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Abstract: Global navigation satellite system interferometric reflectometry (GNSS-IR) is a new type of
microwave remote sensing technology that can measure soil moisture content (SMC). GNSS-IR soil
moisture retrieval methods based on the satellite signal-to-noise ratio (SNR) and triple-frequency
signal combination have the following shortcomings: SNR does not always exist in the original
GNSS file, and the number of triple-frequency signal observation satellites is small, resulting in
GNSS-IR soil moisture observation time resolution being low. Based on the above problems, in
this study, we constructed a soil moisture inversion method based on multisatellite dual-frequency
combined multipath error is proposed: the multipath error calculation model of dual-frequency
carrier phase (L4 Ionosphere Free, L4_IF) and dual-frequency pseudorange (DFP) without ionospheric
effect is constructed. We selected the data of the five epochs before and after the time point of the
effective satellite period to construct the multipath error model and error equation, and we solved the
delay phase for soil moisture retrieval. We verified the method using Plate Boundary Observatory
(PBO) P041 site data. The results showed that the Pearson correlation coefficients (R) of L4_IF and
DFP methods at P041 station are 0.97 and 0.91, respectively. To better verify the results’ reliability
and the proposed method’s effectiveness, the soil moisture data of the MFLE station about 210 m
away from P041 station are used as the verification data in this paper. The results showed that the
delay phase solved by multipath error and soil moisture strongly correlate. Pearson correlation
coefficients (R) of L4_IF and DFP methods at MFLE station are 0.93 and 0.86, respectively. In order
to improve the inversion accuracy of GNSS-IR soil moisture, this paper constructs the prediction
model of soil moisture by using the linear regression (ULR), back propagation neural network
(BPNN) and radial basis function neural network (RBFNN), and evaluates the accuracy of each model.
The results showed that the soil moisture retrieval method based on multisatellite dual-frequency
combined multipath error can replace the traditional retrieval method and effectively improve the
time resolution of GNSS-IR soil moisture estimation. To perform highly dynamic monitoring of soil
moisture, higher retrieval accuracy can only be obtained with a small epoch multipath error.

Keywords: GNSS-IR; soil moisture content; multisatellite combination; dual-frequency pseudorange;
dual-frequency carrier phase combination; multipath error; phase delay

1. Introduction

Soil moisture content (SMC) is the physical quantity that characterizes the degree of soil
wetting and drying. As an indispensable environmental factor on the surface, SMC plays
an active role in weather forecast, climate research, slope stability prediction, and accurate
prediction of flood disasters [1–4]. Global Navigation Satellite System interferometric
reflection (GNSS-IR) is a new microwave remote sensing technology that mainly uses
the interference effect generated by the direct and surface reflection signals obtained at
the GNSS receiver to invert the surface parameters according to the characteristics of the
interference signals [5–9].
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In recent years, many scholars have made remarkable achievements in soil moisture
retrieval using GNSS-IR technology. Larson et al. observed that the ground-reflected signal
captured by a geodetic-quality Global Positioning System (GPS) antenna is sensitive to soil
moisture, so the GPS signals can be used to sense soil moisture. They first proposed using
GPS SNR retrieval of soil moisture, confirming the feasibility of SNR data retrieval [10–12].
Zhang et al. used Bei Dou Navigation Satellite System (BDS) and GPS SNR to invert
volumetric soil moisture (VSM) changes and wheat growth, and compared the results
with the original observation values. The experimental results showed that GPS L1/L2
and BDS B1/B2/B3 frequencies in VSM retrieval are consistent with in situ VSM [13].
Liang et al. estimated the near-surface soil moisture using SNR data, corrected the original
phase by obtaining the amplitude and phase of the SNR interferogram, weakened the
influence on vegetation change, and established a genetic algorithm back propagation
neural network (BPNN) model for soil moisture retrieval. Their experiments showed that
the correlation between retrieval results and soil moisture was substantially improved [14].
Han et al. proposed a semiempirical signal-to-noise ratio model as a curve-fitting model to
reconstruct direct and reflected signals from SNR data and extract frequency and phase
information. The results showed that the soil moisture retrieval effect of the reconstructed
signal, with a height angle of 5–15◦, was more accurate, and the fitting quality increased by
about 45% [15].

Jin et al. used SNR data to solve the different frequency phases of the SNR sequence
by spectrum analysis and the least-squares method and fused the dual-frequency phase
observation values with the entropy method. Finally, the fusion results were combined
with the measured soil moisture to establish an empirical model to retrieve soil moisture.
The results showed that the dual-frequency fusion method can effectively improve
retrieval accuracy [16]. Ran et al. used the detrended signal-to-noise ratio (DSNR)
sequence and proposed an arc-editing method to edit the DSNR sequence. Only the
DSNR data with the typical interference mode chord waveform were retained, and
the arc editing method of SMC retrieval was compared with the conventional method.
The experimental results showed that the proposed method had higher SMC retrieval
accuracy than the traditional method and could improve the retrieval accuracy of SMC
in undulating terrain [17]. Han et al. proposed a method to reduce the impact of direct
signal components by signal reconstruction and normalization according to the variation
law of SNR. The results showed that under the high rough surface conditions, the
normalized amplitude strongly correlated with in situ soil moisture. The quadratic
model was used to invert soil moisture from the normalized amplitude, and the retrieval
error was less than 0.085 cm3 cm−3 [18]. Li et al. proposed a new soil moisture estimation
method based on SNR data. A solution to SNR AAF was constructed based on the
relationship between the amplitude attenuation factor (AAF) of the signal-to-noise
ratio in in situ observations and soil moisture. The results showed that the measured
soil moisture value was in good agreement with the estimated soil moisture range of
0.35–0.45 cm3 cm−3, and the RMSE was less than 0.012 cm3 cm−3 [19].

Roussel et al. obtained the amplitude and phase from SNR data and proposed a
Global Navigation Satellite System reflectometer interference pattern technique to estimate
the temporal variation in soil moisture content around a single earth antenna. Satellite
signal-to-noise ratio (SNR) observation data with two satellite altitude angles of 2–30◦ and
30–70◦ were used. The experimental results showed that the method could effectively
invert soil moisture [20]. Yu et al. proposed a combined linear method for snow depth
retrieval using the phase of GPS triple-frequency signals. This method is independent of
geometric freedom and is not affected by the ionospheric delay. The results showed that
the accuracy of snow depth retrieval based on triple-frequency multipath error and SNR
was high [21]. Zhang et al. proposed two new SMC estimation methods: triple-frequency
carrier phase (TRFCP) and triple-frequency pseudorange (TRFP). The experimental results
showed that the phase delay estimated by the two methods strongly correlates with Plate
boundary observation (PBO) SMC [22]. Shen et al. proposed a BDS Medium Earth Orbit
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(MEO) and Inclined Geosynchronous Satellite Orbit (IGSO) satellite multisatellite soil
moisture retrieval method based on SNR observations. This method weakens the influence
of environmental differences in different directions by considering the satellite repetition
period. The experimental results showed that the estimation results of BDS IGSO and MEO
soil moisture agreed with the in situ soil moisture fluctuation. They verified that the BDS
MEO satellite could effectively capture sudden rainfall [23].

