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Abstract: Timely and accurate information on rice cultivation makes important contributions to the
profound reform of the global food and agricultural system, and promotes the development of global
sustainable agriculture. With all-day and all-weather observing ability, synthetic aperture radar
(SAR) can monitor the distribution of rice in tropical and subtropical areas. To solve the problem
of misclassification of rice with no marked signal during the flooding period in subtropical hilly
areas, this paper proposes a new feature combination and dual branch bi-directional long short-term
memory (DB-BiLSTM) model to achieve high-precision rice mapping using Sentinel-1 time series data.
Based on field investigation data, the backscatter time series curves of the rice area were analyzed,
and a characteristic index (VV − VH)/(VV + VH) (VV: vertical emission and vertical receipt of
polarization, VH: vertical emission and horizontal receipt of polarization) for small areas of hilly
land was proposed to effectively distinguish rice and non-rice crops with no marked flooding period.
The DB-BiLSTM model was designed, ensuring the independent learning of multiple features and
effectively combining the time series information of both (VV − VH)/(VV + VH) and VH features.
The city of Shanwei, Guangdong Province, China, was selected as the study area. Experimental
results showed that the overall accuracy of the rice mapping results was 97.29%, and the kappa
coefficient reached 0.9424. Compared to other methods, the rice mapping results obtained by the
proposed method maintained good integrity and had less misclassification, which demonstrated the
proposed method’s practical value in accurate and effective rice mapping tasks.

Keywords: rice; SAR; Sentinel-1; deep learning; multitemporal

1. Introduction

In Transforming Our World: The 2030 Agenda for Sustainable Development of the United
Nations, the goals of eradicating hunger, achieving food security, improving nutritional
status and promoting sustainable agriculture are regarded as important components [1].
Rice supports more than half of the world’s population as a staple food [2] and accounts
for more than 12% of global arable land area [3]. Therefore, rice monitoring is critical to
global sustainable development [4,5].

Optical remote sensing has become a key technology to determine regional- and
global-scale crop area estimations, growth monitoring and yield predictions. However,
rice is primarily grown in tropical and subtropical climate zones with perennial rain and
heavy clouds, making it challenging to obtain high-quality optical remote sensing data in
such regions [6,7]. Compared with traditional optical remote sensing, synthetic aperture
radar (SAR) is not affected by weather and can penetrate clouds, and is sensitive to the
dielectric and geometric properties of plants [8]. Therefore, SAR data are used for rice
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monitoring [9–11], and with the improvement of time resolution, multitemporal SAR data
have been successfully applied to continuous observations of rice [12,13].

The rice mapping method using multitemporal SAR data typically consists of features
and classifiers. Currently, multitemporal Sentinel-1 data are the primary data source for
these evaluations. First, features to discriminate rice from non-rice crops are defined
by analyzing the characteristics of each phase and the variations in the backscattering
coefficients during the rice growth cycle [14,15]. For example, empirical methods are
used to extract phenological indicators [16,17], or mathematical equations are established
to fit time series curves [18,19]. More often, the time series backscattering coefficient is
used as the feature directly [20,21], among which vertical emission and horizontal receipt
(VH) polarization data are primarily used. Chang et al. used Sentinel-1 VH and vertical
emission and vertical receipt (VV) time series data to perform rice mapping in Central
Taiwan. Results showed that the overall accuracy of VH polarization was better than
that of VV polarization [20]. Pan et al. used Sentinel-1 VH polarization time series data
and time-weighted dynamic time warping to complete rice mapping in nine provinces in
southern China [21]. Some studies have also used VH and VV polarization to perform
feature combination. Ndikumana et al. used 25 Sentinel-1 VH and VV polarization data and
deep learning and traditional machine learning classifiers to conduct a comparative study
on crop classification [22]. Mansaray et al. used 2017 Sentinel-1 VH and VV polarization
time series data and a random forest classifier (RF) to map rice in Jiaxing, China [23].
Yang et al. completed crop mapping including rice in some regions of the United States
based on Sentinel-1 VH and VV polarization time series data and the proposed temporal
feature-based segmentation model [24].

