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Abstract: Convolutional neural networks (CNNs) have achieved milestones in object detection of
synthetic aperture radar (SAR) images. Recently, vision transformers and their variants have shown
great promise in detection tasks. However, ship detection in SAR images remains a substantial
challenge because of the characteristics of strong scattering, multi-scale, and complex backgrounds
of ship objects in SAR images. This paper proposes an enhancement Swin transformer detection
network, named ESTDNet, to complete the ship detection in SAR images to solve the above problems.
We adopt the Swin transformer of Cascade-R-CNN (Cascade R-CNN Swin) as a benchmark model
in ESTDNet. Based on this, we built two modules in ESTDNet: the feature enhancement Swin
transformer (FESwin) module for improving feature extraction capability and the adjacent feature
fusion (AFF) module for optimizing feature pyramids. Firstly, the FESwin module is employed as
the backbone network, aggregating contextual information about perceptions before and after the
Swin transformer model using CNN. It uses single-point channel information interaction as the
primary and local spatial information interaction as the secondary for scale fusion based on capturing
visual dependence through self-attention, which improves spatial-to-channel feature expression
and increases the utilization of ship information from SAR images. Secondly, the AFF module is a
weighted selection fusion of each high-level feature in the feature pyramid with its adjacent shallow-
level features using learnable adaptive weights, allowing the ship information of SAR images to be
focused on the feature maps at more scales and improving the recognition and localization capability
for ships in SAR images. Finally, the ablation study conducted on the SSDD dataset validates the
effectiveness of the two components proposed in the ESTDNet detector. Moreover, the experiments
executed on two public datasets consisting of SSDD and SARShip demonstrate that the ESTDNet
detector outperforms the state-of-the-art methods, which provides a new idea for ship detection in
SAR images.

Keywords: synthetic aperture radar (SAR); ship detection; feature enhancement Swin transformer;
adjacent feature fusion; Cascade R-CNN

1. Introduction

Synthetic aperture radar (SAR) has the advantages of all-weather, all-day, anti-jamming,
far detection, and high concealment [1]. As a remote sensing image data source, SAR images
are widely used in scientific research, military reconnaissance, disaster monitoring, resource
planning, and natural environment protection [2]. SAR ship detection, as a fundamental
marine mission, has an essential value in maritime resource management and maritime
emergency rescue. Therefore, ship detection in SAR images is an attractive research topic.

In recent years, deep learning technology has presented a diversified development
trend in the field of image processing [3–5]. Deep learning-based object detection tech-
niques have been developing rapidly, and many common detection methods are classified
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into one-stage and two-stage. The one-stage object detection algorithm is a direct regression
to obtain the bounding box coordinates and class probabilities at the same time. The repre-
sentative algorithms are YOLO series [6–9], SSD [10], RetinaNet [11], etc. The two-stage
algorithm generates the region proposal bounding box and then classifies the bounding box.
The representative algorithms are RCNN [12], Fast RCNN [13], Faster RCNN [14], Mask
RCNN [15], Cascade R-CNN [16], etc. There are also some excellent functional modules
for enhancing the above models, such as the feature pyramid network (FPN) [17] and the
convolutional block attention module (CBAM) [18]. Researchers have applied transformer
technology to computer vision in the last two years. The attention mechanism is the main
module of the transformer, which is used to establish the global relationship between image
pixels. Using the image serialization process, position embedding is introduced to describe
the position relationship, thus saving the spatial information of the image. Due to the
above advantages, transformer techniques are widely used in computer vision, consisting
of image classification [19], object detection [20], and so on [21–23].

