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Abstract: Building segmentation for Unmanned Aerial Vehicle (UAV) imagery usually requires
pixel-level labels, which are time-consuming and expensive to collect. Weakly supervised semantic
segmentation methods for image-level labeling have recently achieved promising performance in
natural scenes, but there have been few studies on UAV remote sensing imagery. In this paper, we
propose a reliable label-supervised pixel attention mechanism for building segmentation in UAV
imagery. Our method is based on the class activation map. However, classification networks tend
to capture discriminative parts of the object and are insensitive to over-activation; therefore, class
activation maps cannot directly guide segmentation network training. To overcome these challenges,
we first design a Pixel Attention Module that captures rich contextual relationships, which can further
mine more discriminative regions, in order to obtain a modified class activation map. Then, we
use the initial seeds generated by the classification network to synthesize reliable labels. Finally,
we design a reliable label loss, which is defined as the sum of the pixel-level differences between
the reliable labels and the modified class activation map. Notably, the reliable label loss can handle
over-activation. The preceding steps can significantly improve the quality of the pseudo-labels.
Experiments on our home-made UAV data set indicate that our method can achieve 88.8% mIoU on
the test set, outperforming previous state-of-the-art weakly supervised methods.

Keywords: weakly supervised segmentation; building segmentation; UAV image; remote sensing;
deep learning

1. Introduction

Building segmentation plays an important role in digital cities, disaster assessment,
and infrastructure planning and management. In recent years, with the development of
UAV technology, building segmentation has become an important research direction in the
high-resolution image segmentation field.

With the development of deep convolutional neural networks (DCNNs), the seman-
tic segmentation task has witnessed great progress [1–3]. In the field of remote sensing,
some segmentation methods based on DCNN have achieved excellent results in building
segmentation, such as U-Net [4] and Deeplabv3+ [5]. All of these methods are based on
precise pixel-level labels, which means that pixel-level labels are critical for training seman-
tic segmentation networks. However, pixel-level labels are often lacking, and collecting
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them is a time-consuming and expensive task. Statistical results have shown that, for a
512 × 512 pixel remote sensing image, it takes 164.73 s to manually obtain pixel-level labels,
while an image-level label only takes 1 s [6].

In order to address the lack of pixel-level labels, many studies have focused on the
use of weakly supervised semantic segmentation (WSSS) for the semantic segmentation
task [7,8]. WSSS can achieve pixel-level segmentation using only image-level labels.

WSSS methods are mainly based on the class activation map (CAM) [9]. The CAM
trains the classification network through image-level labels, allowing the classifier to
obtain the location maps of the target class. Although CAMs can recognize the most
discriminative parts of objects, there are still three major obstacles that prevent them
from being directly used as pseudo-labels for segmentation network training: (1) under-
activation—CAMs tends to be highly responsive to parts of the object, rather than the
whole region; (2) over-activation—the background region is incorrectly activated as the
foreground; and (3) inconsistency—using different scaling transformations for the same
input image can result in significant inconsistencies in the generated CAMs [10]. The root
cause of these phenomena is the supervision gap between fully supervised and weakly
supervised semantic segmentation.

In this paper, we propose a reliable label-supervised pixel attention mechanism (RSPA)
to overcome the challenges associated with WSSS. We design rules for the generation of
reliable labels. Reliable labels provide constraints that address the CAM over-activation
problem. To solve the problem of under-activation in the original CAM, we introduce
the pixel attention module (PAM) to obtain a modified CAM. We use the complementary
relationship between the modified CAM and reliable labels to generate better pseudo-labels.
We also design a reliable label loss, defined as the sum of the pixel-level differences between
the reliable labels and the modified CAM. To address CAM inconsistency, we utilize the
SEAM [10] equivariant regularization loss. The RSPA is implemented using a Siamese
network structure with equivariant regularization loss.