Extracted features are typically combined with empirical models [25] or machine learn-
ing classifiers such as K-means [26], decision trees (DTs) [27,28], support vector machines
(SVMs) [10,29] or RF [30,31] for rice mapping. In recent years, the RF classifier has been
widely used in crop classification studies due to its capability to process large amounts of
data quickly and its strong generalizability [32]. However, rice mapping methods based on
empirical models and traditional machine learning have some drawbacks. These methods
typically rely heavily on crop phenology knowledge and require more manual intervention.

In recent years, deep learning models, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have provided strong technical support for crop
mapping [33,34]. Kussul et al. used 19 scenes of Sentinel-1A and Landsat-8 data and a
shallow CNN for crop classification in Ukraine, which showed that the CNN architecture
outperformed the multilayer perceptron architecture, resulting in accuracies above 85%
for major crops [35]. Xu et al. extracted temporal statistical features based on 758 scenes
of Sentinel-1 images from late 2018 to 2019, covering Thailand, and fed the features into
a U-Net model with a fully connected conditional random field to generate an annual
rice map [36]. Experimental results showed that the method achieved the best overall
performance compared to the SVM classifier and the feature selection strategy-based U-Net
model, and the overall accuracy reached 91%.

Compared to full CNNs, RNNs can learn temporal features from observations of
adjacent time steps and have been shown to be more suitable for tasks that require time-
dimensional analysis, such as crop mapping, phenology identification and production
prediction. Thorp et al. used multitemporal Sentinel-1 and Sentinel-2 data acquired
from November 2018 to April 2019 and long short-term memory (LSTM) to identify the
growth stages of rice in West Java, Indonesia, and achieved optimal classification results
with an overall accuracy of 79.6% [37]. Sun et al. used the attention mechanism with
the bi-directional long short-term memory (BiLSTM) model to extract the distribution of
rice in Zhanjiang, China, using the VH polarization of multitemporal Sentinel-1A data.
Experimental results achieved an overall accuracy of 0.9351, which was better than that
of the LSTM and RF classifiers [38]. Liu et al. proposed a hybrid structure of the CNN
and attentional LSTM to map the rotation cultivation of crops in the river plains of Hunan
Province, China, with time series SAR and optical data [39]. Experimental results showed
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that the method achieved reasonable accuracy (higher than 0.85) and outperformed other
LSTM models and RF classifiers. Lin et al. proposed a multitask spatiotemporal deep
learning LSTM-MTL model to perform rice mapping in the primary rice production areas of
the United States using Sentinel-1 SAR time series data from 2018–2019 [40]. The model took
spatial variability into consideration and demonstrated superior performance compared
with RF and attention-based BiLSTM, achieving a rice mapping accuracy as high as 98.3%.
The proposal of convolutional LSTM (ConvLSTM) made it possible to use spatial–temporal
features in crop monitoring [41,42]. Chang et al. proposed a new spatial–temporal neural
network called the ConvLSTM Rice Field Classifier to conduct rice field classification in
Yunlin County and Jiayi County, Taiwan. Experimental results showed that compared with
the gated recurrent unit and ConvLSTM, the accuracy of the model was the highest of
tested models and reached 98.08% [43].

These results show that deep learning models can achieve higher performance and
application prospects than traditional machine learning models in the field of rice monitor-
ing. The existing studies primarily focused on rice growing areas with flat topography. VH
polarization timing features are often used. The VH polarization time series characteristics
of rice in these study areas show clear flooding period signals at the early stage of rice
transplanting, primarily in the form of a “bell curve” [21,38]. However, the rice planting
area in the hilly region of southeast China is small and scattered, and the time series curve
of the VH polarization data has no strong signal during the flooding period. Relying on
the traditional characteristic curve will cause many missed detections. Therefore, it is
necessary to extract a new SAR rice characteristic parameter according to the rice sowing
characteristics in the study area, which is used to increase the difference between rice and
other crops where the signal of the flooding period is not marked. In addition, considering
the application of multiple scenarios, it is necessary to combine multiple characteristic
parameters, which proposes new requirements for existing models. Most studies have
superimposed multiple features and then input them into the classifier. When extracting
high-dimensional time information from the model, the different magnitudes of different
time features and the mutual interference of different input time features are ignored.