Relying on target detection technology, remote sensing image processing is flourish-
ing [24–27], and ship detection of SAR images is an important research direction in remote
sensing. The SAR ship detection data SSDD is provided by Li et al. [28] and is improved
for Faster RCNN based on the dataset. Later, Wang et al. [29] proposed a publicly available
dataset SARShip and proposed an optimized version based on SSD by reducing unneces-
sary convolutional layers, which enhances the detection of small ships while improving
the detection speed. Zhang et al. [30] proposed a grid-based convolutional neural network
(G-CNN) on the basis of YOLO, which uses a backbone convolutional neural network
(B-CNN) and a detection convolutional neural network (D-CNN) for high-speed ship de-
tection. Zhou et al. [31] designed the CSPMRes2 module and the feature pyramid network
with fusion coefficients (FC-FPN) module based on YOLOv5 to improve the accuracy of
multi-scale ship detection. Zhang et al. [32] proposed a quad feature pyramid network
(Quad-FPN). The network is comprised of four FPNs: deformable convolution, content-
aware feature reassembly, path aggregation spatial attention, and balanced scale global
attention. It optimizes the complex background interference and multi-scale ship feature
discrepancy problems. Cui et al. [33] densely connected the convolutional block attention
module (CBAM) to a pyramidal network to form a dense attention pyramidal network
(DAPN). It obtains richer semantic feature information in multi-scale ships and highlights
the salient features on specific scales. After the appearance of a visual transformer, they
soon applied it to the ship detection of SAR images. Xia et al. [34] proposed a visual
transformer architecture, which is termed CRTransSar, in consideration of the contextual
joint representation learning by combing the transformer technique and convolution neural
network (CNN). Some researchers put forward the anchor-free frame method to detect
ships in SAR images. Qu et al. [35] developed an anchor-free detection model by introduc-
ing a transformer encoder module, which not only enhances the dependency between ship
objects but also focuses on the contextual relationship between objects and the global image.
Feng et al. [36] designed a lightweight multiscale backbone based on YOLOX and proposed
a new position-enhanced attention strategy to construct a lightweight anchor-free algorithm
for SAR ship detection. All these methods improve the backbone and neck modules of
the ship detection algorithm in SAR images to different degrees. In addition to the above
methods, some scholars have studied few-shot ship detection in recent years and proposed
very superior methods [37–39]. Zhang et al. [40] used a semantic embedding approach to
align visual features and semantic features for zero-shot ship detection. Zhang et al. [41]
proposed to detect ships of unknown classes with only a few labeled and designed a few-
shot learning algorithm with an attention mechanism. However, there is still the problem
of information loss because of the increased depth of feature extraction, as well as the
problem of attention scattering due to the high similarity between background and object.
Furthermore, there is the problem that the object area of the ship is not accurately localized
during the detection process.
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This paper describes a ship detection network combining transformer and CNN to
achieve an excellent detection performance in SAR images. We first introduce a CNN
based on Swin transformer [21] to build a feature enhancement Swin transformer (FESwin)
module to better extract the features of ships. FESwin not only has the global context
information perception and spatial information extraction capabilities of a transformer, but
also the local information feature extractability and aggregate channel feature information
of CNN. In addition, aiming to overcome the shortcoming of feature fusion, we construct a
feature pyramid network architecture for ship detection, namely the adjacent feature fusion
(AFF) module. A weighted selection fusion of high-level features and adjacent shallow
features, with the fusion proportion using adaptive weights that can be learned during the
training phase of the ship detection network, so that AFF has a powerful feature fusion
capability. On the other hand, we introduce Cascade R-CNN [16] as the detection head to
improve the detection accuracy of the ship detection network. Finally, we combine FESwin,
AFF, and Cascade R-CNN methods to build an enhancement Swin transformer detection
network (ESTDNet). We experimentally validate the design of ESTDNet on SSDD and
SARShip datasets. The results show that ESTDNet has significantly improved multi-scale
detection performance in complex backgrounds. This paper focuses on the optimal design
of the backbone and neck parts of the object detection framework. Therefore, we use the
Cascade R-CNN Swin framework as the baseline model of our method, and we can flexibly
embed our methods in any other object detection framework as a functional module. We
summarize the contributions of this work below.

1. A FESwin module is proposed as a backbone network to extract ship feature informa-
tion. The module not only has the excellent spatial feature information processing
capability of the Swin transformer but also uses CNN to enhance the association
among feature map channels. It effectively suppresses the problem of insufficient fea-
ture extraction caused by strong scattering of SAR objects, obtaining more significant
feature information at different scales, and enhances the transmission capability of
feature information.