The contributions of this work can be summarized as follows:

1. We propose a new, weakly supervised building segmentation network, RSPA, which
can produce better pseudo-labels to train segmentation networks, resulting in better
segmentation results.

2. We use the initial seeds to synthesize reliable labels, then use reliable labels as the
constraints of the network to address CAM over-activation. PAM is proposed to
capture long-range contextual information and find inter-pixel similarities. This can
significantly enable the CAM to obtain more discriminative regions of the object.

3. The proposed reliable label loss takes full advantage of the complementary relation-
ship between the modified CAM and reliable labels.

2. Related Works

In this section, we introduce fully supervised building segmentation methods and
weakly supervised semantic segmentation for natural images and remote sensing images.

2.1. Fully Supervised Building Segmentation

In the past few years, with the development of deep learning techniques, many build-
ing segmentation methods based on convolutional neural networks have emerged [11].

Benefiting from their advantages in terms of the utilization of multi-level features,
building segmentation methods based on encoder–decoder architectures have been widely
used. For example, MA-FCN [12] and SiU-Net [13] are building segmentation networks
based on FCN [14] and U-Net [4], respectively.

With the continuous development of segmentation models, dilated convolution, multi-
scale pooling, and attention mechanisms have been introduced to enhance the robustness
of segmentation networks to building scale changes. DSSNet [15] addresses the problem
of resolution loss in hyperspectral images through the use of dilated convolutions, which
has shown promising performance in hyperspectral image classification. Ji et al. [16] have
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embedded the Atrous Spatial Pyramid Pooling module [17] into a convolutional network,
effectively improving the accuracy and robustness of building recognition. ASF-NET [18]
uses an adaptive network structure to adjust the receptive field and enhance the useful
feature information, thus obtaining high-precision building recognition results. All of the
segmentation networks mentioned above require pixel-level labels as supervision in the
training process; however, collecting pixel-level labels is time-consuming and expensive.

2.2. Weakly Supervised Semantic Segmentation

WSSS uses weak supervision, such as image-level labels [6,19], points [20,21], scrib-
bles [22–24], and bounding boxes [25–27], in an attempt to achieve the same segmentation
performance as fully supervised methods. Among these, image-level labels possess the
weakest supervision information. In this paper, we study weakly supervised semantic
segmentation based on image-level labels.

2.2.1. Weakly Supervised Semantic Segmentation of Natural Images

Adversarial erasing [19,28,29] involves erasing the most salient parts in the CAM,
then driving the classification network to mine other salient regions from other regions.
In [30,31], the affinity between pixels was calculated. In [32], a common attention classifica-
tion network was proposed to discover complete object regions by processing cross-image
semantics. SEAM [10] combines self-attention with equivariant regularization to ensure
the consistency of the CAM under different transformations. BES [33] maintains the consis-
tency of the segmentation and boundary by synthesizing boundary labels and providing
boundary constraints; however, they are prone to over-activation because of their lack of
constraints. In response, [34–37] have used saliency maps as constraints to address the
problem of over-activation; however, saliency maps require additional costs, making them
somewhat far from weakly supervised learning.

2.2.2. Weakly Supervised Semantic Segmentation of Remote Sensing Images

WSF-NET [6] uses a binary segmentation framework to solve the class imbalance
problem and introduces a feature fusion network to adapt to the unique characteristics of
targets in remote sensing images; however, this method does not consider the problem
of over-activation and only hopes to find more target objects through a class balancing
strategy and feature fusion network. SPMF-Net [38] takes image-level labels as supervision
information in a classification network that combines superpixel pooling and multi-scale
feature fusion structures. This method introduces superpixels as the supervision of the
network in order to provide low-level feature information. This leads to the problem that
the network depends on the accuracy of superpixel segmentation, and poor superpixels
will lead to misclassification. U-CAM [21] uses image-level labels to generate CAMs.
In contrast to other methods that only use image-level labels, this method introduces
point-level labels as supervision to provide the location information of objects; however,
these point-level labels require additional costs. CDSA [39] uses image-level labels to
obtain location maps and provides structural information through the source domain. The
structural information of the source domain can solve the problem of CAM over-activation.
However, the acquisition of source domain structure information requires a large number
of pixel-level labels, which is far from weakly supervised learning. Although the above
methods have achieved remarkable results on remote sensing images, most of them lack
consideration of the CAM over-activation issue. CDSA considers this issue but requires
additional pixel-level labels as supervision.