In this study, a new rice mapping method was proposed to solve the above problems.
The primary contributions of this study include the following:

1. This study proposes a new feature combination, (VV − VH)/(VV + VH) feature
combination, which can increase the difference between rice and non-rice crops in
tropical or subtropical hilly areas.

2. A dual branch BiLSTM network (DB-BiLSTM) is designed, which can ensure the
independent learning of multiple features and realize the effective combination of
(VV − VH)/(VV + VH) and VH polarization features.

The remainder of this paper is organized as follows. Section 2 describes the study
area and experimental data and presents the structural details of the proposed method.
Section 3 shows the experimental results. Section 4 discusses the advantages of this study.
Finally, Section 5 reviews the primary findings of this study.

2. Materials and Methods
2.1. Study Area

The study area was located in the city of Shanwei, Guangdong Province, China
(114◦54′W–116◦13′24′′W, 22◦37′40′′N–23◦38′35′′N), as shown in Figure 1. Shanwei is lo-
cated on the southeastern coast of mainland China, with a total area of 4865.05 km2.
Shanwei belongs to the southern subtropical monsoon climate zone and has a typical
oceanic climate and abundant light, heat and water resources. Mountainous terrain covers
43.7% of the total area. Hills and mountains are dominant in the northern part of Shaiwei;
the middle region is primarily composed of both hills and plateaus; on the southern coast,
plateaus and plains are present. The primary food crops in Shanwei are rice, sweet potato,
potato and corn. Double-season rice is common in this area; early rice is cultivated from
late April to August, and late rice is cultivated from the end of July to December.
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Figure 1. (a) Geographical location of the study area. (b) SAR time series data covering the study area.

2.2. Experimental Data and Sample Dataset

Corresponding to the rice phenology of the study area, all Sentinel-1 VV and VH
polarized SAR images [44] from March to December 2019 were acquired and selected, and
the data list is shown in Table 1.

Table 1. List of available SAR data.

Orbit–Scene: 113-71

No. Date No. Date No. Date No. Date

1 21 March 2019 7 25 June 2019 13 5 September 2019 19 16 November 2019
2 14 April 2019 8 7 July 2019 14 17 September 2019 20 28 November 2019
3 26 April 2019 9 19 July 2019 15 29 September 2019 21 10 December 2019
4 20 May 2019 10 31 July 2019 16 11 October 2019 22 22 December 2019
5 1 June 2019 11 12 August 2019 17 23 October 2019
6 13 June 2019 12 24 August 2019 18 4 November 2019

To collect reliable rice samples for feature analysis and model training, 21 regions were
investigated through field research. The croplands in some areas are shown in Figure 2.
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According to the field data, the sample sets were separated into rice and non-rice. The
temporal variation characteristics of different fields were discussed and summarized, and
the sample set was supplemented based on the time series analysis of SAR data and the
visual inspections of Google Earth optical images. The sample set was then divided into
training and test sets at a ratio of 8:2; the former was used for model training, and the latter
was used for validation. The information of the sample set is given in Table 2.

Table 2. Information of the sample set.

Field Research Plots

Crop Number of Plots Number of Pixels

Rice 10 1156
Corn 6 182

Others 5 504

Number of samples

Class Pixels for training (80%) Pixels for testing (20%) Total (100%)
Rice 4030 1008 5038

Non-rice 8640 2160 10,800

2.3. Methods

Using Sentinel-1 time series data, the flow chart of the proposed new rice mapping
method is shown in Figure 3.
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Figure 3. Flow chart of the proposed method.