2. We construct an AFF module that allows shallow feature information in the fea-
ture pyramid to be selectively fused into adjacent higher-level feature information
adaptively. The idea of learnable weights and proximity fusion reduces the huge
information difference between the bottom and higher-level features and alleviate the
problem of attentional dispersion in feature maps.

3. A ship detector with SAR images is constructed by combining the FESwin module
with the AFF module. The effects of FESwin and AFF on ESTDNet were verified
separately for both models to improve performance. Experiments on SSDD and
SARShip datasets show that ESTDNet can detect ships better in SAR images with
higher detection accuracy.

The rest of this paper is arranged as follows: Section 2 describes the proposed network.
Section 3 analyses the experimental results of the network proposed in this paper and
compares them with other algorithms. Section 4 discusses some phenomena according to
the experimental results. Finally, Section 5 gives conclusions about this paper.

2. The Proposed Method

This paper proposes a SAR ship detection algorithm called ESTDNet based on feature
enhancement Swin transformer and adjacent feature fusion, which uses Cascade R-CNN
Swin as the benchmark model. Firstly, combining the advantages of CNN structure and
Swin transformer, FESwin is innovatively proposed as a new backbone network. Second,
the FPN is replaced with AFF to reconstruct the multi-scale feature pyramid. In the testing
phase, we use the common objects in context (COCO) metrics as the evaluation standard.
The overall framework is shown in Figure 1. The algorithm proposed in this paper will be
explained in detail from three aspects.
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Figure 1. The overview of ESTDNet. Compared to Cascade R-CNN Swin, we mainly improve the
feature extraction capability by using FESwin as the backbone network and employing AFF to replace
the original FPN for feature fusion.

2.1. FESwin Backbone Network

In order to obtain a feature map with richer information about the ships, the feature
information can be transferred to a deeper level of the model. In this paper, we propose the
feature enhancement Swin transformer, called FESwin, as the backbone network for feature
extraction, as shown in Figure 2. Our method is based on the use of the transformer idea,
hierarchical structure design, and window attention mechanism to establish the association
between image features. Firstly, the contextual information before and after the Swin
transformer block of each stage is fused using a skip connection. Secondly, we enhance the
inter-channel interaction of information after fusion. It optimizes the feature extraction
capability and has better ship detection accuracy in SAR images.
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As shown in Figure 2, the FESwin backbone network is composed of a Swin trans-
former and feature enhancement module. Relying on the hierarchical design of the Swin
transformer, the feature enhancement module is introduced in each feature extraction
stage. The feature maps of each stage are feature enhanced again, and the more expressive
and informative feature maps are used as the output of the current stage. Meanwhile,
the output of each stage of FESwin is used as the input of the next stage to obtain more
advanced semantic information, enhancing the whole backbone network. In our study,
we found that the Swin transformer performs attentional operations at each stage with
relatively independent information between each dimension and weak interaction among
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feature channels. Although it performs the integration of spatial and channel information,
the correlation between feature channels of a single stage is weak. Therefore, the feature
enhancement module is proposed in the backbone to aggregate the contextual information
of different perceptions before and after the Swin transformer block and takes advantage of
the CNN to enhance the channel information interaction. It enables further integration of
channel and spatial information to enhance model representation.

We propose a feature enhancement module, as shown in Figure 3. The feature maps be-
fore and after feature extraction are fused by using a skip connection. After that, the fusion
is carried out in equal proportion using single-point channel information interaction as the
primary method and local spatial information interaction as the supplement. Local spatial
information interaction using convolutional layers and activation functions to enhance
local perception and obtain a larger perceptual field. Channel information interaction is per-
formed by point-wise convolution at each spatial location, and cross-channel information
aggregation is performed for each patch. Finally, the two are fused by weighting to enhance
the feature extraction ability, which makes the model have a better expression ability.
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channels and improve the expression ability of the model.