In this paper, we not only solve CAM under-activation but also consider CAM over-
activation by using only image-level labels.
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3. Methodology

In this section, our method is described in detail. Figure 1 shows a popular weakly
supervised segmentation process; our method also follows this route. Our WSSS method
can be roughly divided into two stages: (1) synthesizing pseudo-labels of training images,
given their image-level labels; and (2) training the segmentation model using the synthetic
pseudo-labels. Here, our contributions are mainly in the first stage; namely, in terms of
generating accurate pseudo-labels. Figure 2 shows our RSPA network framework.
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Figure 1. Weakly supervised segmentation: (a) Stage 1. Synthesizing pseudo-labels by weak supervi-
sion; and (b) Stage 2. Using pseudo-labels to supervise segmentation network training.
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Figure 2. Our proposed RSPA framework is based on a Siamese network. First, the initial seeds are
obtained through the classification network, which are then used to synthesize reliable labels. PAM
can further mine more discriminative regions to obtain modified CAMs. The RSPA is the integration
of PAM and reliable label supervision. GMP denotes Global Max Pooling. The affine transformation
is rescaling.

3.1. Class Activation Map (CAM)

CAMs play an important role in WSSS, bridging between image and pixel-level labels.
At present, most WSSS methods compute CAMs based on a convolutional neural network
with Global Average Pooling before the last classification layer. In contrast to current
WSSS methods, we propose to use Global Max Pooling (GMP) instead of Global Average
Pooling (GAP) in the CAM network structure. As existing WSSS methods are commonly
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used in multi-class natural scene data sets, using GAP can motivate the network to find
more discriminative regions of multiple categories. However, this paper mainly focuses on
the binary segmentation of buildings, and using GMP is more in line with this demand.
As GMP encourages the network to identify the most discriminative parts of the image,
the low scores (noises) of the image regions are not taken into account when calculating the
CAM. A class activation map CAM(x) from an image x can be computed as follows:

CAMc(x) = wT
c f (x), (1)

where wc denotes the weights of the final classification layer for class c, and f (x) is the
feature map of x prior to GMP.

3.2. Synthesizing Reliable Labels

By changing the calculation method of CAM, the initial seeds can more accurately
identify the discriminative regions of objects but still have the problems of over-activation
and missing buildings. In order to eliminate over-activation and generate complete reliable
labels, we design the following rules.

To obtain the complete reliable regions of the object, we first normalize the CAM
calculated in Section 3.1 such that the maximum activation is equal to 1:

CAMB(x) =
CAMB(x)

max CAMB(x)
, (2)

where B is the building class. Then, we design a background activation map, given by

CAMbg(x) = {1−CAMB(x)}α, (3)

where bg denotes the background and α ≥ 1 denotes a hyperparameter that adjusts
background reliable scores. We reduce CAMbg by increasing α in Equation (3) such that
the foreground scores dominate most regions of the CAM. Finally, dCRF [40] is applied to
refine the CAM. dCRF encourages similar pixels to be assigned the same label, while pixels
with large differences are assigned different labels.

The next step is to solve over-activation and obtain clear boundaries. The CAM
calculated through the classification network is represented by pixel probabilities, where
PB

i can be used to represent the probability that pixel i belongs to category B. As the CAM
represented by pixel-wise class probability is not conducive to the synthesis of reliable
labels, we use the threshold method to obtain the class label corresponding to each pixel.
If PB

i is greater than the foreground threshold θ f g, the pixel i is a building label; otherwise,
it is a background label.

