, not only diffuse reflection but also specular reflection occurs on the target surface,
resulting in specular highlight with high intensity existing on the target surface during the
observation process. Furthermore, unsurprisingly, the specular highlight would conceal
useful image features such as colors and textures. Different from diffuse reflection, specular
highlight is related to the light source and viewpoints and varies with the direction and
intensity of the light source, which effectively reflects the information of the light source
[14].

For specular highlight removal, numerous methods have been proposed and they can
be classified into single image methods and multiple images methods according to the
number of input images. In this section, we review the previous specular highlight removal
methods.

Single image specular highlight removal algorithms. The earliest method dates back
to 1996, when Bajcsy et al. [15] proposed a specular highlight removal algorithm based on
color segmentation, but later it was proven to be unable to handle targets with complex
textures. Tan et al. [16] proposed a fully automatic method based on chromaticity analysis
in 2005, they utilize the difference between specular and diffuse pixels in their proposed
pseudo-specular-free (PSF) image to remove the specular highlight. To reduce the high
computational cost, Yang et al. [17] accelerated the algorithm [16] by employing joint
bilateral filtering. Similarly, Mallick et al. [18] proposed a specular highlight removal algo-
rithm by evolving a partial differential Equation (PDE) that iteratively erodes the specular
component at each pixel. Shen et al. [19] proposed a simple method to separate specular
highlights in a color image based on the error analysis of chromaticity and appropriate
selection of body color for each pixel. Yoon et al. [20] first proposed a specular-free two-
band image, which was a specular-invariant color image representation. Furthermore, the
highlight removal was achieved by comparing the local ratios of each pixel and these ratios
were made equal in an iterative framework. Shen and Zheng [21] proposed a real-time
highlight removal method, which works by pseudo-chromatic space analysis, clustering
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and estimation of intensity ratios in mixed specular-diffuse regions. This method works in
a pixel-wise manner, without specular pixel identification and any local interaction. Based
on the concept of dark channel prior, Kim et al. [22] proposed an optimization framework
to achieve specular highlight removal. A new framework that combines the non-negative
matrix factorization (NNMF) with a sparsity constraint for highlight removal was proposed
by Akashi and Okatani [23]. Suo et al. [24] proposed a fast highlight removal algorithm
based on an L2 chromaticity definition and extended dichromatic reflection model (DRM).
Ren et al. [25] proposed an algorithm based on color lines. Firstly, a modified nearest
neighbor technique is used to cluster the image. Then searching along the radius in polar
coordinates to recover the diffuse coefficient. Finally, both the color of illumination and
diffuse reflection can be recovered. Fu et al. [26] proposed a specular highlight removal
method for real-world images. They observed that for real-world images, the specular
highlight often has a small size and sparse distribution; and the diffuse image can be
represented by a linear combination of a small number of basis colors with the sparse
encoding coefficients. So, they designed an optimization framework that can simultane-
ously estimate the diffuse and specular highlight images. Nguyen-Do-Trong et al. [10]
excluded the specular highlight from the acquired hyperspectral reflectance images by
implementing the cross-polarization to block the specular reflection, and they evaluated the
cross-polarization approach in a line-scanning hyperspectral reflectance imaging system
for the first time. Boyer [27] also used a cross-polarization imaging system to reduce the
specular artifacts. Wen et al. [28] developed a polarization-guided model to generate a
polarization chromaticity image and then reformulated the problem into a global energy
function based on the proposed model. Finally, they optimized the global energy function
by using the ADMM strategy to realize specular reflection separation.

Input image acquisition is simple and fast for single image methods since there is no
need for special illumination or equipment, while the traditional single image methods have
a common problem: they realize the removal of specular highlights based on particular
prior information or assumptions. When the predetermined conditions are not satisfied
or the image scenes change, it may lead to color discontinuity, edge distortion or a loss
of structural and textural information. Most of the newer methods on specular highlight
removal are based on deep learning. Although this kind of method has made significant
progress [29,30], there are still some problems. First, deep-learning-based algorithms suffer
from generic problems such as high computational effort, high hardware cost, and complex
model design. Second, deep learning-based methods are usually trained on synthetic data
or very few real data, and thus the desired results may not be obtained for real images due
to the domain gap between training and test images.

Multiple images specular highlight removal algorithms. The prominent disadvan-
tage of multiple images methods is that the imaging equipment or illumination conditions
are complicated. However, multiple images algorithms have more accurate specular high-
light removal results since they have richer input information. Nayer [31,32] combined
color space analysis with projection constraints on the specular reflection component of
the target polarized image to separate specular highlight. Based on the assumption that
specular highlight is statistically uncorrelated with the diffuse component, Umeyama
[33] first obtained the intensity difference between two images with different polariza-
tion angles to discriminate the specular region and then used independent component
analysis (ICA) to estimate the specular highlight component in the specular region. By
placing the polarization filter in front of the sensor, Wang [34] produced results with less
color distortion. Yang [35] used the polarization imaging technique to detect bruises on
nectarines. The polarized image can effectively suppress the specular highlight on the
smooth surface of nectarine and overcome the interference of dark color during detection.
A lightweight network (ResNet-G18) that integrate ResNet-18 and Ghost bottleneck was
constructed to achieve classification and damage detection of nectarines. Lin et al. [36]
proposed an algorithm based on color analysis and multi-baseline stereo vision, which can
estimate the separation and the true depth of specular reflections at the same time. Lin et
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al. [37] proposed a method based on the neutral interface reflection model for separating
specular reflection components in color images. Different from most previous methods,
this approach did not assume any dependencies among pixels, such as regionally uniform
surface reflectance. The image is a superposition of a transmitted layer and a reflected layer
when it is recorded through a transparent medium (e.g., glass), Guo et al. [38] proposed a
method to separate the two layers from multiple images by designing a novel Augmented
Lagrangian Multiplier based algorithm.