According to the above research results, most scholars have focused on analysing SNR
data for GNSS-IR soil moisture retrieval. However, GNSS-IR soil moisture retrieval based
on SNR observations has the following problems: SNR is useless for most GNSS users,
as SNR does not always exist in the original GNSS file [9]; the performance of GNSS-IR
with SNR as the system input depends, to a large extent, on the observation quality of
SNR and whether the direct component (trend term) of SNR is successfully removed [21].
However, the actual SNR is often impure by abnormal noise, so the multipath SNR was
obtained using a low-order polynomial to draw the trend term to characterize multipath
information. Owing to the above two reasons, GNSS-IR performance based on SNR time
series may be seriously inaccurate. At present, some scholars have used the triple-frequency
signal combination for GNSS-IR snow depth detection and soil moisture retrieval, but the
number of triple-frequency signal observation satellites is small, resulting in the time
resolution of GNSS-IR retrieval of surface physical parameters being low. The duration
of the signal-to-noise ratio for the effective satellite elevation angle is shorter, which is
basically maintained at about 0.5–2 h, which is not conducive to enabling highly dynamic
monitoring of soil moisture.

Based on the above problems, to compensate for the shortcomings of SNR observation,
including too few triple-frequency signal satellites and low time resolution, by combining
the current multimode and multifrequency development pattern of GNSS, GNSS can play a
positive role in environmental monitoring. As such, GNSS-IR soil moisture retrieval based
on multifrequency linear combination observation has not yet been studied. In this study,
we constructed a soil moisture retrieval method based on multisatellite dual-frequency
combined multipath error by constructing the dual-frequency pseudorange (DFP) and the
dual-frequency carrier phase (L4 Ionosphere Free, L4_IF) multipath error calculation model
affected by deionosphericity. We selected the five epochs before and after the time point of
the effective satellite period and used a total of eleven epoch data to construct the multipath
error model and error equation. We solved the delay phase for soil moisture retrieval. We
used Plate Boundary Observatory (PBO) P041 (Boulder, CO, USA) site data to verify the
proposed method and further verified the method by using the soil moisture data of MFLE
station close to P041 station, which effectively improves the time resolution of GNSS-IR soil
moisture estimation. To realize the high dynamic monitoring of soil moisture, this paper
uses the multipath error of fewer epochs to calculate the delay phase for SMC inversion.
Because soil moisture is often affected by vegetation cover, soil temperature, air humidity
and other factors, to better improve the inversion accuracy of GNSS-IR soil moisture, we
use ULR, BPNN and RBFNN to construct soil moisture prediction models and evaluate the
accuracy of each model.

2. Materials and Methods
2.1. GNSS-IR SMC Retrieval Principle
2.1.1. GNSS Multipath Error Principle

In the actual measurement, the signal received by the GNSS receiver antenna is not
only the signal directly from the satellite but also the signal reflected by the surface. The
direct and the reflected signals entering the receiver antenna interfere with each other, which
causes the observation value to deviate from the actual value and produce the multipath
error. According to the roughness of the reflective surface of the ground, the two main
types of reflection are diffuse reflection and specular reflection [22,24]. For convenience,
we assume that multipath error is only caused by specular reflections. Figure 1 shows that
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direct signal and reflected signal generate corresponding interference effects at the receiver
to form a composite interference signal.
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Figure 1. Schematic diagram of GNSS-IR SMC retrieval. After the satellite sends the signal, the
right-handed circular polarized (RHCP) antenna receives the direct signal and the surface reflected
signal, producing an interference effect at the receiver. A is the GNSS receiver antenna; B is the
reflection point position of GNSS satellite signals passing through the ground; O is the footing
point of the vertical line between the over-reflection point and the GNSS satellite direct signal; θ is
the elevation angle of the satellite; S1 is the direct satellite signal received by the receiver antenna;
S2 is the reflected signal reflected by the object’s surface around the receiver antenna and enters the
antenna; H is the vertical height from the antenna phase center to the ground.

The elevation of the GPS satellite (θ) determines the path delay ∆S, which is the extra
distance travelled by the reflected signal compared to that of the direct signal.

∆S = 2H sin θ, (1)

By substituting carrier wavelength λ into Equation (1), the phase delay δϕ(t) corre-
sponding to the path delay can be expressed as:

δϕ(t) = 2π
∆S
λ

=
4πH

λ
sin θ(t), (2)

where λ is the carrier wavelength; t is the observation epoch. The phase delay is related
to the antenna height, carrier wavelength and satellite elevation angle; that is, for a given
antenna height and carrier signal, the phase delay is a function of the elevation angle.
Equations (1) and (2) only consider the geometric delay and ignore the phase contribution
of the Fresnel reflection and antenna radiation.
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The amplitude AC and phase difference β(t) of the reflected signal compared to the
direct signal can be expressed as:

AC =
√

A2
d + A2

m + 2Ad · Am · cos δϕ(t)

β(t) = tan−1
[

κ·sin δϕ(t)
1+κ·cos δϕ(t)

] , (3)

where Am = κ · Ad, κ is the amplitude attenuation factor (AAF); SC is the composite signal;
AC is the amplitude of SC. The factor β(t) is the composite excess phase with respect to the
direct phase, which can be approximately expressed as [21]:

β(t) =
(

Am

Ad

)
· sin δϕ(t) = κ · sin δϕ(t), (4)

When only specular reflection is considered, the composite signal formed by the
superposition of the direct signal and the reflected signal SC can be expressed as [21]:

SC = SL + SM = Ad cos(ω0t) + Am cos[ω0t + δϕ(t)] = AC cos[ω0t + βt], (5)

where SL and SM are the direct and reflected signals, respectively; Ad and Am are the
amplitudes of the direct and reflected signals, reflectively; ω0 is the angular frequency of
the signal.