We determine a sliding window of size w, centered on pixel i. We use SB
i to represent

the number of pixels allocated label B in the window. The proportion of this class in this
window is defined as OB

i :

OB
i =

SB
i

w× w
. (4)

Pixel i will be marked as a reliable pixel if it meets the following criteria: if the
proportion of class B in the window is greater than θr, then the pixel i will be identified as a
reliable pixel. Formally, the reliable label Ri for pixel i is computed as follows:

Ri =

{
1 if OB

i ≥ θr

0 otherwise ,
(5)

where θr is threshold for the condition. In particular, Ri = 1 denotes that pixel i belongs to
the reliable foreground, and Ri = 0 denotes that pixel i belongs to the background.
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3.3. Pixel Attention Module (PAM)

Although the CAM calculated in Section 3.1 can accurately cover the most discrimi-
native regions in the target object, CAMs can only define parts of objects, rather than the
whole region. To resolve CAM under-activation, we introduce the Pixel Attention Module.

As shown in Figure 2, we first obtain a high-level feature map f ∈ RH×W×C by
ResNet38 [41] as the input of the PAM, where the size of f is 1/8 of the input image. We do
not consider low-level features, as low-level features in UAV images contain a lot of details.
If a large amount of unfiltered detailed information is directly fused into the attention
map, it will cause the network to learn the incorrect information, resulting in overfitting of
the results.

We establish inter-pixel similarity through the following steps: (1) we feed the feature
map f into a convolution layer with a kernel size of 1 in order to obtain the feature maps Q
and K. The feature values in position i of Q and K are denoted as Qi and Ki, respectively.
We then multiply the matrices between the transpose of Q and K and apply the softmax
layer to compute the attention map A:

Aji =
exp

(
Qi · Kj

)
∑N

i=1 exp
(
Qi · Kj

) , (6)

where Aji measures the similarity between the ith position and the jth position; H, W, C
denote the height, width, and channel sizes of feature maps, respectively; and N = H×W
is the number of pixels. Similar features of two pixels help to determine a greater correlation
between them. (2) We feed the feature map f into the convolution layer to obtain the
feature map V. The feature value in position i of V is denoted as Vi. The residual module is
obtained by matrix multiplication of the feature map V and attention map A. We multiply
the residual module by a hyperparameter λ and perform an element-wise sum operation
with f to obtain the final output f̂ ; see Figure 3), as follows:

f̂ j = λ
N

∑
i=1

(
AjiVi

)
+ f j, (7)

where N is the number of pixels, j and i denote the positions of the feature map, and λ is
initialized as 0 and gradually learns to assign more weights.

The PAM obtains global contextual information by extending the local features gener-
ated by the residual network, in order to establish rich contextual relations, and thus can
mine more discriminative regions of the object.
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Figure 3. Pixel Attention Module. H, W, C denote height, width, and channel sizes of feature maps,
respectively, and k denotes the kernel size.
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3.4. Loss Design

Classification loss: We use GMP at the end of the network to obtain the prediction proba-
bility vector p for image classification. To train the classification network, we use the binary
cross-entropy loss function:

`cls(p, y) =
1

N∗
N∗

∑
i
−[yi · log(pi) + (1− yi) · log(1− pi)], (8)

where 0 and 1 denote background and foreground labels, respectively; yi denotes the
classification label of sample i; and N∗ represents the number of training samples. As our
network uses a Siamese network structure, the output includes two predictive probability
vectors, po and pt, where po denotes the prediction probability vector of the original image
and pt comes from the branch with the transformed image. The classification loss is the
sum of the two branch results:

Lcls =
1
2
(
`cls(po, y) + `cls

(
pt, y

))
. (9)