3. Methodology

Our specular highlight removal algorithm consists of two parts as shown in Figure 3,
one is image acquisition and the other is specular highlight removal. The task of the first
part is to quickly acquire all the spectral and polarization information of the target, so we
design a multi-band polarization imager with a new configuration here to realize highly
efficient and multi-dimensional image acquisition. The second part’s task is to remove the
specular highlight from images accurately, so we propose a new specular highlight removal
method based on multi-band polarization imaging.

Figure 3. Architecture diagram of our proposed algorithm, including image acquisition and specular
highlight removal.

3.1. Images Acquisition Based on Multiband Polarization Imager

The imaging technique combining spectroscopy and polarization has been applied to
fruit quality inspection [39]. With the rapid development of micro-nano manufacturing,
array-based multi-band polarization imaging technology has gradually become a research
focus in recent years. This technology is the product of a combination of intensity, polariza-
tion and spectral imaging technologies, which can obtain spatial, polarization and spectral
information of the target at the same time through single image capture, thus realizing
multi-dimension detection of the target.

The existing literature focuses on the configuration design and performance analysis of
polarization arrays [40,41] or multi-band arrays [42] alone. In recent years, new array-based
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multi-band polarization imager has been produced, such as the PHX050S camera from
Lucid Vision Labs, which can capture multi-band and polarization information of the scene
simultaneously. Inspired by this, we design a multi-band polarization imager with a new
configuration as shown in Figure 3a in the image acquisition part. The imager mainly
consists of a multi-band polarization imaging array and a CMOS. Different colors indicate
the selection of different wavebands and different grating orientations indicate the selection
of different polarization angles. Since our subsequent proposed specular removal method
requires information in visible light wavebands (R, G, B wavebands) and three polarization
angles (0°, 45°, 90°), So we combine the “Quasi-Bayer” polarization pattern [43] and “Bayer”
color filter array [44] together to constitute a new multi-band polarization imager as shown
in Figure 3a. In this way, spectral information in R, G, B bands and polarization information
in 0°, 45°, 90° can be acquired at the same time through single image capture.

As shown in Figure 3b, the captured image of our multi-band polarization imager is a
multi-band polarization mosaic image, so the chromatic polarization demosaicking network
(CPDNet) proposed by Wen [11] is applied here to reconstruct our required spectral and
polarization information. Each pixel in the multi-band polarization array records only 1 out
of 9 necessary intensity measurements. For each channel, the relationship between mosaic
image Y and three full-resolution multi-band polarization images X can be formulated as:

Y = DθX (3)

where Dθ represents the down-sampled matrix, with

θ ∈ {R0◦, R45◦, R90◦, G0◦, G45◦, G90◦, B0◦, B45◦, B90◦} (4)

The goal of CPDNet is to learn the mapping function F(Y) = X . The input of the
CPDNet is the multi-band polarization mosaic image that can be denoted as Y ∈ Im×n,
where m and n indicate the number of rows and columns of the input image. Accordingly,
the ground-truth image can be expressed as X ∈ Im×n×9 .

By using the CPDNet, we can reconstruct a color polarization image in three an-
gles from a multi-band polarization mosaic image as shown in Figure 3d. The specific
demosaicking process is not described in detail here, readers can refer to [11] for more
information.

3.2. Specular Highlight Removal

According to the dichromatic reflection model proposed by Shafer [13], the reflected
light can be regarded as a combination of diffuse reflection and specular reflection, which
can be described mathematically as:

I(x) = Id(x) + Is(x)
= ρd(x)D(x) + ρs(x)S(x)

(5)

where Id(x) is diffuse reflection component and Is(x) is specular highlight component; ρd
and ρs represent weighting factors of diffuse reflection and specular reflection, respectively;
and D(x) =

∫
Ω H(λ, x)E(λ)q(λ)dλ, S(x) =

∫
Ω E(λ)q(λ)dλ, where λ is wavelength, Ω is

the range of wavebands. q =
{

qr, qg, qb
}

is the camera induction function, H represents
spectral reflectance, and E denotes the spectral power distribution function of light source.

In natural light imaging environment (namely, the light source is unpolarized light),
the diffuse reflection component has a weak polarization effect due to multiple scattering
processes, so the diffuse reflection component can be approximately regarded as unpolar-
ized light, while the specular highlight reflects only once on the target surface so that it has
strong polarization effect, thus the specular highlight can be approximately regarded as
partial linear polarized light. As depicted in [45], the intensity of the captured target image
varies as the cosine function of the rotation angle ϕ = θpol of the polarizer. The intensity of
captured image can be expressed as:
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I(ϕ) =
Imax + Imin

2
+

Imax − Imin
2

cos(2ϕ− 2α) (6)

where Imax and Imin represent the maximum and minimum intensities of the captured
image, respectively, when rotating the polarizer. α is the polarization phase angle, and here
in our study, θ ∈ {0◦, 45◦, 90◦}.