First, the multitemporal intensity images are generated using the SLC data and the
precision orbit data, registered together, and then temporally and spatially filtered using
a De Grandi spatiotemporal filter. Intensity images are calibrated to sigma zero (σ0) in
decibel (dB) scale and geocoded with the SRTM-90 m DEM to generate 20 m resolution
images under WGS84 UTM 49 N projection.

For rice detection, water bodies will confuse the flood signal of rice, and buildings
and roads may lead to false positive results. Using high-precision land cover products to
generate masks of water bodies and buildings can reduce false alarms to a certain extent,
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reduce calculation by a certain amount and improve processing speed. The use of masks
can eliminate most water bodies, roads and buildings; reduce false alarms to a certain
extent; and improve processing speed. WorldCover is a 2020 global land cover product with
a resolution of 10 m [45] that is produced by ESA and several scientific research institutions
around the world using Sentinel-1 and -2 data. The product includes 11 land cover types,
with an overall accuracy of 80.7% in Asia. In this study, WorldCover is used to generate
water masks and building masks to remove false positive results.

Then, the backscattering characteristics of these time series data are analyzed, and
two characteristic quantities VH backscattering coefficient and (VV − VH)/(VV + VH) are
constructed to describe rice in different geographical environments. Both the time series of
VH and (VV − VH)/(VV + VH) are input into the designed DB-BiLSTM model to map rice.

2.3.1. Analysis and Characterization of Scattering Characteristics of Rice

Currently, VH polarization information is the most commonly used feature in rice
mapping of SAR data [13,46,47]. The average VH backscattering curve of 21 field survey
areas is shown in Figure 4.
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Figure 4. Crop time series of VH polarization for 21 field survey areas. (A total of seven crops,
respectively, rice, corn, sweet potato, litchi, sod, peanut, green plum).

The transplanting time of early rice in the study area is approximately April, and the
harvest time is approximately the end of July to the beginning of August. The transplanting
time of late rice is from the end of July to the beginning of August, and the harvest time is
approximately December. Figure 4 shows that there are great differences in the VH time
series curves of rice in different planting areas.

Rice areas 1–7 are concentrated rice planting areas with relatively flat terrain. Their
time series VH curves show that the backscattering coefficients in early April are low due
to the flooding period. With the growth of rice, the backscattering coefficients increase up
to their maximum values from the end of June to the beginning of July. After entering the
mature stage, the backscattering coefficients begin to decrease. After harvest is completed
in early August, the late rice begins to grow. Their curve exhibits the “bell shape” described
in [48,49], which is referred to as the “standard rice time series curve” (SRice) in this paper.
This type of rice has a marked flooding period signal and can be easily distinguished from
other non-rice crops.

Rice areas 8 to 10 are small rice areas scattered in hilly areas. Their VH backscattering
coefficients in the flooding period are similar to those of non-rice crops and overlap with
the time series curve of corn. In this study, this curve is expressed as the “non-standard rice
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time series curve” (NSRice). The rice in these areas is difficult to characterize using the VH
backscattering coefficient; thus, it is necessary to find a new characteristic parameter.

To identify small rice areas in hilly areas, a new feature is proposed to discriminate
rice with non-standard time series curves from other non-rice crops. The proposed feature
is defined as:

Featureband_k(i, j) =
VVband_k(i, j)−VHband_k(i, j)
VVband_k(i, j) + VHband_k(i, j)

(1)

where VV and VH time series data are images with height m, width n and band number c
VVband_k(i, j) is denoted as the pixel in the kth band of the ith row of the jth column of the
VV time series data. VHband_k(i, j) is denoted as the pixel in the kth band of the ith row of
the jth column of the VH time series data. The proposed feature is an image with height
m, width n and band number c. Featureband_k(i, j) is denoted as the pixel in the kth band
of the ith row of the jth column of the proposed feature. i = 1, 2, . . . , m, j = 1, 2, . . . , n and
k = 1, 2, . . . , c.