2.1.2. Calculation of Multipath Error of Linear Combination of Observations

If only the influence of atmospheric delay error is considered, the GNSS code measure-
ment pseudorange and carrier phase observation equation can be approximately described
as [25]:

Pi = ρ + c(δtR − δtS) + T + Ii + E + MPi + εpi, (6)

λi ϕi = ρ + c(δtR − δtS) + T − Ii + E + Mϕi + εϕi − λi Ni, (7)

where i is the carrier number; ϕ is the carrier phase observation value; ρ is the geometric
distance between the receiver and the satellite; c is the propagation velocity of electro-
magnetic waves in a vacuum; δtR and δtS are the clock difference between the receivers
and satellite clock, respectively; N is the ambiguity of the whole week; λ is the carrier
wavelength; MP and Mϕ are the pseudorange and carrier multipath error, respectively; T
and I are the tropospheric and ionospheric delay errors, respectively; ε represents other
unmodeled errors.

2.1.3. Error Calculation of Dual-Frequency Pseudorange Multipath

As shown in Equations (6) and (7), when i is 1 and 2, Equations (6) and (7) can
be differentiated, respectively. Considering |MPi| � |Mϕi|,

∣∣εpi| � |εϕi
∣∣ is as shown in

Equations (8) and (9).

P1 − λ1 ϕ1 = 2I1 + MP1 + εϕ1 + λ1N1, (8)

P2 − λ2 ϕ2 = 2I2 + MP2 + εϕ2 + λ2N2, (9)

The relationship between carrier frequency f and ionospheric delay I is:

I2 =
f 2
1

f 2
2

I1, (10)
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By subtracting the L1 and L2 carrier phase observation equations and taking into
account Equation (10), we obtain:

λ1 ϕ1 − λ2 ϕ2 = I2 − I1 + λ1N1 − λ2N2 =

(
f 2
1

f 2
2
− 1

)
I1 + λ2N2 − λ1N1, (11)

Therefore, as shown in Equation (12):

I1 =
(λ1 ϕ1 − λ2 ϕ2 + λ1N1 − λ2N2)× f 2

2
f 2
1 − f 2

2
, (12)

Therefore, the pseudorange multipath error equation at L1 band is:

MP1 = P1 − λ1 ϕ1 − 2I1 − εP1 − λ1N1

= P1 −
f 2
1 + f 2

2
f 2
1− f 2

2
λ1 ϕ1 +

2 f 2
2

f 2
1− f 2

2
λ2 ϕ2 + K(N1, N2, εP1),

(13)

Similarly, the pseudorange multipath error equation in L2 band is:

MP2 = P2 −
2 f 2

1
f 2
1 − f 2

2
λ1 ϕ1 +

f 2
1 + f 2

2
f 2
1 − f 2

2
λ2 ϕ2 + K(N1, N2, εP2), (14)

where MP1 and MP2 are the multipath errors of the L1 and L2 carriers, respectively; P1 and
P2 are the pseudorange observations of the L1 and L2 carriers, respectively; f1 and f2 are
the frequencies of the L1 and L2 carriers, respectively; λ1 and λ2 are the L1 and L2 carrier
wavelengths, respectively; ϕ1 and ϕ2 are the observed values of L1 and L2 carrier phases,
respectively; N1 and N2 are the ambiguities of L1 and L2 carriers, respectively; εP1 and εP2
are other unmodeled errors.

In Equations (13) and (14), K(N1, N2) is the integer ambiguity combination, which is
usually a constant and does not affect the overall trend in the pseudorange multipath error.
If no cycle slip occurs, it can be omitted. Therefore, the main factors affecting the quality of
pseudorange multipath error are the noise in pseudorange observations and the accuracy
of carrier phase observations and code pseudorange observations. If cycle slip occurs in
carrier phase observations, it affects the value of pseudorange multipath error. Therefore,
for the pseudo-range multipath error in each period, cycle slip detection and repair are
required. We selected the multipath error MP2 of the L2 carrier as the research object.

The dual-frequency pseudorange multipath can be calculated by the linear combina-
tion of the pseudorange observations and the carrier phase observations, which can be
expressed as [26]:

MP1 = P1 −
f 2
1 + f 2

2
f 2
1 − f 2

2
λ1 ϕ1 +

2 f 2
2

f 2
1 − f 2

2
λ2 ϕ2, (15)

MP2 = P2 −
2 f 2

1
f 2
1 − f 2

2
λ1 ϕ1 +

f 2
1 + f 2

2
f 2
1 − f 2

2
λ2 ϕ2, (16)

2.1.4. Multipath Error Calculation of Dual-Frequency Carrier Phase Linear Combination

For carrier phase observables, isolating the multipath from several other effects, such
as the satellite antenna pseudorange and ionospheric and tropospheric delay, is difficult.
However, when considering the multipath, the carrier phase contains two quantities: the
phase of the direct signal and the composite excess phase with respect to the direct phase.
Thus, the GNSS phase observation for carriers L1 and L2 can be expressed as [27]:{

L1 = λ1ψ1 + λ1β1(t)

L2 = λ2ψ2 + λ2β2(t)
(17)
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where ψ1 and ψ2 represent the phase of the direct signal; β1(t) and β2(t) are the composite
excess phase with respect to the direct phase.

In GNSS positioning, the carrier phase of the direct signal can be expressed as:

λiψi = ρ + Ii + T + ∆, (18)

where i = 1 or 2, which is the two signals with different frequencies. The geometric distance
between the GNSS satellite and antenna is represented by ρ, Ii represents ionospheric delays,
T represents tropospheric delays, and ∆ accounts for all other carrier-independent effects.
To isolate the multipath, the dual-frequency carrier-phase combination L4 is the L1 − L2
combination of carrier phase measurement, and its mathematical expression is [9,27]:

L4 = L1 − L2 = I1 − I2 + λ1β1(t)− λ2β2(t), (19)

Equation (19) eliminates the satellite clock error, receiver clock error, and tropospheric
delay, as well as the geometric distance between the satellite and the receiver. That is the
observed value of L4 is affected by both ionospheric delay and phase error. Therefore, when
analyzing the multipath error, a suitable method must be adopted to weaken the influence
of the ionospheric delay on the multipath error. The high-order polynomial is used to fit the
L4 multipath error, and the dual-frequency linear combination multipath error that is not
affected by ionospheric delay is obtained, which is the L4-free (L4_IF) observation value.