The intensity of diffuse reflection does not change with the rotation of the polarizer
because the diffuse reflection component can be approximated to unpolarized, so we have:

Id = Imin (7)

For the varying specular highlight component, its intensity can be considered as the
sum of a specular constant Isc and a cosine variable Isvcos(2ϕ− 2α):

Is = Isc + Isvcos(2ϕ− 2α) (8)

So, the intensity of the captured image in different wavebands can be described as:

Iλ(ϕ) = Iλ,d +
Iλ,s

2
+

Iλ,s

2
cos2ϕsin2α +

Iλ,s

2
sin2ϕcos2α (9)

Iλ(ϕ) = Iλ,d + f (ϕ)Iλ,s (10)

where f (ϕ) is weighting function of highlight component (0≤ f (ϕ)≤1), which is only re-
lated to polarizer’s rotation angle ϕ while has nothing to do with waveband λ. Furthermore,
λ ∈ {r, g, b}.

In a conclusion, the specular highlight has different polarization states in different
wavebands. Therefore, the diffuse reflection component and highlight component can be
distinguished effectively through comprehensive utilization of the polarization information
in different wavebands.

3.2.1. Highlight Detection Based on Multiband Polarization

We conduct a statistical analysis to further analyze the differences in spectral and po-
larization characteristics between specular highlight and diffuse reflection areas intuitively.
Here 100 images affected by specular highlights are collected as the data for statistical
analysis. Firstly, we manually segment these image data to obtain the two independent
areas: for each image data, two small patches that consist of 5× 5 pixels are extracted
from the diffuse reflection area and specular highlight areas, respectively. Thus, we obtain
two sets of images, one is specular highlight patches and the other is diffuse reflection
patches. Then we compute the DoLP (Degree of Linear Polarization) and grayscale values
of each pixel in the R, G, and B bands, and the average values are shown in Figure 4. It can
be clearly seen that the DoLP values of pixels in the diffuse reflection area are quite low
while the specular highlight pixels have higher DoLP. Besides, for different wavebands,
the distributions of DoLP are different either. Similarly, the grayscale value of the diffuse
reflection area is much lower than that of the specular highlight area and the distributions
are also different in each waveband. Therefore, the specular highlight and diffuse reflec-
tion components can be distinguished accurately by analyzing the differences in intensity,
spectral and polarization characteristics, so that effective specular highlight detection can
be achieved.
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Figure 4. Statistical analysis of spectral and polarization characteristics differences between diffuse
reflection and specular highlight components.

Based on the above analysis, we define the joint multi-band-polarization characteristic
vector as follows:

V(x) = [Dolpλ(x), l(x)]T (11)

l(x) = 0.299r(x) + 0.587g(x) + 0.114b(x) (12)

where Dolp is the degree of linear polarization, λ ∈ {r, g, b} and r, g, b represents intensity
values of three visible bands, respectively. Additionally, it should be noted here that the
ratios of r, g, b are fixed weight coefficients (0.299 for r rand, 0.587 for g rand and 0.114 for b
rand), since we use the function “rgb2gray” in MATLAB to transform the color image into
a gray-scale image. The values of Dolpλ range from 0 to 1, and both Dolpλ and l(x) are in
the same vector V(x), so l(x) is normalized for consistency. Namely, the possible values of
l(x) range from 0 to 1 as well.

The specular highlight area and the diffuse reflection area can be detected by effective
constraints based on the joint multi-band-polarization characteristic vector. For the target
image under the influence of specular highlight, its pixel x meets the following constraints:

x ∈
{

R(D), i f ‖V(x)−V0‖2
2 < ε

R(S), i f ‖V(x)−V0‖2
2 > ε

(13)

where R(D) and R(S) represent diffuse reflection area and specular highlight area, respec-
tively, V0 denotes the global threshold vector, ε is a tiny positive constant.

To facilitate subsequent highlight removal, a binary mask image is generated for the
detection results of pixel x, and its expression is:

mask(x) =
{

1, i f x ∈ R(S)
0, i f x ∈ R(D)

(14)
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Based on the joint multi-band-polarization characteristic vector constraint, for the
target image shown in Figure 3, The values of V0 and ε are determined by the following
analysis. Figure 5a is the target image, for the marked area of the target image in (a), the
distribution statistical characteristics of Dolp, grayscale and luminance in R, G and B bands
are shown in Figure 5b–e, where the X-axis is the pixel position, and the Y-axis is the values
of each parameter. We can easily find the approximate pixel positions of specular area
(100–170) from Figure 5b since specular has much higher grayscale values. So in Figure 5b,
we can obtain the threshold of Dolpr(x) is 0.1; in Figure 5c, the threshold of Dolpg(x) is
0.2; in Figure 5d, the threshold of Dolpb(x) is 0.25. For the luminance l(x) , we can see the
threshold is about 130 in Figure 5e, so the final threshold of l(x) is 0.5 after normalization.In
a conclusion, we set V0 = [0.1, 0.2, 0.25, 0.5]. The value of ε = 0.3 is obtained by comparing
the experimental results, and the best result of specular highlight area detection can be
obtained when ε = 0.03. The specular highlight detection result is shown in Figure 6.