Figure 5 shows the average time series curve of (VV − VH)/(VV + VH) for 21 field
survey plots. Compared with the time series data of VH polarization, the red curves
(rice 8–rice 10) show better separability compared with non-rice crops. Specifically, the
nonstandard rice time series curves were primarily distributed above the time series curves
of non-rice crops, particularly during April and from August to December, reducing the
confusion between rice 8–10 and corn compared to the VH polarization. The feature values
of non-rice crops were generally low, and the time series curves were located below those
of rice plots with only a small proportion of overlapping.
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rice, corn, sweet potato, litchi, sod, peanut, green plum).

To explore the separability of the proposed feature, the morphological similarity
distances of crop time series curves in VH polarization and the combined feature (VV −
VH)/(VV + VH) were calculated. The morphological similarity distance [50] is defined
based on the classical Euclidean distance, considers the specific distribution differences of
each dimension of the features and measures the similarity by combining size and shape
factors. The p n−dimensional data Li = (li1, . . . lin)

T and Lj =
(
lj1, . . . ljn

)T , i, j = 1, 2, . . . , p,
and the morphological similarity distances of Li and Lj are defined as:

DMSD = DEuclid × (2− ASD/SAD) (2)

where DMSD is the morphological similarity distance between Li and Lj; DEuclid is the
Euclidean distance between Li and Lj; SAD is the Manhattan distance between Li and Lj;
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and ASD is the absolute value of the sum of all dimensional difference values between Li
and Lj:

DMSD
(

Li, Lj
)
=

√
∑n

k=1

(
lik − ljk

)2
×

2−

∣∣∣∑n
k=1

(
lik − ljk

)∣∣∣
∑n

k=1

∣∣∣lik − ljk

∣∣∣
. (3)

A greater distance of morphological similarity indicates less similarity between two
compared features. Figure 6 shows the morphological similarity distances of NSRice and
SRice with other classes.
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Figure 6a shows that the morphological similarity distances between NSRice and
non-rice crops are less than that between NSRice and SRice in VH polarization. NSRice
and non-rice crops shared a relatively high similarity in VH polarization, which is also
consistent with Figure 4. Under the characteristics of (VV − VH)/(VV + VH), the mor-
phological similarity distances between NSRice and non-rice crops are markedly higher,
even more than that between NSRice and SRice; thus, with the characteristics of (VV −
VH)/(VV + VH), NSRrice is different from other crops, making it easier to distinguish
them. In Figure 6b, similar improvements are also observed for SRice; the morphological
similarity distances calculated by (VV− VH)/(VV + VH) are marginally larger than the VH
polarization and are higher than those between SRice and NSRice. These facts demonstrate
that the proposed (VV − VH)/(VV + VH) feature is helpful for discriminating the NSRice
plots from other crops. Therefore, in this study, time series of VH polarization and (VV −
VH)/(VV + VH) are both considered to be the input features for the rice mapping task.

2.3.2. Dual Branch BiLSTM (DB-BiLSTM) Model

With their superior learning ability of time series, LSTM models are widely used in
text recognition, time series forecasting, natural language processing, computer vision and
other fields [51,52]. The LSTM cell can effectively mine the temporal dimensional features
of rice by controlling the memory unit with a gating mechanism, and then accomplish
the task of rice extraction with high accuracy [22,46]. The idea of BiLSTM is to input the
same time series into two LSTMs in the forward and backward directions, then concatenate
the two networks’ implicit layers together and finally access the output layer jointly for
prediction [53].

To fully learn the timing information of multiple features such as VH and (VV −
VH)/(VV + VH), a DB-BiLSTM model was designed. The DB-BiLSTM model took pixel-
level time series data as the input and yielded a predict category as the output. The
DB-BiLSTM model consisted of two branches of the BiLSTM layer, two fully connected
layers and a softmax activation function, as shown in Figure 7.
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Figure 7. Structure diagram of DB-BiLSTM model.