Reliable label loss: The introduction of the PAM has the advantage of mining more
discriminative regions, but it may also inevitably lead to over-activation. To take full
advantage of the complementary relationship between the modified CAM and reliable
labels, we use the Mean Square Error (MSE) as the loss function. In contrast to the Mean
Absolute Error (MAE), MSE is sensitive to outliers, which correspond to over-activation.
This advantage of MSE can allow us to address the over-activation of modified CAMs
while preserving the complementary parts of the modified CAM and reliable labels. In the
experimental results, we provide the quantitative results of reliable labels under different
losses. In this paper, the loss function is defined as the pixel-level difference between the
reliable labels and modified CAM, as follows:

`r = ‖M− R‖2 =
1

H ·W ‖M− R‖2, (10)

where M denotes the modified CAM and R denotes reliable label. Considering the two-
branch structure of the Siamese Network, Equation (10) can be divided into

`r1 = ‖Mo − R‖2, (11)

`r2 =
∥∥Mt − F(R)

∥∥
2, (12)

where F(·) denotes the affine transformation, Mo denotes the CAM obtained from the origi-
nal input image, and Mt denotes the CAM which comes from the branch with transformed
image. The Reliable Label loss is the sum of the two branch results:

Lr =
1
2
(lr1 + lr2). (13)

Equivariant regularization loss (ER): In order to maintain the consistency of the output,
equivariant regularization loss is considered:

Ler =
∥∥F(Mo)−Mt∥∥

1. (14)

The final loss of our network framework is defined as follows:

Lall = Lcls + Lr + Ler. (15)
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4. Experiments
4.1. Preparation for Experiments
4.1.1. Data Set

The Majiagou data set was collected using a DJI UAV platform in Majiagou, Zigui,
Yichang, Hubei province, in March 2018. The resolution of the images is 6000 × 8000 pixels.
The size of the data set is 600, covering an area of 3 square kilometers, including building
types with different colors, sizes, and uses. Given the large scale of these images, the limited
server performance, and the scattered distribution of buildings, we cropped the images into
sub-images with a resolution of 1024 × 682 pixels. Finally, the processed Majiagou data set
consisted of two classes, with 2031 and 704 images for training and testing, respectively.

4.1.2. Evaluation Metrics

In order to quantitatively analyze the comparison between our method and other
methods, overall accuracy (OA), mean pixel intersection-over-union (mIoU), and over-
activation rate (OAR) were adopted as the evaluation metrics. mIoU is defined as

mIoU =
1
c

c

∑
i=1

TP
TP + FP + FN

, (16)

IoU is defined as
IoU =

TP
TP + FP + FN

, (17)

and OA is defined as
OA =

TP + TN
TP + TN + FP + FN

, (18)

where TP, FP, TN, FN, and c denote the numbers of true positives, false positives, true
negatives, false negatives, and categories, respectively.

We found that the background often appears with the target object, leading to over-
activation. To measure the degree of over-activation, we defined a metric

OAR =
FPbg,B

TPB
, (19)

where FPbg,B is the number of pixels misclassified as the target class B (building class) for
the background class bg, and TPB is the number of true positive predictions of class B.

4.1.3. Implementation Details

We chose RetNet38 as our backbone network, with an output stride of 8. All backbone
models were pre-trained on ImageNet [42]. During training, our RSPA was a shared-weight
Siamese network. We used 5000 training iterations, with a learning rate of 0.0001 (0.01 for
the last convolutional layer). Our method adopts rescaling with a downsampling rate of
0.6 during network training. We augmented the data through random scaling and flipping.
For the segmentation network, we used the classical semantic segmentation model Deeplab-
LargeFOV (V1) [43], where the backbone network was ResNet38. All experiments were
performed on an NVIDIA GeForce GTX 3090 with 24G frame buffer.

Parameter settings: α in Equation (3) was set to 32. θ f g was set to 0.3. w in Equation (4)
was set to 13. θr in Equation (5) was set to 0.8.