We can represent the feature maps before and after the Swin transformer block as
X and Y, and make channel information integration and spatial information integration
after the fusion of the two feature maps. We use point-wise convolution (pwconv) in
channel information integration, allowing point-by-point channel information at each
spatial location to be used interactively. We denote the output by C(X) ∈ RC×H×W and
the definition is shown in Equation (1). Besides the channel information, in terms of
spatial information, we integrate each point in a single channel with the neighboring
location points. We replace the output by S(X) ∈ RC×H×W and the definition is shown in
Equation (2).

C(X) = LN(pwconv2(δ(LN(pwconv1(X + Y))))) (1)

S(X) = LN(conv2(δ(LN(conv1(X + Y))))) (2)

where pwconv1(X) ∈ RC/4×H×W (4 is the channel compression rate) represents the dimen-
sionality reduction and pwconv2(X) ∈ RC×H×W for dimensionality increase, δ is ReLU and
LN indicates layer normalization. The convolutional kernel sizes of conv1 and conv2 are
(C/4) × C × 3 × 3 and C × (C/4) × 3 × 3, respectively. By calculating C(X) and S(X) after
the same shape as the input features, both can retain the fine details in the original features
to different degrees. We use Z to express the resultant feature map after the weighted
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fusion of spatial and channel features, and the weights required for fusion are obtained
by (X + Y) using the activation function sigmoid, denoted as m(X + Y) ∈ RC×H×W. In the
weighted fusion method, the sum of the weights of the feature mappings is restricted to
1 while using ⊗ to denote multiplication by elements, and the above calculation process is
shown in Equation (3)

Z = m(X + Y)⊗C(X) + (1−m(X + Y))⊗ S(X) (3)

2.2. AFF Module

The architecture of the proposed AFF is shown in Figure 4, with two main optimiza-
tions based on the FPN. One part is the bottom-up augmentation of the adjacent layer
features, and the bottom-up augmentation only associates the fusion of feature information
between the current layer and its adjacent shallow layers. No association is made outside
of adjacent feature layers, and the fused content is relatively independent. The other
part is the weighted selection fusion between layers using learnable adaptive weights to
obtain excellent fusion results. The AFF module combines the advantages of FPN and
PANet [42], while the upward fusion of adjacent layers avoids the problem of excessive
semantic information gap between multiple layers. The AFF module alleviates the loss
of feature information and feature information attention dispersion. It enables the ship
information to gain attention in feature maps with different scales.
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Figure 4 shows that the result obtained from the initial feature pyramid can be ex-
pressed as {L1, L2, L3, L4}. For L2, L3, and L4 high-level feature mappings are fused with
its proximity feature mappings, and the shallow-level features {L1, L2, L3} are expressed
as {L1′, L2′, L3′} through the unified scale of downsampling. The L2, L3, and L4 layers
are then used to generate the learnable weights α1, α2, and α3. Each weight is learned
independently to form adaptive fusion parameters for each feature mapping. Finally,
the two adjacent layers of feature mappings are multiplied by mutually opposing learnable
weights respectively, and then the results are cumulated. The final feature mapping of the
output results is represented by using {P1, P2, P3, P4}, and the computational structure can
be written sequentially as:

P1 = L1 (4)

P2 = α1× L2 + (1− α1)× L1′ (5)

P3 = α2× L3 + (1− α2)× L2′ (6)

P4 = α3× L4 + (1− α3)× L3′ (7)
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In using the AFF module, it is important to note that the extension for adjacent fusion
does not operate on L1. Second, the sum of the weights used for two adjacent feature
mappings is controlled to be 1, to ensure the stability of the model training.

2.3. Architecture of ESTDNet

The detailed architecture of ESTDNet is shown in Figure 5, which is the application
of FESwin and AFF modules in Cascade R-CNN Swin. Because FESwin is structurally
complex, we show the network model characteristics in Table 1. FESwin is used as the
backbone network for feature extraction, and the AFF module is used as the neck for feature
fusion. The output of the FESwin module is the input of the AFF module, and the output of
the AFF module is paired with Cascade R-CNN for category prediction and object position
prediction to complete ship detection in SAR images.
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Table 1. The FESwin model structure.