The input of branch 1 is the time series of VH polarization, and that of branch 2 is
the time series of (VV − VH)/(VV + VH). The size of the input time series is 22 × 1 due
to the 22 SAR observations. Each branch was composed of a two-layer BiLSTM with a
hidden layer dimension of 32, which combined the temporal variation characteristics from
the forward and backward directions with LSTM structures. First, time series data were
input into branch 1 and branch 2, respectively. Next, the outputs of the two branches were
connected to combine the high-dimensional temporal information extracted from the time
series of VH and (VV − VH)/(VV + VH) features. Subsequently, the dimensionality of the
connected high-dimensional information was reduced using two fully connected layers,
while retaining the useful information. Finally, using the softmax function, the classification
results were obtained. The input and output dimensions of each layer in the DB-BiLSTM
are shown in Table 3.

Table 3. The input and output dimensions of each layer in the DB-BiLSTM. BatchSize = 64.

Layers Input Output

Branch1/2 BatchSize × 22 × 1 BatchSize × 64
Concatenate BatchSize × 64, BatchSize × 64 BatchSize × 128

Fully Connected Layer1 BatchSize × 128 BatchSize × 32
Fully Connected Layer2 BatchSize × 32 BatchSize × 2

Softmax BatchSize × 2 BatchSize × 1

The designed dual branch structure can ensure an independent learning process of
the VH and (VV − VH)/(VV + VH) time series data. This structure reduces the possible
mutual interference caused by different magnitude orders and avoids the distortion of
information caused by the normalization operation to the original time series data. As a
result, the key information can be effectively learned from VH and (VV − VH)/(VV + VH)
features and combined to enhance the distinguishing ability of SRice, NSRice and other
non-rice crops.
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2.3.3. Accuracy Assessment

In this study, accuracy indicators such as overall accuracy, precision, recall, F1 and
kappa [54–56] were calculated based on the confusion matrix to measure the performance
of the model:

Overall Accuracy =
TP + TN

TP + TN + FN + FP
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2TP

2TP + FP + FN
(7)

Kappa =
accuracy− Pe

1− Pe
(8)

Pe =
(TP + FP)× (TP + FN) + (FN + TN)× (FP + TN)

(TP + TN + FN + FP)2 (9)

where TP is the number of correctly identified rice pixels; TN is the number of correctly
identified non-rice pixels; FP is the number of non-rice pixels that were mistakenly denoted
as rice; FN is the number of rice pixels that were omitted and labeled as non-rice; and Pe is
the expected accuracy.

The index of agreement (IOA) was used to measure the similarity of two rice maps:

IOA = 1− ∑n
k=1(xk − yk)

2

∑n
k=1(|xk − y|+ |yk − y|)2 (10)

where xk and yk represent the pixel values of the two rice maps; y denotes the mean value
of yk; and n is the number of pixels.

3. Results

To validate the effectiveness of the proposed feature and model, three experiments
were performed: (1) a comparison of rice mapping results based on VH, VH + VV and
VH + (VV − VH)/(VV + VH); (2) a comparison of the proposed method with the BiLSTM
model and RF classification method; and (3) an evaluation of the accuracy of the rice map
of Shanwei.

The DB-BiLSTM model was built with the PyTorch framework in Python 3.7 (Facebook,
Menlo Park, California, United States), and the version of PyTorch used in this study was
1.2.0. All calculations were performed on a Windows 10 workstation with an NVIDIA
GeForce GTX 1080 Ti GPU. The batch size was set to 64, and the learning rate was initialized
at 0.001 and was adjusted according to the training time. The attenuation step of the learning
rate was 10, and the multiplication factor of the updating learning rate was 0.1. The Adam
optimizer was used with the optimized loss function of the cross entropy function.