2.2. Establishment of Model Error Equation

According to Equations (1) and (2), the phase delay and path delay are functions
of the elevation angle and reflector height. The reflector height changes with the SMC,
which contributes to the change in the phase delay and path delay [12]. demonstrated that
the agreement between H and the SMC was not as strong as that between δϕ(t) and the
SMC. Therefore, the phase delay can be used to characterize the change in the SMC. To
accomplish this, Equation (5) must be linearized first. Thus, the error equations can be
expressed as:

β(t) + Vβ(t) = κ0 sin δϕ0 + sin δϕ0Vκ + κ0 cos δϕ0Vδϕ, (20)

where β(t) can be easily calculated through Equations (16), (17) and (19). Vβ(t) is the
residuals corresponding to the DFP multipath error and L4_IF multipath error. κ0 denotes
the initial value of the AAF. The initial value of the phase delay, i.e., δϕ0, can be calculated
by incorporating the wavelength (λ), antenna height (H), and elevation angle (θ) into
Equations (1) and (2), respectively. Vκ and Vδϕ are two unknown correction parameters
corresponding to κ0 and δϕ0 that need to be solved. To ensure the reliability of the solution
and to avoid the influence of the excessive difference in multipath errors on the correction
parameter solving, we assumed that the SMC remained the same in the short term (e.g.,
within 5 min) and employed a total of 11 multipath errors to solve the correction parameters
through unweighted least squares adjustment. It is worth mentioning that the number of
multipath errors is not limited to 11, but should be greater than or equal to the number of
the correction parameters to be solved.

2.3. Solving the Phase Delay

The least-squares adjustment method is used to solve the delay phase. The L4_IF
method is taken as an example to illustrate the solving process of the phase delay. For the
11 multipath errors of one observation session for a single GPS satellite, 11 error equations,
such as Equation (20), can be obtained. Then, these error equations can be expressed by the
following matrix:

Vβ(t)
11× 1

=
A

11× 2
X

2× 1
− l

11× 1
, (21)
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where
Vβ(t)

11× 1
=
[
Vβ1 Vβ2 Vβ3 · · · Vβ11

]T , (22)

X
2× 1

=
[
Vk Vδϕ

]T , (23)

A
11× 2

=

[
sin δϕ0 sin δϕ0 sin δϕ0 · · · sin δϕ0

κ0 cos δϕ0 κ0 cos δϕ0 κ0 cos δϕ0 · · · κ0 cos δϕ0

]T

, (24)

l
11× 1

= [β1 − κ0 sin δϕ0 β2 − κ0 sin δϕ0 β3 − κ0 sin δϕ0 · · · β11 − κ0 sin δϕ0 ]
T , (25)

where β(t) represents the L4_IF multipath error, Vβ(t) is the residual for β(t). The sub-
scripts 1, 2, 3, . . . , 11 denote the serial number of the selected 11 multipath errors. Thus,
based on unweighted least-squares adjustment (VTV = min). X can be obtained by the
following formula.

X =

[
Vκ

Vδϕ

]
=
(

AT A
)−1
×
(

AT l
)
=

N−1

2× 2
W

2× 1
, (26)

where N = AT A;W = AT l. Because its rank equals one, N is rank deficient, which leads
to a non-unique solution of X. Therefore, to obtain a unique solution, pseudo-inverse
adjustment was adopted.

X =

[
Vκ

Vδϕ

]
=

N−

2× 2
W

2× 1
, (27)

where N−1 and N− is the Kelley inverse and the pseudo-inverse of N, respectively. Thus,
the adjusted phase delay and AAF can be obtained:[

κ̂

δ̂ϕ

]
=

[
κ0 + Vκ

δϕ0 + Vδϕ

]
, (28)

The diurnal phase delay representing the trend of the soil moisture change, namely
the mean of the adjusted phase delay of twelve observation sessions, can be obtained by
the following formula:

δϕi =
δ̂ϕi,1 + δ̂ϕi,2 + δ̂ϕi,3 + · · ·+ δ̂ϕi,12

12
, (29)

where the subscript i equals 1, 2, 3, . . . , 78, and represents the ith day; the numbers 1, 2, 3,
. . . , 12 represent the serial number of observation sessions on a single day.

2.4. Data Sources

The experimental data are from the USA. Plate Boundary Observatory (PBO). We
selected the GPS observation data of the P041 station (Figure 2) and the SMC data col-
lected by the P041 and MFLE stations (https://cires1.colorado.edu/portal/) (accessed on
10 September 2021). The days of the year (DOYs) of selected observation data are between
45 and 131 of 2014 (Note: 57, 67–69, 71, 82, 94, 104, 105 days of soil moisture data are
missing and have been eliminated).

The PBO SMC consisted of the site averaged SMC on a daily timescale, and the median
SMC value of all satellite tracks for each day was used [22]. (https://data.unavco.org/
archive/gnss/products/) (accessed on 15 September 2021). Located in Colorado, USA, and
positioned at an altitude of 1728.8 m, the P041 station (39.9495◦N, 105.1943◦W). The MFLE
station is about 210 m away from the P041 station, its altitude is 1727.3 m, and its position
is longitude and latitude (39.9476◦N, 105.1944◦W). The soil moisture data of the MFLE
station is used to further verify this method’s reliability. In view of this, this paper takes

https://cires1.colorado.edu/portal/
https://data.unavco.org/archive/gnss/products/
https://data.unavco.org/archive/gnss/products/
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P041 station as the research station, MFLE station as the verification station, and MFLE
station is very close to P041 station, as shown in Figure 2. The surrounding environment
of P041 and MFLE stations are shown in Figure 3 (https://www.unavco.org) (accessed
on 25 September 2021). The GNSS receiver and related parameters of the P041 station are
shown in Table 1.
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Table 1. Receiver and its related parameters at the P041 site.

Project Parameter

Type of receiver POLARX5
Sampling interval 15 s
Type of antenna TRM59800.80
Antenna height 1.90 m

The P041 and MFLE stations can be seen in Figure 3a,b, respectively. They are located
in a flat and open area, and the surrounding vegetation is scarce, and the land cover
consists of exposed soils and short grasses. This paper selects the experimental data for
the late winter and early spring. Therefore, the surface reflection signal is less affected by
vegetation attenuation.