Layer_Name Patch_Size Layer

Pretreatment H/4 ×W/4 × 48 Patch partition

Stage1 H/4 ×W/4 × C

Linear Embedding

Swin
transformer

block × 2

LayerNorm
W-MSA/SW-MSA

LayerNorm
MLP

×2

Feature
enhancement

Conv 3 × 3
LayerNorm

ReLU
Conv 3 × 3
LayerNorm

Conv 1 × 1
LayerNorm

ReLU
Conv 1 × 1
LayerNorm

sigmoid
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Table 1. Cont.

Layer_Name Patch_Size Layer

Stage2 H/8 ×W/8 × 2C

PatchMerging

Swin
transformer

block × 2

LayerNorm
W-MSA/SW-MSA

LayerNorm
MLP

×2

Feature
enhancement

Conv 3 × 3
LayerNorm

ReLU
Conv 3 × 3
LayerNorm

Conv 1 × 1
LayerNorm

ReLU
Conv 1 × 1
LayerNorm

sigmoid

Stage3 H/16 ×W/16 × 4C

PatchMerging

Swin
transformer

block × 6

LayerNorm
W-MSA/SW-MSA

LayerNorm
MLP

×6

Feature
enhancement

Conv 3 × 3
LayerNorm

ReLU
Conv 3 × 3
LayerNorm

Conv 1 × 1
LayerNorm

ReLU
Conv 1 × 1
LayerNorm

sigmoid

Stage4 H/32 ×W/32 × 8C

PatchMerging

Swin
transformer

block × 2

LayerNorm
W-MSA/SW-MSA

LayerNorm
MLP

×2

Feature
enhancement

Conv 3 × 3
LayerNorm

ReLU
Conv 3 × 3
LayerNorm

Conv 1 × 1
LayerNorm

ReLU
Conv 1 × 1
LayerNorm

sigmoid

3. Results

In this paper, the method’s effectiveness is verified by two datasets, SSDD and SAR-
Ship. Our approach is also compared with other state-of-the-art object detection algorithms:
Faster RCNN [14], YOLOv3 [8], Cascade R-CNN [16], PAA [43], ATSS [44], DETR [20],
Deformable DETR [22], Tood [45], YOLOF [46]. All experiments were conducted using
a PC with Intel(R) Xeon(R) Gold 5218 CPU@2.30 GHz × 16 and 64 GB of memory, and
NVIDIA GeForce RTX 2080Ti GPU with 12 GB of memory. The operating system is a 64-bit
Windows Server 2019 Standard.

3.1. Experiment Settings

Because ESTDNet is built on the Cascade R-CNN Swin, ESTDNet is an end-to-end
networking model. We use the experimental result of Cascade R-CNN Swin as our baseline.
The initial learning rate is set to 0.001, the optimizer is SGD, and the thresholds of NMS are
set to 0.5. After statistical analysis of data sets, the input image size of the SSDD dataset
was set as 672 × 672, and that of the SARShip dataset as 256 × 256. Although the image
size setting of the two datasets is different, ESTDNet changes the size of the network layer
as the image size grows. We use image flipping to enhance the number of samples during
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the training process, which is used to improve the diversity of the training dataset. In
addition, our model does not use a pre-trained model but is trained from scratch.

3.2. Experiment Datasets

We use two datasets, SSDD and SARShip, to verify the effectiveness of the proposed
method in this paper. The SSDD dataset consists of 1160 images of a total of 2540 ships.
The SARShip dataset has 39,729 images, consisting of a total of 50,885 ships, and is com-
posed of 102 HSPA-3 images and 108 Sentinel 1 satellite images that have been processed
and cropped to a size of 256 × 256 pixels. The resolution of the pictures is 3 m, 5 m, 8 m,
and 10 m, respectively. Port terminals, offshore waters, and far seas are some of the scenes
covered in the images. Ship types include tankers, cargo ships, large container ships, and
small fishing boats. We randomly divide the two datasets into training and test sets in the
ratio of 8:2. Next, we use the COCO dataset annotation format to process the bounding
boxes and label annotations and convert the original dataset label storage file to JSON file
format for storage.