Figure 5. The detection result of specular highlight area.

Figure 6. The detection result of specular highlight area.
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3.2.2. Highlight Removal Based on Multiband Polarization

Compared with the unpolarized diffuse reflection component, the specular highlight
component has different polarization states in different wavebands. Therefore, in this
section, a Max-Min multi-band-polarization differencing scheme is proposed to generate
a single specular-free image (SSF) by utilizing the multi-band polarization characteris-
tic differences between diffuse reflection component and specular highlight component.
Meanwhile, for the detected highlight area acquired in the previous section, an ergodic
least-squares coefficients decomposition strategy is proposed to obtain the reflection co-
efficients of diffuse reflection and highlight and thus the effective separation of specular
highlight can be achieved.

a. Max-Min multi-band-polarization differencing scheme

Combining multi-band-polarization imaging model (7) and dichromatic reflection
model (2), we have:

Iλ = Iλ,d + f ·Iλ,s = ρdDλ + ρsSλ (15)

It is assumed that the light source has a uniform energy distribution in the visible
bands, so for R, G, B three visible wavebands, we have:

S = [SR, SG, SB] = [255, 255, 255] (16)

For the visible wavebands λ ∈ {R, G, B}, we can define the Max-Min multi-band-
polarization differencing image ∆I as:

∆I = maxIλ −minIλ (17)

Combining the three equations above, we have:

∆I = Imax − Imin
= ρdDmax + ρsS− (ρdDmin + ρsS)

= ρd(Dmax − Dmin)
(18)

It can be derived that the Max-Min multi-band-polarization differencing image is only
related to the diffuse reflection component rather than the specular highlight. Therefore,
spectral differential images in three polarization angles—0°, 45°, and 90°—are merged with
the linear weighting to generate a single specular-free (SSF) image, which can be expressed
as:

SSF =
1
M ∑

ϕ=0◦ ,45◦ ,90◦
m(ϕ)∆I(ϕ) (19)

where ϕ represents rotation angle of the polarizer, and m(·) denotes the adaptive weight
coefficient, which is associated with the intensities of polarization images with different
angles, M = ∑ϕ=0◦ ,45◦ ,90◦ m(ϕ) · ∆I(ϕ) represents the normalization factor, namely the
weighting sum.

As shown in Figure 3, the SSF image can effectively avoid the influence of specular
highlight, and meanwhile retaining the original information of the target, which can
effectively guide the subsequent removal of the specular highlight.

b. Ergodic least-squares separation algorithm

For the pixels in the detected highlight area in Figure 6, we can find a diffuse pixel
with the closest intensity value in the SSF image, and the intensity of the diffuse pixel
is taken as the diffuse intensity of the highlighted pixel. Based on this idea, we propose
an ergodic least-squares separation algorithm to perform a global ergodic search in the
SSF image, to realize effective guidance of reflection coefficients separation in the detected
specular highlight area. The process is as follows:

Step 1: Highlight separation of pixels in highlight area.
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For pixel p marked mask = 1 in specular highlight area, searching for a diffuse
reflection pixel q which has the nearest intensity value to p in SSF image, so we have:

q∗ = argmin
q
||SSF(p)− SSF(q)||2 (20)

Take the original intensity value of q as the diffuse intensity of the highlighted pixel p ,
and combining with (1), we have:

I(p) = ρd(p)I(q) + ρs(p)S (21)

Using the least-squares coefficient decomposition method, the reflection coefficient
matrix is: [

ρd(p)
ρs(p)

]
=
[

I(q) S
]−1 I(p) (22)

where “−1” represents the pseudo-inverse of the matrix. For the diffuse reflection factor
ρd(p),its corresponding diffuse reflection intensity can be expressed as:

Id(p) = ρd(p)D(p) = ρd(p)I(q) (23)

Furthermore, the intensity of corresponding highlight component is:

Is(p) = I(p)− ρd(p)I(q) (24)

After separation, pixel p is marked as a diffuse pixel, that is mask(p) = 0. The
algorithm then proceeds to the next highlight pixel.

Step 2 : Highlight separation of pixels in diffuse reflection area.
For the diffuse reflection area where mask = 0 , some diffuse reflection pixels may

contain a small amount of highlight component. To further realize the separation and
removal of specular highlight, we use the same least-squares strategy to obtain the diffuse
reflection and specular highlight coefficients.

For the diffuse reflection area where mask = 0 , searching for a diffuse reflection pixel
r whose intensity value is the highest in the SSF image, namely:

r∗ = argmax
r

SSF(r) s.t. mask(r) = 0 (25)

Then seeking a diffuse reflection pixel z with the nearest intensity value to pixel r in
the SSF image, which satisfies:

z∗ = argmin
z
||SSF(r)− SSF(z)||2 (26)

Next taking the original intensity value of r as diffuse reflection intensity of pixel z,
the reflection coefficient matrix can be calculated by using the least-squares coefficient
decomposition method: [

ρd(z)
ρs(z)

]
=
[

I(r) S
]−1 I(z) (27)

Since the reflection coefficient of highlight is non-negative, if the calculated ρs(z) < 0 ,
(24) can be converted to:

ρd(z) = I(r)−1 I(z) (28)

Similar to (20) and (21), its corresponding diffuse reflection and specular highlight
components can be calculated. Finally, pixel z is marked as a processed pixel, and then the
same procedure can be adopted to the next diffuse reflection pixel which has the nearest
intensity value to pixel r according to (23).