3.1. Comparison of Different Feature Combinations

To fully test the effect of the proposed features on rice mapping, the commonly used
VH and VH + VV features are compared with VH + (VV − VH)/(VV + VH) proposed
in this paper. Three different classifiers, including the RF algorithm, BiLSTM model and
DB-BiLSTM model in this paper, are used. The performances of the features are evaluated
by the accuracy evaluation indicators mentioned in Section 2.2 with the test dataset.

The hidden layer dimension of each LSTM unit in the DB-BiLSTM model is set to 32.
To ensure a fair comparison, the parameter setting of the BiLSTM model is the same as that
of the DB-BiLSTM model, which is also composed of two-layer LSTM units and two fully
connected layers.
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The classification accuracy of different features is shown in Table 4. The feature
combinations proposed in all classifiers achieve the highest overall accuracy, F1 and kappa
compared with other features. The maximum improvements of overall accuracy of each
classifier using VH + (VV − VH)/(VV + VH) are 4.45%, 0.65% and 2.83%, respectively. The
maximum improvements of F1 are 3.47%, 0.5% and 2.43%, respectively. These results show
that the proposed combination of VH + (VV − VH)/(VV + VH) is the most effective feature
combination to distinguish rice and non-rice.

Table 4. Accuracy assessment of different features.

Features Overall Accuracy (%) Precision (%) Recall (%) F1 (%) Kappa

RF

VH 87.30 91.35 88.74 90.03 0.7255
VH + VV 86.59 87.98 90.40 89.17 0.7157

VH+ VV−VH
VV+VH 91.04 89.79 95.67 92.64 0.8123

BiLSTM

VH 93.43 97.58 92.38 94.91 0.8567
VH + VV 93.32 98.14 91.09 94.48 0.8606

VH+ VV−VH
VV+VH 93.97 99.43 90.92 94.98 0.8748

DB-BiLSTM

VH + VV 94.46 98.80 92.30 95.44 0.8841
VH+ VV−VH

VV+VH 97.29 99.11 96.54 97.81 0.9424

3.2. Comparison of Different Methods

In this section, based on the proposed VH + (VV − VH)/(VV + VH), the RF, BiLSTM
model and the proposed DB-BiLSTM model are compared. As shown in Table 4, DB-
BiLSTM achieves the highest overall accuracy (up to 97.29%). Its overall accuracy is 6.25%
and 3.32% higher than that of RF and BiLSTM, respectively. Recall, F1 and kappa of the
DB-BiLSTM model are also higher than those of RF and BiLSTM and RF. These results
show that the performance of the DB-BiLSTM model is markedly better than that of the RF
and BiLSTM models.

Additionally, to demonstrate the ability of the proposed method to more fully extract
rice fields that exhibit non-standard rice backscatter sequence patterns, the classification
results of the three methods based on (VV − VH)/(VV + VH) are analyzed in more detail.
The accuracies of the two types of rice and non-rice were evaluated. As shown in Figure 8,
DB-BiLSTM achieved the highest accuracy for all three land cover types. Its accuracy in
NSRice was 37.35% and 13.25% higher than BiLSTM and RF, respectively. These results
showed that the proposed method was more suitable for the rice area extraction task of
non-standard rice.

A test area was selected for detailed comparative analysis, as shown in Figure 9.
Figure 9b shows the classification results of RF classification. There were many missing
areas, which may be due to the limited learning ability of RF with time series information.
The areas missed in the classification results of BiLSTM are shown in Figure 9c. This method
produced fewer missing areas, and the plots were relatively complete. The signal of the
rice flooding period in the missing area of BiLSTM and RF was relatively weak. Compared
with the classification results of BiLSTM and RF, the rice plots in the classification results of
DB-BiLSTM in Figure 9d were relatively complete, and fewer data were missing. These
results showed that the proposed method had a better discrimination ability between rice
and non-rice.
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3.3. Rice Mapping