In order to visualize the number of ships of different sizes in the dataset, this paper
counts the ships of different sizes according to the definition of the COCO metric [47] and
displays them in the form of histograms, as shown in Figure 6. Figure 6a,b shows the
number of large, medium, and small ships in the SSDD and SARShip datasets.
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of the SARShip ships.

3.3. Experiments on the SSDD Dataset

We conducted a large number of experiments on the SSDD dataset with the afore-
mentioned configured parameter settings, and the corresponding experimental results
are displayed in Table 2. The results of ESTDNet were all better than the baseline results.
Among them, AP, AP50, AP75, APS, APM and APL increased by 2.8%, 2.3%, 4.4%, 1.9%,
3.2%, and 9%, respectively. Compared to Cascade R-CNN Swin, ESTDNet can effectively
improve the detection performance of ships in SAR images. According to the 2.8% and
4.4% improvements in AP and AP75, ESTDNet improves positioning accuracy and makes
positioning more accurate in ship detection.

Table 2. The experimental result of ESTDNet on the SSDD dataset.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

Cascade R-CNN Swin 56.6 91.5 64.7 53.5 63.5 51.3
ESTDNet 59.4 93.8 69.1 55.4 66.7 60.3
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As shown in Table 3, we performed the experiments on the SSDD dataset for some
state-of-the-art object detection methods. The experimental results showed that ESTDNet
obtained the best AP results of 59.4% compared to other methods. Compared to other
methods, YOLOF achieved better performance on medium ships, with APM reaching 67.4%,
0.6% higher than ESTDNet. However, the APS and APL of small and large ships are lower
than ESTDNet by 3.6% and 3.9%. In addition, ESTDNet is 6.4% higher than YOLOF on
AP75, indicating that ESTDNet can obtain more accurate ship position information than
YOLOF. Therefore, according to the experimental results of multiple detection methods
on the SSDD dataset, ESTDNet can effectively detect ships in SAR images, and can obtain
more accurate ship position information, and its comprehensive detection performance
surpasses other excellent methods.

Table 3. The results of different methods on the SSDD dataset.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

Faster RCNN 53.5 90.7 56.8 52.2 56.8 53.6
YOLOv3 57.7 93.8 64.8 54.5 63.6 60.2

Cascade R-CNN 56.9 91.8 63.3 53.4 64.8 53.1
PAA 56.0 91.6 64.0 51.1 65.7 53.1
ATSS 55.2 92.4 59.9 51.9 60.9 52.2
DETR 50.2 91.1 52.7 41.7 64.3 59.3

Deformable DETR 52.6 93.3 55.0 46.9 61.8 58.2
Tood 56.4 91.1 66.0 52.0 65.2 41.0

YOLOF 57.2 93.2 62.7 51.8 67.4 56.9
Cascade R-CNN

Swin 56.6 91.5 64.7 53.5 63.5 51.3

ESTDNet 59.4 93.8 69.1 55.4 66.7 60.3

Figure 7 presents the experimental results of both the proposed and compared methods.
The ground truths, detection results, missed detection results and the false detection results
are indicated with green, red, yellow, and blue boxes, respectively. In order to show
the detection effect of various methods more intuitively, we selected five images with
complex backgrounds in the near-shore region to demonstrate the detection effect. Since
the distribution of ships on the near shore is sparse compared to the distribution of ships
in far-sea areas, the ships in SAR images are incredibly similar to the coastal background.
Therefore, ship detection is more complicated and better reflects the performance of the
detection method. As shown in Figure 7, all methods suffer from some degree of missed
detection. Tood and ATSS have the highest number of missed detections and the worst
performance in the near-shore region. YOLOv3, YOLOF, and DETR missed detection
significantly when small and medium ships were dense. Secondly, PAA and Faster RCNN
have more false detections. Because of the high similarity between the ship and the
coastal background, Faster RCNN detected the background as the ship object in some
images. The remaining methods all have a small number of false detections caused by
overlapping detection at dense ship locations. The experimental visualization shows that
the effectiveness of the detection method is somewhat compromised in near-shore areas,
especially when ships are densely arranged. Especially the small and medium-sized ships
near the coast are more difficult to accurately identify. Among all the algorithms, ESTDNet
has more detection coverage and has the best performance when only individual images
are missed and no background is falsely detected as a ship, which indicates that the overall
detection performance of ESTDNet is better than other methods.
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Figure 7. Experimental results for the SSDD dataset. (a): ground truth images; from (b–l): predicted
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3.4. Experiments on the SARShip Dataset