4.2. Analysis of the RSPA
4.2.1. Improving the Quality of the Initial Seeds

The quality of the initial seeds helps to produce better pseudo-labels. However,
the initial seeds generated by the original CAM have problems associated with over-
activation and boundary blurring. To solve these problems, we used GMP instead of GAP
before the last classification layer. In order to further analyze the improvement effect of
GMP, we provide both quantitative and qualitative results relating to initial seeds under
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the different pooling methods (see Figure 4, Table 1). Compared with the initial seeds
produced by GAP, the initial seeds produced by GMP increased the mIoU by 3.3%. From a
qualitative point of view, the initial seeds produced by GAP cannot accurately identify
narrow backgrounds between dense buildings, resulting in over-activation and a lack of
clear boundaries (as shown in Figure 4, green boxes). The results indicate that the use of
GMP can improve the quality of the initial seeds.

 !"  #"  $"  %"

Figure 4. Different pooling methods of initial seeds on Majiagou data set training images. The green
boxes represent regions of boundary blurring: (a) images; (b) ground truth; (c) initial seeds with GAP;
and (d) initial seeds with GMP.

Table 1. mIoU (%) of the initial seeds on Majiagou data set training images.

Method Initial Seeds

CAM (GAP) 74.9
CAM (GMP) 78.2

4.2.2. Comparison with Baseline (SEAM)

Table 2 details the ablation experiments considering each module. It shows that
using the PAM module and a single branch network structure provided a significant
improvement (of 3.4% over CAM and even 1.8% better than baseline). This proves that our
method exceeds the baseline, even without using the Siamese Network and equivariant
regularization. On this basis, the Siamese Network and equivariant regularization were
added, and the mIoU of pseudo-labels was increased by 1.1%. Finally, with reliable label
loss, the mIoU of our pseudo labels increased to 86.3%. This demonstrates the effectiveness
of PAM and reliable label loss.
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Table 2. Ablation experiments for each part of RSPA. PAM, Pixel Attention Module; SN, Siamese
Network; ER, equivariant regularization.

Baseline CAM PAM SN and ER Reliable
Label Loss mIoU (%)

X 79.8
X 78.2
X X 81.6
X X X 82.7
X X X X 86.3

As shown in Figure 5, we compare our attention module (PAM) with the baseline
attention module in our network framework. With the baseline attention module, pseudo-
labels appeared to show overfitting in the network training (see Figure 5b,c). Background
pixels are gradually misidentified as foreground. Better results were obtained with the
PAM module.

 !"  #"

 $"

 %"

 &"  '"

Figure 5. Pseudo-labels obtained with different modules: (a) image; (b) pseudo-labels with baseline
attention module (1000 iterations); (c) pseudo-labels with baseline attention module (5000 iterations);
(d) ground truth; (e) pseudo-labels with PAM (1000 iterations); and (f) pseudo-labels with PAM
(5000 iterations). The green box represents regions of over-activation.

4.2.3. Visualization of Pixel Attention Module

For the Pixel Attention Module, the attention map can be calculated by Equation (6),
and its size is (H ×W) × (H ×W), which means that, for each specific point in the image,
there is a corresponding attention map corresponding to it, with size (H × W). As shown in
Figure 6, the red crosses represent the selected pixel points. By observing their attention
maps (the third column), it can be seen that the corresponding attention maps of these
points highlight most of the areas where the buildings are located. To further demonstrate
the effect of the Pixel Attention Module, we present the results of pseudo-labels with
and without the Pixel Attention Module. As shown in Figure 7, with the Pixel Attention
Module, the pseudo-label results were better. The Pixel Attention Module is more capable
of capturing long-range dependencies and establishing inter-pixel similarity.
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 !"  #"  $"

Figure 6. The visualization of attention maps: (a) images; (b) ground truth; and (c) attention maps.
Note that the red crosses denote the selected pixels, and blue pixels in the attention map represent
similar features.