In summary, our proposed method considers not only the reflection separation of
pixels in the highlight area, but also the possibility of the existence of a small amount of
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highlight in the diffuse reflection area, so that the removal result is much more thorough
and accurate.

c. The compensation of missing information based on local chromaticity consistency regulariza-
tion constraint

The proposed highlight removal algorithm in Section b ignores the local detail informa-
tion of the original target and leads to partial color distortion and edge discontinuity after
specular highlight removal. So we use our previous work, local chromaticity consistency
[46], to realize weighting regularized constraint of highlight removal result and meanwhile
variable splitting [47] is combined to achieve fast optimization solving. In this way, the
missing information after highlight removal can be effectively compensated in time and
the visual effect is further improved. For the highlight suppression result Id, the weighting
regularization term can be denoted as W(x, y)|Id(x)− Id(y)|. The pixels with a similar
grey level neighborhood to Id have larger weights in the average, thus like that in nonlocal
means methods [48], W(x, y) can be set to be inversely proportional to the distance between
pixel x and y and can be expressed as:

W(x, y) = e−||I(x)−I(y)||2/2σ2
(29)

where I is the original target image, and σ represents standard deviation. Therefore, for two
adjacent pixels x and y in a local area, when this two pixels belong to diffuse and highlight
areas, respectively, significant difference exists between I(x) and I(y) , namely W(x, y)≈0 ;
while if this two pixels belong to the same reflection area, the weighted value W(x, y) is
bigger.

To simplify, the matrix forms of the weighting regularization term and weighting

function (26) can be expressed as ||W◦(D⊗Id)||1and W = e−∑i∈r,g,b |D⊗Ii |2/2σ2
, where D is

first-order forward difference operator, ◦represents matrix product, ⊗ represents convolu-
tion and i is color channel. Therefore, the problem of weighting regularization information
compensation can be converted into the following energy function minimization problem:

argmin
Id

γ

2

∥∥Id − Ĩd
∥∥2

2 + ‖W◦(D⊗Id)‖1 (30)

where γ is weighting factor, Ĩd is the initial highlight removal result. For the above energy
function optimization problem, we can quickly solve it by the variable splitting method.
Here we introduce an intermediate variable u , so (27) can be converted into:

γ

2

∥∥Id − Ĩd
∥∥2

2 + ‖W◦u‖1 +
β

2
(‖u− (D⊗Id)‖2

2) (31)

where β is a weighting factor. Obviously, (28) converges to the optimal solution of (27)
when β→ ∞ .

For (28), when β is fixed, the minimization problem can be treated as alternating
optimization solution of u and Id . That is, first fixing Id to calculate optimal u ; then fixing
u to obtain optimal Id . The process continues until convergence. The detailed optimization
process is as follows:

(1) Fixing Id and optimizing u

In (28), for a given Id , its minimum energy function is:

‖W ◦ u‖1 +
β

2
‖u− D⊗ Id‖2

2 (32)

It can be converted into:

min
x
|ω · x|+ β

2
(x− α)

2
(33)
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where are ω, α, β all known and can be obtained directly, namely:

u∗ = xo pt = max((|α| − ω

β
, 0) · sign(a) (34)

here sign(·) is the symbol function.

(2) Fixing u and optimizing Id

We regard the calculated u as a fixed value to obtain the optimal Id . The objective
function is:

γ

2

∥∥Id − Ĩd
∥∥2

2 +
β

2
(‖u− (D⊗Id)‖2

2) (35)

Notice that (35) is a quadratic term function of the variable Id , so we can obtain the
optimal value of Id by taking the partial derivative of (35) and we have:

γ

β
(Id − Ĩd) + DT⊗(D⊗Id − u) (36)

where DT is the transpose matrix of D.Then we set (36) to be zero to obtain the optimal
value of Id:

γ

β
(Id − Ĩd) + DT⊗(D⊗Id − u) = 0 (37)

γ

β
Id + DT⊗D⊗Id = DT⊗u +

γ

β
Ĩd (38)

Since convolution calculation is complicated in the time domain, so we use 2D FFT
(Fast Fourier Transform) to calculate the optimal value of Id in the frequency domain. Thus,
we have:

γ

β
◦ F(Id) + F(D) ◦ F(D) ◦ F(Id) = F(D) ◦ F(u) +

γ

β
F( Ĩd) (39)

F(Id) =

γ
β F( Ĩd) + F(D) ◦ F(u))

γ
β + F(D)◦F(D)

(40)

where F(·) represents FFT and (·) denotes complex conjugate. Finally the optimal value of
Id, denoted as I∗d , can be obtained by Inverse Fast Fourier Transform (IFFT) transformation:

I∗d = F−1

 γ
β F( Ĩd) + F(D) ◦ F(u))

γ
β + F(D)◦F(D)

 (41)

where F−1(·) represents IFFT.