Figure 4 shows the observed SMC and precipitation data series corresponding to the
time (DOYs: 45-131,2014) of selecting GNSS observation data from P041 and MFLE stations,
which are presented in a line graph and a histogram, respectively. As demonstrated in
Figure 4, six significant indigenous precipitation events occurred during the experiment,
with a maximum precipitation of 24.8 mm, mainly during DOYs 63–66, 92–93, 102–103,
109–110, 127–128 and 130–131. Continuous precipitation led to a significant nonlinear
increase in the SMC. As precipitation decreased or stopped, there was a decrease in the
SMC. Evidently, precipitation was the primary factor that caused sudden changes in the
SMC. The precipitation at the P041 and MFLE stations during the experimental period was
appropriate and suitable for SMC retrieval.
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3. Experiment and Results
3.1. Experimental Technical Scheme

Figure 5 shows the flow chart of the SMC retrieval technique used in this study.
The technical route we followed can be divided into three parts: (1) We first pre-
processed the GNSS-IR data: the carrier phase, pseudorange observation data, azimuth,
elevation angle, and epoch extraction. We extracted other data parameters from the
observation (OBS) file and navigation (NAV) file collected by GNSS receivers. (2) We
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determined the initial values of phase delay and amplitude attenuation factor, then
constructed the dual-frequency carrier phase linear combination multipath error model
and dual-frequency pseudorange multipath error model, and then calculated the mul-
tipath errors of the two models separately. We fit the ionospheric linear combination
(L4), namely the simple difference between L1 and L2 (L4 = L1 − L2), with a high order
to obtain L4_IF. We used a 10-degree polynomial fitting. (3) By constructing the error
equation, we solved the delay phase. Then, we performed the delayed phase combina-
tion representing the variation trend in SMC and the retrieval SMC analysis. (4) Taking
the multipath error of the five epochs before and after as the observation value, we
calculated the dual-frequency pseudorange multipath error and the dual-frequency
carrier-phase combination error and determined the initial phase and the amplitude
attenuation factor (AAF). According to Equation (5), we established the model error
equation. We used the Lomb–Scargle periodogram (LSP) and least-squares adjustment
method to solve the delay phase. In solving the delay phase, the Pearson correlation
coefficient (R) between the phase delay and SMC was used to characterize the changing
trend between the delay phase and soil moisture.
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Figure 5. The technical process we followed for multisatellite dual-frequency combined multipath
error SMC retrieval. Note: RTKLIB is an open-source program package for standard and precise posi-
tioning with GNSS (global navigation satellite system). RTKLIB consists of a portable program library
and several APs (application programs) utilizing the library (http://www.rtklib.com/) (accessed on
10 February 2022).

3.2. SMC Retrieval
3.2.1. Choice of Elevation Angle

Given the lack of measured soil moisture data, we selected the soil moisture value
from the P041 station estimated with the new GPS L2C carrier SNR as the reference value.
The soil moisture value of the PBO site is based on a value per day and is the median value

http://www.rtklib.com/
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estimated by all satellites [22]. As soil moisture changes more during the day than that
at night and more GPS satellites are visible during the day than at night, to simplify the
calculation, generally, only four and eight observation periods are selected at night and
day, respectively. As such, we used twelve observation periods every day. To ensure the
solution’s reliability and avoid excessive differences in multipath errors from affecting the
parameter solution, we assumed that the soil moisture remained constant for a short time
(e.g., within 5 min). We used the multipath error of the element used as the observation
value for 11 multipath errors in total.

To provide a more intuitive view of the number of GPS satellites visible during the day
compared to at night, Figure 6 shows the change in elevation of almost all GPS satellites at
site P041 on 19 February 2014 (DOY: 2014–050). Figure 6 shows that more GPS satellites
are visible during the day than at night, and the duration of a single GPS satellite being
visible during l day is generally about 2.5–8 h, and the period at a low satellite elevation
angle (<30◦) is shorter, being maintained at about 0.5–2 h.
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Figure 7 shows the linear combination of GPS satellite G22 (DOY: 2014-050) observa-
tions at the test site. The multipath error varied with the elevation angle of the satellite. The
black curve represents the change trend in MP2 multipath error and L4_IF multipath error
over time, and the red parabola represents the change trend in satellite elevation angle
with time. Figure 8 shows that the satellite elevation angle occurs between 13:30 and 21:30.
The time gradually increases to the maximum value and then slowly decreases until the
satellite disappears. The changes in the MP2 multipath error and L4_IF multipath error are
closely related to the satellite elevation angle. When the satellite elevation angle is low, the
MP2 value oscillation amplitude can reach several meters, and the L4_IF value oscillation
amplitude is relatively large. When it is high, the oscillation amplitudes of the MP2 value
and L4_IF value decrease accordingly. For increased accuracy, we selected the data at the
lower elevation angle as the experimental data, as shown in Figure 8.

Figure 8 shows the multipath error of the linear combination observations of the GPS
satellite G22 (DOY: 2014-050) at a satellite elevation of 5–25◦ for the test site GPS satellite.
Figure 8 shows that as the satellite elevation angle increased, the multipath error showed a
downward trend, which indirectly indicated that the carrier pseudorange and carrier phase
observations of low-elevation satellites are more susceptible to the influence of multipath
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errors; it provides a theoretical basis for the selection of GNSS-IR satellite altitude angle.
The satellite elevation angles in this experiment were all limited to 5–25◦.
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3.2.2. Choice of Azimuth

Satellite signal reflection point trajectory is a function of satellite elevation, azimuth,
and antenna height. The reflection point trajectory reflects the position of the satellite
relative to the receiver at a certain moment, from which the spatial information of the
reflected soil can be obtained. Therefore, the advantages of the satellite reflection point
trajectory map can be used, and the satellite azimuth angle can be considered to ensure as
much consistency of the multiperiod multipath environment as possible. We selected the
area with more visible satellites as the azimuth angle range at the experimental site.
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Given the spatial differences in soil moisture and surface environment in the study
area, the soil moisture at different locations was not entirely consistent, which led to
the difference between the retrieval results based on the observation values at different
reflection locations. In addition, not all DFP observations and L4_IF observations of the
satellite elevation state contain the physical information of the surface reflector. Therefore,
we needed to select observation values based on the study area environment, satellite
elevation angle, and satellite azimuth angle to improve the accuracy of GNSS-IR soil
moisture retrieval. As shown in Figure 9, as the reflection area of the soil was roughly the
same, and on the premise of ensuring the number of satellites in each period, we selected
an azimuth angle range of 30–330◦. The satellites all had continuous observation values
when their elevation angle was 5–25◦, providing relatively sufficient observation data.
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3.2.3. Selection of Effective Satellites

The Fresnel reflection region of a GNSS signal is a set of ellipses related to the elevation,
azimuth, and antenna height of a satellite. The first Fresnel reflection region contributes
the most to the reflected signal, and the reflection medium change in the reflection zone
strongly affects the relevant physical characteristics of the reflected signal.