 !"  #"  $"  %"

Figure 7. Visualization results of Pixel Attention Module: (a) images; (b) ground truth; (c) pseudo-
labels without PAM; and (d) pseudo-labels with PAM.

4.2.4. Handling over-Activation

Table 3 shows that, compared with other methods, the value of OAR calculated with
our method was smaller, meaning that our method presented less over-activation. The
pseudo-labels generated by our method can thus cover the target objects more accurately.
Therefore, the pseudo-labels generated by our method are more consistent with the real
segmentation labels.
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Table 3. Comparison with state-of-the-art methods for handling the over-activation problem. OAR
(%; the lower the better). IoU (%; the higher the better).

Method OAR IoU

AffinityNet [30] 65.50 57.42
IRN [31] 50.19 64.84

SEAM (Baseline) [10] 48.75 65.24
BES [33] 53.86 63.22

AdvCAM [44] 35.47 70.10
Ours 22.36 75.53

4.2.5. Reliable Label Loss

Table 4 and Figure 8 compare different losses from quantitative and qualitative per-
spectives, respectively. Compared with MAE, using MSE elevated the mIoU by 2.01%.
As shown in Figure 8, our result was complementary, segmenting out all the buildings and
solving the problem of over-activation.

 !"  #"  $"

 %"  &"  '"

Figure 8. Results of pseudo-labels at different losses: (a) image; (b) ground truth; (c) reliable label;
(d) modified CAM; (e) pseudo-label with MAE; and (f) pseudo-label with MSE. Note that the pseudo-
label with MSE was better than the pseudo-label with MAE.

Table 4. mIoU (%) of the pseudo-labels with different loss functions.

Loss Function mIoU

MAE 84.24
MSE 86.25

4.3. Comparison with State-of-the-Art
4.3.1. Accuracy of Pseudo-Labels

In order to further elevate their accuracy, AffinityNet and IRN are usually used to refine
pseudo-labels. Measuring the accuracy of the pseudo-labels is a common protocol in WSSS,
as pseudo-labels of the train set are used to supervise the segmentation model. The quality
of the pseudo-labels largely determines the final result of semantic segmentation. Table 5
summarizes the accuracy of the pseudo-labels, and it can be seen that our method was
significantly better than the other methods. Our pseudo-labels increased the mIoU by
13.2% compared to the baseline. Our method achieved 86.25% without refinement. Figure 9
visualizes the pseudo-labels of our method and other methods. It can be seen that the
problem of over-activation was more common in other methods, while our pseudo-labels
had clearer boundaries and less over-activation.
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Table 5. Accuracy (mIoU%) of pseudo-labels evaluated on the Majiagou training set. The best score is
shown in bold throughout all experiments.

Method w/o Refinement w/AffinityNet w/IRN

AffinityNet [30] 74.89 - -
IRN [31] 79.53 - -

SEAM (Baseline) [10] 73.05 79.80 -
BES [33] 78.52 - -

AdvCAM [44] 76.17 - 82.25
Ours 86.25 - -

 !"
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Figure 9. Qualitative comparison of pseudo-labels on Majiagou training set: (a) images; (b) ground
truth; (c) AffinityNet; (d) IRN; (e) SEAM; (f) BES; (g) AdvCAM; and (h) ours.
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4.3.2. Accuracy of Segmentation Maps

As shown in Table 5, the pseudo-labels we generated were accurate enough without
any additional refinement. We used the pseudo-labels to train the classical segmentation
model DeeplabV1 and obtained the final segmentation results. Table 6 and Figure 10
provide quantitative and qualitative results, respectively, demonstrating the superiority of
our method. Compared to the baseline, our RSPA increased the mIoU by 6.7%. With our
method, the mIoU reached 88.8% and the OA reached 98.5%. As shown in Figure 10,
the comparison methods cannot accurately identify the narrow backgrounds between
dense buildings, resulting in a loss of clear boundaries of buildings. Our results showed
clear boundaries and could accurately segment buildings. Note that this performance
improvement stemmed from our accurate pseudo-labels.
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Figure 10. Qualitative comparison of segmentation results on Majiagou test set. (a) Images;
(b) ground-truth; (c) AffinityNet; (d) IRN; (e) SEAM; (f) BES; (g) AdvCAM; and (h) ours.
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Table 6. Segmentation results on the Majiagou test set. The best score is in bold throughout
all experiments.