4. Experiments and Results

In order to verify the effectiveness and wide applicability of our proposed specular
highlight removal algorithm, we conducted experiments on different fruits with smooth
skin and less texture. And six existing algorithms, including Mallick [18], Shen [19], Shen
[21], Akashi [23], Yamamoto [49] and Fu [26], are selected to be compared with our proposed
algorithm. Since the fruit target is delivered to the image acquisition room by conveyor belt
in the automatic quality inspection system as shown in Figure 1, we cannot be completely
sure about the position and quantity of the fruit target. Therefore, the distribution of
highlights on the fruit’s surface is naturally different and multiple fruits may be captured
at the same time in one image acquisition. So here we selected three representative fruit
targets with different quantities and highlight distributions, the first target is one apple
with the concentrated highlight, and the second is one lemon with dispersive highlight
distribution and the third target is three oranges with dispersed highlight.
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4.1. Experimental Data Acquisition

Since the imager we designed in Section 3.1 is still in the theoretical research stage,
so we use the LUCID PHX0505 camera to acquire the images of targets and the size of
the captured images is 2448 × 2048. In total, we captured images of 50 different scenes.
Furthermore, as mentioned before, three groups of representative experimental results
are presented in the manuscript. Due to the nature of spatial sampling, the image cap-
tured by our designed imager is a mosaic image containing all the required information
in three wavebands and three polarization angles. The mosaic images of our selected
three representative fruit targets are shown in Figure 7(a1),(b1),(c1). Demosaicing method
[11] is used here to reconstruct color images at three polarization angles—0°, 45°, and
90°. The reconstruction results are shown in Figure 7(a2)–(a4) in the first row shows the
reconstruction results of an apple. Similarly, the reconstruction results of a lemon and three
oranges are shown in Figure 7(b2)–(b4) and Figure 7(c2)–(c4), respectively.

Figure 7. Experimental data pre-processing: (a1,b1,c1) in the first column are mosaic images captured
by the multi-band polarization imager. (a2–a4) are reconstructed color images of the 1st scenario (an
apple) in three polarization angles. (b2–b4) and (c2–c4) are reconstructed color images of the 2nd
scenario (a lemon) and 3rd scenario (three oranges) in three polarization angles, respectively.

4.2. Objective Evaluation Results

To objectively evaluate the quality of highlight removal results, three objective evalua-
tion indexes: average gradient (AG), angular second moment (ASM) and inverse difference
moment (IDM) [50] are chosen to quantitatively analyze the specular highlight removal
results.

The AG calculates the gradient amplitude in the horizontal and vertical directions of
the image, which further shows the detail contrast and texture change characteristics in the
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highlight removal results. Furthermore, a larger value of AG means richer image detail
information. The expression of AG is:

AG =
1

(M− 1)(N − 1)

M−1

∑
i=1

N−1

∑
j=1

√
( ∂I(i,j)

∂i )2 + ∂I(i,j)
∂j )2

2
(42)

The ASM is the sum of squares of the elements in the gray co-occurrence matrix,
which indicates the distribution uniformity of gray value and the degree of texture fineness
of the highlight removal results. Therefore, a larger value of ASM means richer image
texture information and more uniform local distribution, and that means the highlight
removal effect is better. The calculation formula of ASM is:

ASM = ∑
i

∑
j

P(i, j)2 (43)

IDM represents the regularity of texture in highlight removal results. Furthermore,
a smaller value of IDM means richer image texture, more complex structure and higher
detail information retention. The expression of IDM is:

IDM = ∑
i

∑
j

1
1 + (i− j)2 P(i, j) (44)

The objective evaluation results of the three scenarios are shown in Tables 1–3, respec-
tively. The best results are shown in bold. The average values and standard deviation of
quantitative evaluation results are listed in Table 4.

Table 1. The Quantitative Evaluation of Highlight Removal Results of 1st Scenario.

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

AG 0.2792 0.2622 0.2047 0.2282 0.2457 0.2523 0.3101
ASM 0.6290 0.6001 0.5986 0.6131 0.5869 0.6020 0.6335
IDM 0.9953 0.9969 0.9973 0.9958 0.9989 0.9965 0.9941

Table 2. The Quantitative Evaluation of Highlight Removal Results of 2nd Scenario.

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

AG 0.2468 0.2515 0.2499 0.2582 0.2601 0.2597 0.2826
ASM 0.7002 0.7065 0.7021 0.7030 0.7055 0.7064 0.7093
IDM 0.9971 0.9969 0.9963 0.9958 0.9957 0.9956 0.9948

Table 3. The Quantitative Evaluation of Highlight Removal Results of 3rd Scenario.

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

AG 0.2452 0.2285 0.2447 0.2382 0.2449 0.2503 0.2714
ASM 0.7164 0.7065 0.7119 0.7131 0.7187 0.7174 0.7182
IDM 0.9959 0.9979 0.9964 0.9969 0.9966 0.9957 0.9953
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Table 4. Average Values and Standard Deviation of Quantitative Evaluation (Average Val-
ues/Standard Deviation).