The semimajor and semiminor axes of the ellipse of the first Fresnel reflection region
of the ground-based GNSS-R can be determined by [28]:

Sx = h · cot θ, (30)

Sy = 0, (31)
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a =

√
λh sin θ

sin2 θ
, (32)

b =

√
λh sin θ

sin θ
, (33)

where Sx is the projection position of the reflection point on the ground connecting the
satellite and the receiver; Sy is the position of the receiver projection point; a and b are
semimajor and semiminor axes of the first Fresnel reflection region; h is the distance from
the antenna phase center to the reflection surface; λ is the carrier wavelength; θ is the
elevation angle of the GNSS satellite.

Figure 10 shows the first Fresnel reflection region ellipse group of the GPS L2
carrier when the satellite azimuth was 0◦, the satellite elevation was 5–25◦, and the
receiver antenna height was 1.9 m. The horizontal axis represents the distance from
the receiver antenna to the direction of the satellite, and the vertical axis represents
the distance perpendicular to the direction of the receiver antenna and satellite. When
the satellite elevation angle increases, the Fresnel reflection region shrinks, and the
reflection center is closer to the GNSS receiver. The area of the ellipse can be obtained
from the semimajor and semiminor axes of the ellipse, that is, the area of the first Fresnel
reflection region. Using the first Fresnel reflection region can avoid the influence of
other multipath sources, such as tall buildings, vegetation, and water; maximize the
unity of the reflection medium in the reflection zone; and be used for the design of
the experimental plan. Therefore, the Fresnel reflection region provides a certain basis
for determining the location of soil moisture sample collection points and selecting
effective satellites. The change in the reflection medium in the Fresnel reflection region
considerably affects the signal received by the receiver.
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Figure 11 shows the first Fresnel reflection region map of station P041 (DOY: 2014-065).
When the satellite elevation angle was 10◦, the reflection point was up to 21 m away from
the receiver. If slopes or other interference sources are near the measurement area, the
first Fresnel reflection region should be introduced to reduce the excessive soil moisture
retrieval error caused by different soil reflection media. The lower the satellite elevation
angle, the larger the region of the first Fresnel reflection. When the elevation angle range
is limited, the azimuth angle of each GPS satellite does not change much. Therefore, the
calculation of the first Fresnel reflection region can ensure the unity of the medium in
the reflection region, meaning that the homogeneity of the soil can be more accurately
assessed and can provide a certain basis for other factors such as experimental planning
and satellite selection.
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The maximum power spectral density can be used to characterize the quality of a
multipath error signal to a certain extent. Spectrum analysis using the Lomb–Scargle
method can be used to judge satellite signal quality [22,29]. A satellite track should
have a relatively stable singular dominant frequency for the same reflecting surface.
In general, the dominant frequency’s power spectral density (PSD) should be at least
twice as high as the power of the noise or the second most powerful frequency in the
periodogram [22,30].
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Figure 11. First Fresnel reflection region map of station P041 (DOY: 2014-065): GPS satellite distribu-
tion in the first Fresnel reflection region of station P041 when satellite elevation angle was (a) 10◦;
(b) 25◦.

Figure 12a,b show that the power that meets the dominant frequency should be at
least twice the power of the secondary main peak frequency, and that the quality of satellite
data is higher. We used the PSD of dual-frequency pseudorange and dual-frequency
carrier phase combined multipath error as the main auxiliary tool for satellite selection.
Figure 12c,d lack any dominant frequency, which could have introduced substantial errors
in the subsequent parameter estimation. Therefore, we also discarded such satellites when
selecting satellites.

Based on the above analysis, after limiting the satellite elevation angle to about
5◦–25◦ and after further considering the dual-frequency multipath error for satellite
selection, we used twelve time periods every day: eight evenly distributed in the daytime
and four and evenly distributed in the nighttime. Although the multipath error duration
of a single GPS satellite in a day is generally about 2–8 h, the corresponding duration of
the low satellite elevation angle multipath error is shorter, basically maintained at about
1 h. As a result, even fewer GPS satellites are available at low elevations. Therefore,
we selected only one GPS satellite for each observation period. Combining satellite
elevation angle, satellite reflection trajectory, satellite azimuth, first Fresnel reflection
area, station environment, spectrum analysis, etc., Table 2 shows the results of the twelve
time periods on 6 March 2014.
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Figure 12. Multisatellite dual-frequency combined multipath error Lomb–Scargle periodogram.
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Table 2. Satellite selection results at site P041 on 6 March 2014 (DOY: 2014-065).

Observation Period
Number

GPS Satellite Number
(PRN)

Azimuth
(/◦)

Height Angle
(/◦)

GPS Time
(hh:mm:ss)

1 PRN16 170.75–171.16 6.08–7.05 01:28:45–01:31:15

2 PRN03 44.55–44.68 14.72–15.69 03:28:45–03:31:15

3 PRN26 239.89–240.82 24.45–25.25 05:58:45–06:01:15

4 PRN20 50.47–51.46 12.70–12.94 07:58:45–08:01:15

5 PRN24 221.92–222.65 13.37–14.22 09:58:45–10:01:15

6 PRN04 67.64–68.26 7.66–8.46 11:28:45–11:31:15

7 PRN15 156.52–157.09 14.87–15.82 12:28:45–12:31:15

8 PRN05 57.21–57.69 11.33–12.21 14:28:45–14:31:15

9 PRN16 275.01–275.94 6.19–6.73 15:28:45–15:31:15

10 PRN31 184.73–184.91 8.41–9.47 17:58:45–18:01:15

11 PRN25 73.92–75.11 22.27–22.47 19:58:45–20:01:15

12 PRN16 170.75–171.17 6.09–7.05 20:58:45–21:01:15
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3.3. GNSS-IR SMC Retrieval Results

To obtain the parameters that characterize the change trend in soil moisture, we used
the multipath error as the system input, and the amplitude attenuation factor and phase
delay were the parameters to be estimated. We ignored the impact of the satellite elevation,
soil moisture changes in the short term, and the amplitude attenuation factor and phase. The
delay was a constant in the short term, and we obtained the error equation by linearizing
Equation (5). The initial value of the phase delay was determined using Equation (2), where
the satellite elevation angle is the satellite elevation angle corresponding to the first soil
moisture sample collection time, considering that the soil surface reflectivity is between
0.3 and 0.8 [21]. In this study, we focused on the amplitude and phase of multipath error,
so the actual value of κ is not required. Taking an κ initial value κ0 = 0.3, we ignored the
complex effect of antenna gain mode.