The rice map of Shanwei city in 2019 based on the proposed method is shown in
Figure 10. The results in Table 4 are based on the accuracy of field measured data. The
classification accuracy of the rice map is high, with precision of 99.11% and recall of 96.54%.
The cropland map was obtained based on the WorldCover product, as shown in Figure 11.
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The comparison between the rice map and cropland map showed that rice was distributed
within the spatial distribution of cropland.
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Pan et al. used multitemporal Sentinel-1 data and a weighted dynamic time planning
method to obtain early and late rice maps in 2019 [21]. The early and late rice maps were
combined to obtain the annual rice map in 2019. The study area with field data was
selected, and the rice results of this study were compared with Pan et al.’s results, as shown
in Figure 12. The rice map from this study is slightly different from the results of [21],
but the spatial pattern of the rice plots is similar, and the large rice plots in the proposed
results are more complete. In addition, the IOA of the two rice maps was calculated. The
higher the IOA is, the better the consistency of the two rice maps. The IOA is 0.8322, which
indicates that the two rice maps were highly correlated. These results showed that the
proposed rice map was credible.
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4. Discussion

In this study, the regularity of temporal backscatter curves of tropical or subtropical
rice was analyzed using multitemporal SAR data. The SAR rice index (VV − VH)/(VV
+ VH) was found to be more suitable for hilly areas. Combined with the common VH
features, effective extraction of rice mapping is achieved, and good results are achieved
in the comparison and verification of various classifiers. The proposed (VV − VH)/(VV
+ VH) feature can effectively distinguish rice and non-rice crops, and can accurately de-
scribe paddy fields in complex tropical or subtropical hilly areas. Therefore, the overall
performance of rice mapping is markedly improved.

In many classification methods, there was no doubt that DB-BiLSTM achieved the
best classification performance. As shown in Table 4, F1 of DB-BiLSTM was as high as
97.81%, and kappa was as high as 0.9424. The classification accuracy of DB-BiLSTM in SRice
and non-rice was 99.19% and 98.54%, respectively, as shown in Figure 8. Concurrently,
compared with BiLSTM and RF, DB-BiLSTM improved the classification accuracy of NSRice
by up to 37.35%. The dual branch structure of DB-BiLSTM ensures the independent learning
of different features and avoids the mutual interference of different order features of
magnitude. In addition, the proposed model has strong expansibility. The branches of
the proposed model can be extended to accommodate more feature inputs. The proposed
model can also be used for changes in rice production. For example, the rice time series
before and after are input into the model to obtain the change monitoring results of rice.

As shown by the comparisons with other features and other frequently used models
and a rice map obtained from another study, the proposed method achieves good results.
This method can improve the extraction effect of rice with small plots, scattered distribution
and no marked flooding period. The rice map obtained by the proposed method has
demonstrated practical value in rice extraction tasks in tropical and subtropical hilly areas.
However, there remain some deficiencies in the proposed method. For example, some
paths between the rice fields were misclassified as rice due to insufficient data resolution.
However, these shortcomings could be easily corrected via postprocessing or by improving
the accuracies of ancillary data.

5. Conclusions

To solve the problem of missing detection of rice in subtropical hilly rice areas where
the signal of the flooding period is weak, this study combines the new characteristic
parameters and the DB-BiLSTM model to develop an extraction method for rice areas in
subtropical hilly areas and creates a rice map of the city of Shanwei in China using 22
Sentinel-1 data in 2019. Results showed that the VH + (VV − VH)/(VV + VH) feature
combination could effectively distinguish standard and non-standard rice from non-rice
crops. The overall accuracy of the model on the test set was 97.29%, which was better than
the results of the BiLSTM and RF classifiers. In addition, the rice distribution obtained by
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the proposed method was consistent with that obtained by other studies. The proposed
method thus exhibits a better ability to maintain the good integrity of paddy fields.

In the future, we plan to expand existing features and models of rice mapping to solve
more complex rice mapping problems in tropical or subtropical areas.
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