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

AG 0.2605/0.0249 0.2487/0.0222 0.2235/0.0209 0.2381/0.0245 0.2488/0.0267 0.2583/0.0278 0.2921/0.0194
ASM 0.6196/0.0373 0.6725/0.0368 0.6085/0.0357 6780/0.0341 0.6120/0.0387 0.6753/0.0402 0.6855/0.0358
IDM 0.9951/0.0010 0.9973/0.0012 0.9964/0.0009 0.9967/0.0010 0.9950/0.0012 0.9956/0.0014 0.9945/0.0009

4.3. Specular Highlight Removal Results

We conduct experiments on three scenarios to verify the effectiveness of our proposed
method. Furthermore, here six existing algorithms, including Mallick [18], Shen [19],
Shen [21], Akashi [23], Yamamoto [49] and Fu [26], are selected to be compared with our
algorithm for visual evaluation. It should be noted here that for these compared algorithms,
the 0° polarization image is selected as the input image for subsequent highlight removal.
The specular highlight removal results are shown in Figures 8–10.

Figure 8. The specular highlight removal results of the 1st scenario (an apple). (a1–a3): reconstructed
color images of target in different polarization angles. (b1–b6) are highlight removal results of
Mallick [18], Shen [19], Shen [21], Akashi [23], Yamamoto [49] and Fu [26], respectively. (b7) is the
specular highlight removal result of our proposed method. For easy observation, each result image is
accompanied by an enlarged view of the detail information below.
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Figure 9. The specular highlight removal results of the 2nd scenario (a lemon). (a1–a3): reconstructed
color images of target in different polarization angles. (b1–b6) are highlight removal results of
Mallick [18], Shen [19], Shen [21], Akashi [23], Yamamoto [49] and Fu [26], respectively. (b7) is the
specular highlight removal result of our proposed method. For easy observation, each result image is
accompanied by an enlarged view of the detail information below .

4.4. Quality Inspection Results

To further verify the effectiveness of our proposed specular highlight removal algo-
rithm, we conduct fruit quality inspection based on the specular highlight removal results
obtained in Section 4.3. Firstly, we choose a relatively simple method based on edge detec-
tion [51] for fruit damage detection. Furthermore, the detection results of three targets are
shown in Figures 11–13.
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Figure 10. The specular highlight removal results of the 3rd scenario (oranges). (a1–a3): reconstructed
color images of target in different polarization angles. (b1–b6) are highlight removal results of
Mallick [18], Shen [19], Shen [21], Akashi [23], Yamamoto [49] and Fu [26], respectively. (b7) is the
specular highlight removal result of our proposed method. For easy observation, each result image is
accompanied by an enlarged view of the detail information below .
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Figure 11. The damage detection results of the 1st scenario (an apple). (1–6) are damage detection
results of Mallick [18], Shen [19], Shen [21], Akashi [23], Yamamoto [49] and Fu [26], respectively. (7)
is the damage detection result of our proposed method .

Figure 12. The damage detection results of the 2nd scenario (a lemon). (1–6) are damage detection
results of Mallick [18], Shen [19], Shen [21], Akashi [23], Yamamoto [49] and Fu [26], respectively. (7)
is the damage detection result of our proposed method.
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Figure 13. The damage detection results of the 3rd scenario (oranges). (1–6) are damage detection
results of Mallick [18], Shen [19], Shen [21], Akashi [23], Yamamoto [49] and Fu [26], respectively. (7)
is the damage detection result of our proposed method .

Secondly, the fruit quality inspection can be realized by calculating the proportion
(%) of the damaged area to the total image area [52]. Furthermore, the standard is: If the
proportion of the damaged area to the total image area obtained above is less than 2%, the
fruit target is considered “Good”, while if the proportion is larger than 2%, the fruit target
is considered “Damage”. The quality inspection results are shown in Tables 5–7.

Table 5. The Quality Inspection Results of 1st Scenario.

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

Results Damage Damage Damage Damage Damage Damage Good

Table 6. The Quality Inspection Results of 2nd Scenario.

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

Results Damage Damage Damage Good Good Damage Good

Table 7. The Quality Inspection Results of 3rd Scenario.

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

Results Damage Damage Damage Damage Damage Damage Good

5. Discussion

In this study, we propose a specular highlight removal method for quality inspection of
fruits. The effectiveness of the proposed method is verified through (1) objective evaluation
indexes (AG, ASM, IDM), (2) visual effects and (3) fruit quality inspection results. A
detailed discussion of the obtained experimental results will be presented in this section.

The quantitative evaluation results are shown in Tables 1–3. The three objective
evaluation indexes are mainly used to judge the preservation degree of texture details, so in
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Table 1, the results of Shen [21] are the worst since serious data loss exists after the removal
of the highlight. The results of other comparing methods are not ideal since they all fail to
remove the specular highlight completely. Our proposed method separates the highlight
more accurately and then performs information compensation, so our results are the best.
The results of Mallick are worst in Table 2 due to effective color space conversion cannot
be conducted for the specular highlight areas. The results of Shen [19] are the worst in
Table 3, which is also due to the information loss caused by specular highlight removal. In
a conclusion, our proposed algorithm outperforms the other six comparing algorithms and
the objective evaluation results are all the best in Tables 1–3.