Considering the small changes in the sine values of antenna height and satellite height
and our focus on the changing trend in the phase delay, we used the same initial phase
delay value for all periods of data processing. For the solution of the parameters, we
adopted the indirect adjustment method based on least squares, and the data processing
followed these principles:

(1) Cycle slip detection and repair were conducted on the observed carrier phase value;
(2) We assumed that the amplitude attenuation factor and phase delay did not change in

a short time;
(3) To avoid the large difference between the delay phase and the acquisition time of

soil moisture, considering the necessary observation number, taking the acquisition
time of soil moisture as a reference, we took the multipath error of five epochs
before and after as the observation value. That is, we ignored the change in the
delay phase with satellite elevation angle in the short term. We regarded the
multipath error selected in each period as the repeated observation of the same
parameter. According to Equations (15) and (16), the dual-frequency pseudorange
multipath error MP could be calculated; According to Equation (19), the dual-
frequency carrier-phase combination multipath error L4 could be calculated. We
performed high-order fitting (we used 10-degree polynomial fitting) of L4 to remove
the influence of ionospheric delay and obtain L4_IF. According to Equation (2), the
initial value of the delay phase and the initial value of AAF (κ0) are determined.
According to Equation (5), we constructed the error equation of the corresponding
method, and performed the Lomb–Scargle periodogram (LSP) and least square
adjustment method. We solved each period to obtain a delay phase representing
the change trend in soil moisture.

Combining the results of daily satellite selection, for the selected single satellite, we
calculated the multipath error according to the dual-frequency signal of 11 epochs before
and after the corresponding time. Combining the above principles and methods, we
obtained the delay phase corresponding to the time of soil moisture acquisition through
adjustment. Therefore, one phase delay could be calculated for each observation period,
and 12 phase delays could be calculated for 12 observation periods in a day. By averaging
the 12 results, we obtained the average phase delay, which is the daily phase delay. On
a daily time scale, the L4_IF method and the DFP method were calculated separately
to obtain the corresponding daily phase delay, and Time trends of soil moisture and
delayed phase at P041 and MFLE stations were plotted (Figures 13a,b and 14a,b).
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Figure 13. P041 station; correlation between Delay Phase and SMC. 
Figure 13. P041 station; correlation between Delay Phase and SMC.

To further test the L4_IF method and the DFP method, 50 d of the P041 and MFLE
SMC, respectively, and the estimated phase delay were employed to build an empirical
model, and the other 28 d of data were used to verify the model. The modelling method
employed was unary linear. In the relationship between soil moisture and phase delay, in
this study, we used the phase delay as the independent variable (x) and the soil moisture as
the dependent variable (y) to perform univariate linear regression modeling. We obtained
the scatter plot and regression shown in Figure 15.
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Figure 14. MFLE station; correlation between Delay Phase and SMC.

To better reflect the soil moisture retrieval performance of the two methods of P041
and MFLE stations, we performed precision statistical analysis on each method separately,
and the statistical results are shown in Table 3.

Soil moisture is often affected by vegetation cover, soil temperature, air humidity and
other factors. In addition, due to the difference between the actual reflection conditions
of GNSS satellite signals and the hypothetical ideal reflection conditions, the relationship
between multi-path induced phase delay and soil moisture becomes complicated, which
makes the ordinary linear model not necessarily able to describe the trend of soil moisture.
Compared with other analytical models, the neural network model is less sensitive to the
influence of soil flatness, surface vegetation and soil surface roughness. Therefore, in order
to improve the inversion accuracy of GNSS-IR soil moisture, BPNN and RBFNN were used
to construct soil moisture prediction models, and the prediction results were compared
with those of ULR model, and the accuracy of each model was evaluated.
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Figure 15. For the P041 station; scatter diagram of the SMC and regression equation based on (a) the
L4_IF method; (b) the DFP multipath model. For the MFLE station; scatter diagram of the SMC and
regression equation based on (c) the L4_IF method; (d) the DFP multipath model.

Table 3. Statistical table for accuracy comparison between L4_IF and DFP methods.

Station ID Method Correlation Coefficient (R) STD (cm3 cm−3) MAE (cm3 cm−3) RMSE (cm3 cm−3)

P041
L4_IF 0.97 0.040 0.037 0.014

DFP 0.91 0.040 0.038 0.026

MFLE
L4_IF 0.93 0.047 0.043 0.029

DFP 0.86 0.047 0.049 0.042

Note: The STD in Table 3 is the error standard deviation; the MAE in Table 3 is mean absolute error; the RMSE in
Table 3 is root-mean squared error.
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The phase delay and measured soil moisture of P041 and MFLE stations calculated
based on L4_IF method and DFP method were used as data sources, and the training set
and test set were divided according to the ratio of 7:3. That is, 50 d data were used as
training set data, and 28 d data were used as test set data. BPNN and RBFNN are used to
model. Figures 16 and 17 show the comparison between the predicted values of the three
models of the two methods corresponding to the P041 station and the MFLE station and
the measured values of soil moisture.
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Figure 16. For P041 station; comparison between the predicted values of three models and measured
values of soil moisture (a) the L4_IF method; (b) the DFP multipath model.

In order to better reflect the prediction results of three prediction models for soil
moisture and the comparison results between different models, the accuracy of L4_IF
and DFP methods corresponding to the three models of P041 and MFLE stations were
statistically analyzed. The statistical results are shown in Table 4.
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Figure 17. For the MFLE station, comparison between predicted values of three models and measured
values of soil moisture (a) the L4_IF method; (b) the DFP multipath model. Note: The P041_SMC
in Figure 16a,b are SMC value of the P041 station; the MFLE_SMC in Figure 17a,b are SMC values
of the MFLE station; the ULR_SMC in Figures 16 and 17 are unitary linearity regression model
predictive value; the BPNN_SMC in Figures 16 and 17 are back propagation neural network model
predictive value; the RBFNN_SMC in Figures 16 and 17 are radial basis function neural network
model predictive value.

Table 4. Statistical table for precision comparison of three models of L4_IF and DFP methods.