Method OA (%) mIoU (%)

AffinityNet [30] 95.7 77.1
IRN [31] 97.1 82.3

SEAM (Baseline) [10] 97.1 82.1
BES [33] 97.0 82.0

AdvCAM [44] 97.8 85.6
Ours 98.5 88.8

5. Discussion

As shown in Table 6, compared with the state-of-the-art WSSS methods, we obtained
the best performance. Our mIoU (88.8%) was 6.7% higher than that of SEAM (82.1%). We
argue that this performance improvement was due to the fact that we generated more
accurate pseudo-labels. The quality of the pseudo-labels largely determines the final
semantic segmentation result.

It can be seen from Figure 9 that over-activation and boundary blurring were common
problems in the comparison methods. This is because most of the previous studies on
WSSS methods have focused on solving CAM under-activation, while few studies have
investigated the problem of CAM over-activation. There are also some methods that try
to address CAM over-activation by adding constraints while solving the CAM under-
activation; however, these methods do not appear to work well. As shown in Table 3,
AffinityNet [30] had the most severe over-activation, as it mines discriminative regions
by calculating the affinity between pixels but does not consider over-activation. IRN [31]
and BES [33] have added boundary constraints on the basis of AffinityNet, but the ef-
fect of the boundary constraint is not ideal. The equivariant regularization proposed by
SEAM [10] can inhibit over-activation, to a certain extent; however, the effect is not obvious.
AdvCAM [44] solves the over-activation problem by introducing a regularization term
to suppress the scores of the background categories. Compared to these methods, our
method solves CAM over-activation more effectively. In order to solve the problem of
over-activation, we first changed the CAM calculation method to obtain more accurate
initial seeds. As shown in Figure 4, the initial seeds calculated by GAP presented obvious
over-activation and blurred boundary problems, while the initial seeds calculated by GMP
were better. Then, we used these initial seeds to synthesize reliable labels. Reliable labels
provide constraints to overcome over-activation. To solve the problem of under-activation,
we used PAM to capture long-range contextual information and find inter-pixel similarity
(see Figures 7 and 6). Table 2 details the improvements for each strategy in our method.

Although the pseudo-labels generated by our method achieved good results, there
were still some problems. We can see from Figure 11 that the pseudo labels generated by
our method could not identify all of the buildings in the image. Our pseudo-labels can
accurately identify most of the buildings in the image, but when the color of the building is
close to the color of the road and there is no obvious visual height difference, our method
cannot separate the building from the background. Using such pseudo-labels to train a
segmentation network will inevitably affect the segmentation result. In the future, we
intend to address this issue and focus on how to generate more accurate pseudo-labels.
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Figure 11. Comparison of pseudo-labels. Red boxes represent regions of under-activation: (a) image;
(b) ground truth; and (c) pseudo-labels.

6. Conclusions

In this paper, we proposed a reliable label-supervised pixel attention mechanism for
refining building segmentation in UAV imagery. We design a Pixel Attention Module
(PAM), which refines the CAM through learning the inter-pixel similarity. Then, the initial
seeds are used to synthesize reliable labels that provide the precise locations of buildings.
Finally, we design a loss function by exploiting the complementary relationship between
the modified CAM and reliable labels, in order to generate better pseudo-labels. Our RSPA
was then implemented with a Siamese network structure. Compared with state-of-the-art
WSSS methods, we obtained the best performance. Our future research will continue to
focus on more efficient weakly supervised semantic segmentation methods.
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