For the first fruit target (an apple), the reconstructed polarization images, and highlight
removal results of our proposed algorithm and six other comparing algorithms are shown
in Figure 8. It can be seen clearly that Shen’s [19] method has serious information loss after
removing the specular highlight. Furthermore, the removal results of Mallick, Shen [21],
Akashi, Yamamoto [49] and Fu have different degrees of highlight residue. Besides, a small
amount of data is lost in Akashi’s Yamamoto’s and Fu’s results. In summary, the comparing
six methods cannot effectively remove the specular highlight, and serious color distortion
or data void occurs. In contrast, our proposed method has a much better highlight removal
effect and higher reliability. The reason is that the proposed algorithm is based on the
constraints of physical feature analysis, and the missing details are compensated based on
the spatial color consistency regularization after the specular highlight removal. As shown
in Figure 8(b7), our removal result has clearer texture on the target surface and better color
fidelity, meanwhile the edge detail information is greatly preserved. The visual effect of
our method is better than that of the other algorithms.

For the 2nd scene (a lemon), the specular highlight has dispersed distribution. The
highlight removal results are shown in Figure 9. We can see that highlight residue exists
in both Mallick’s and Shen’s [21] results as shown in Figure 9(b1),(b3), respectively. The
specular highlights are completely removed in the results of Shen [19], Akashi, Yamamoto
[49] and Fu, but it can be seen clearly that data loss degrade the image qualities. However,
the input of our algorithm is multidimensional information including intensity, polarization
and spectral information, and the richness of the input information makes the proposed
method has higher accuracy in specular highlight detection, removal and subsequent
compensation of lost information, so our proposed method has a relatively better visual
effect. Although there still exists very little specular highlight, the original color, texture
and other detailed information of the target surface is retained well.

For the 3rd scene (oranges), its surface is a biological greasy epidermis with single
surface color and simple texture, and the specular highlight area is large and dispersed
in the target image. The highlight removal results are shown in Figure 10. Since the color
space conversion cannot be effectively performed in the specular highlight area, it can be
seen that in Mallick’s results, the highlight cannot be accurately separated and meanwhile
data voids exist. The result of Shen [19] contains a large area of data voids. Furthermore,
the same problems also exist in the results of Shen [21], Akashi [23], Yamamoto [49] and Fu
[26]: blurred and distorted edges, and data loss. We can see that in the results of the first six
methods, most of the information in the highlighted area is lost, and a black circle appears
in each removal result, which will certainly affect the subsequent quality inspection results.
In comparison, our proposed method has the best visual effect as shown in Figure 10(b7).
Similarly, the combination of multidimensional information input and compensation of
missing details guarantees that our method has better visual performance. It can be seen
that the specular highlight is removed thoroughly, and meanwhile the original color, texture
and other detailed information of the target surface is retained efficiently.

Figures 11–13 show the damage detection results of three scenarios. It can be seen that
the highlight removal results of other comparing algorithms are detected as having damage
since they fail to remove the specular highlight accurately and completely. Wrong damage
detection results lead to subsequent erroneous quality inspection results. By contrast,
our damage detection results shown in Figures 11(7)–13(7) are accurate, and the quality
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inspection results are correct as shown in Tables 5–7 as well. This further illustrates the
effectiveness of our proposed specular highlight removal algorithm, and it also proved that
our proposed method is of great importance to improve the accuracy of fruit detection.

The running time of the comparing algorithms and our proposed method are shown
in Table 8. Our proposed method is not the fastest. There are three reasons for the large
gap in running time between Shen’s two methods, Mallick’s method and ours. Firstly,
the computation of our proposed algorithm is relatively large. Since three procedures are
included in our algorithm: the detection of specular highlight based on the joint multi-band-
polarization characteristic vector constraint; the removal of specular highlight based on the
proposed Max-Min multi-band-polarization differencing scheme combined with an ergodic
least-squares separation; and the compensation of missing details based on the chromaticity
consistency regularization. Secondly, our acquired image in real-time is a mosaic image
containing all the required information in three wavebands and three polarization angles, so
the demosaicing method is required to realize information reconstruction. The demosaicing
process takes some time. Last but not least, the input image becomes multiple color
polarization images after demosaicing, so there is no doubt that the processing time must
be longer than the first three methods since they are all single-image-input methods, so
our time is definitely longer. However, the accuracy of our algorithm is much higher than
these three algorithms. Our algorithm code is based on the MatLab platform, and we can
accelerate it by moving it to a new platform such as FPGA in the future.

Table 8. Running Time of Each Algorithm (Unit: seconds).

Mallick [18] Shen [19] Shen [21] Akashi [23] Yamamoto
[49] Fu [26] Proposed

Running time 21.31 s 5.74 s 1.18 s 81.14 s 94.57 s 345.03 s 55.67 s

6. Conclusions

In this paper, we propose a specular highlight removal algorithm based on multi-band
polarization imaging for quality inspection of fresh fruits. In the proposed algorithm, we
first design a new multi-band polarization imager to realize real-time image acquisition.
Then, we propose a specular highlight removal method to accomplish high-precision
highlight removal. Experimental results demonstrate that the proposed method is highly
efficient and robust; meanwhile, it can effectively remove the specular highlight of fruits
with smooth skin and less texture. Both the visual effect, image quality and objective
evaluation indices are better than existing algorithms. In addition, our proposed algorithm
can be directly integrated into existing quality inspection equipment, which is of great
importance to improve the performance of existing quality inspection equipment.
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