Station ID Method Model STD (cm3 cm−3) MAE (cm3 cm−3)

P041

L4_IF
ULR 0.040 0.037

BPNN 0.039 0.034
RBFNN 0.039 0.035

DFP
ULR 0.040 0.038

BPNN 0.033 0.033
RBFNN 0.039 0.038

MFLE

L4_IF
ULR 0.047 0.043

BPNN 0.039 0.037
RBFNN 0.045 0.042

DFP
ULR 0.047 0.049

BPNN 0.042 0.046
RBFNN 0.047 0.049

Note: The STD in Table 4 is error standard deviation; the MAE in Table 4 is mean absolute error; the ULR in
Table 4 is unitary linearity regression; the BPNN in Table 4 is back propagation neural network; the RBFNN in
Table 4 is radial basis function neural network.
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4. Discussion

From the above experimental results can be drawn, Figures 13a,b and 14a,b show
multiple apparent peaks in the phase delay and soil moisture, and the overall change
trend has a strong consistency. For the P041 station, the correlation coefficients between
the soil moisture and phase delay calculated based on the L4_IF multipath error and the
DFP multipath error are 0.97 and 0.91, respectively. For the MFLE station, the correlation
coefficients between the soil moisture and phase delay calculated based on the L4_IF
multipath error and the DFP multipath error are 0.93 and 0.86, respectively, which are
statistically significant. Figure 15a–d shows that the soil moisture values obtained using
the L4_IF and DFP methods both fluctuate around the linear regression equation built by
each, and the deviation is slight. The L4_IF and DFP methods have a statistical significance
level of 0.01 and 0.05, respectively, regarding soil moisture retrieval. The probability values
of the two methods are close to zero (P ≈ 0), indicating that the correlation between
the estimated phase delay and soil moisture at the P041 and MFLE stations is significant.
Figures 16 and 17 show that the fitting degree between the predicted and measured values
of the BPNN model and RBFNN model is better than that of the ULR model, and the error
is smaller.

Table 3 shows that the standard deviation and absolute average error of the L4_IF
and DFP methods are the same, but the root mean square error of the L4_IF method is
smaller than that of the DFP method. Therefore, the L4_IF method is generally more
accurate than the DFP method. The observation precision of the carrier phase is much
higher than that of the pseudorange. To better compare the L4_IF and DFP methods, we
used the error propagation law to compare the error level of L4_IF and DFP. Assuming
that the observation error of the dual-frequency carrier phase has the same standard
deviation of 1 mm (σ0 = σ1 = σ2 = 1mm), the standard deviation of the GPS C/A code
measurement pseudorange observation value is 2.93 m. Therefore, the error standard
deviation of the L4_IF method is σL4 =

√
2σ0 = 1.41 mm, and that of the DFP method is

σMP2 = 2.93 m σL4 < σMP2 , also means that the quality of the multipath error of the L4_IF
method is higher than that of the DFP method, so the L4_IF method obtained a higher
correlation coefficient and root mean square error.

Table 4 shows that for the L4_IF and DFP methods of P041 and MFLE stations, the
prediction results of the BPNN model are better than the RBFNN model and ULR model,
and the RBFNN model is slightly better than the ULR model. The reasons may be as
follows. Firstly, soil moisture is affected by vegetation cover, soil temperature, air humidity
and other factors, and multipath reflection is not an imaginary mirror reflection, which
makes it difficult to characterize other nonlinear characteristics between delay phase and
soil moisture by using simple linear or exponential models. Secondly, the BPNN algorithm
can correct the dielectric constant difference caused by weakening soil roughness, and has
a certain inhibitory effect on surface fluctuation, soil roughness and vegetation.

5. Conclusions

Based on the analysis of the multipath error generation mechanism and the calculation
model of GNSS measurement, we constructed a soil moisture retrieval method based
on multisatellite dual-frequency combined multipath error. We proposed a method of
estimating soil moisture using two combined dual-frequency signals. We used the L4_IF
and DFP methods, which are independent of geometric distance, to estimate soil moisture.
We verified the proposed method using the archived data set and SMC data of the P041
and MFLE stations. We drew the following conclusions through experimental analysis:

(1) The delay phases obtained by the multipath error solution and the soil moisture are
strongly correlated. For the P041 station, the R values of the L4_IF and DFP methods
are 0.97 and 0.91, respectively. For the MFLE station, the R values of the L4_IF and DFP
methods are 0.93 and 0.86, respectively. Because the observation error of the L4 linear
combination is low and the change in the ionospheric delay in the short term is small,
we used the high-order fitting to further weaken the influence of the ionospheric
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delay. The L4_IF method has higher R and soil moisture estimation accuracy than the
DFP method. When the BPNN model, RBFNN model and ULR model are used to
predict soil moisture, the results show that the prediction results of the BPNN model
are better than the RBFNN model and ULR model, and the RBFNN model is slightly
better than the ULR model. The results show that BPNN can improve the inversion
accuracy of GNSS-IR soil moisture.

(2) Since the calculation of the phase delay only requires a small amount of multipath
error compared to the soil moisture retrieval based on the SNR, the proposed method
does not require the diagnostic signal frequency, and only a tiny number of epoch
multipath errors needs to be used to calculate the delay phase. So, achieving high-
time-resolution GNSS-IR SMC retrieval is easier. Therefore, this method can be used
to easily obtain high-time-resolution and accurate soil moisture estimations.

(3) Given the changes in soil moisture, the reflectivity of the surface changes, which
in turn will lead to changes in the amplification, attenuation factor κ, and phase
delay. A further new finding is that the phase delay and the amplification attenuation
factor κ based on the L4_IF method show the same change trend, and the Pearson
correlation coefficient between them is 1. Conversely, the phase delay based on the
MP2 method and the amplification attenuation factor κ show the opposite trend, and
the Pearson correlation coefficient between them is −1. These results show that the
phase delay is closely related to the amplification attenuation factor κ. In other words,
the amplification and attenuation factor κ can also be used for soil moisture estimation,
which can obtain the same result as the phase delay. For the sake of brevity, this article
does not list the research results of the amplification and attenuation factor κ.

If SNR does not exist in the original file of GNSS and the number of GNSS satellites
with triple-frequency signals is still limited, the L4_IF method and DFP method proposed
in this paper can be used as alternative methods for monitoring through GNSS-IR so as
to enrich the data source of GNSS-IR soil moisture inversion and improve the ability of
GNSS to serve environmental monitoring. However, it should be noted that not all satellite
observations are suitable for estimating soil moisture, and different satellite selections will
lead to different results. Therefore, the effective selection of satellites is still a challenge.
Because this method does not need to diagnose the signal frequency and only needs
less epoch multipath error to calculate the delay phase, it is easier to achieve higher time
resolution of GNSS-IR soil moisture inversion. Soil moisture inversion based on a multipath
error enriches GNSS-IR data sources and enhances the reliability of GNSS-IR.
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