The results of the proposed method on SARSship are shown in Table 4. The table
shows that ESTDNet exceeds the Cascade R-CNN Swin baseline in all COCO metrics.
Among them, ESTDNet has improved the accuracy of APM and APS by 3.7% and 2.9%, and
APL possesses a considerable improvement of 11.1%, proving that ESTDNet can improve
the inspection performance of different scales of ships at the same time. Next, the AP75 as
well as AP50 metrics improve by 6.7% and 1.6%, indicating that the ESTDNet method is able
to obtain more accurate information about the ship’s position. The AP accuracy is higher
than the Cascade R-CNN Swin benchmark model by 3.5%, indicating the excellent overall
performance of ESTDNet. The above results validate the FESwin and AFF proposed in this
paper, which make an important contribution to the extraction, fusion, and transmission of
feature information in SAR images.

Table 4. The experimental result of ESTDNet on the SARShip dataset.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

Cascade R-CNN Swin 57.3 93.4 63.1 53.0 62.8 56.4
ESTDNet 60.8 95.0 69.8 55.9 66.5 67.5

We compare the detection performance of ESTDNet with other methods for the SAR-
Ship dataset in Table 5. Among all methods, ESTDNet has the best AP metric result of
60.1%, indicating that ESTDNet has a better AP value. The index accuracy rates of AP,
AP50, and AP75 show that ESTDNet can obtain more accurate ship position information
and detect more ship objects than other methods. Secondly, the numerical displays of the
indicators of APS, APM, and APL also show that ESTDNet has a more robust detection
performance for large, medium, and small ships. In conclusion, compared with other
methods, ESTDNet’s evaluation of the COCO performance index is relatively balanced,
effectively detected most ships, and obtained more accurate detection position information.

The experimental results in terms of compared methods, which were conducted on the
SARShip dataset, are illustrated in Figure 8. The ground truths, detection results, missed
detection results and the false detection results are indicated with green, red, yellow, and
blue boxes, respectively. To make the detection results more representative, we selected
five detection images of objects at different scales with different backgrounds. From the
results, in the near-shore large and medium ship detection, most methods can detect ships,
but there are many false detections. The Faster RCNN, PAA, and ATSS detection methods
have a large number of false detections. The Tood, YOLOv3, Deformable DETR, and
Cascade R-CNN Swin methods have missed detections. DETR, YOLOF, and ESTDNet have
excellent detection results. Because of the relatively dense distribution of small ships, it is
difficult to detect all the ships. The compared detection methods all have a certain degree
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of missed detections, with Tood, ATSS, and Deformable DETR detection methods having
the most serious missed detections. Compared with other detection methods, ESTDNet
has a relatively low number of false and missed detections, and the prediction accuracy per
ship is higher than most detection methods, indicating the superiority of ESTDNet.

Table 5. The results of different methods on the SARShip dataset.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

Faster RCNN 50.8 92.7 50.5 47.2 55.4 46.9
YOLOv3 46.6 90.9 42.6 42.8 52.1 43.1

Cascade R-CNN 58.1 93.4 65.1 53.7 63.8 57.7
PAA 53.6 93.2 56.1 49.5 58.7 50.5
ATSS 53.7 93.5 56.2 49.4 59.2 52.7
DETR 56.5 94.5 62.7 49.1 65.2 64.2

Deformable DETR 56.8 94.2 63.3 50.2 64.1 52.2
Tood 57.7 94.4 64.1 53.2 63.4 66.1

YOLOF 54.4 94.7 56.3 48.2 62.2 54.0
Cascade R-CNN Swin 57.3 93.4 63.1 53.0 62.8 56.4

ESTDNet 60.8 95.0 69.8 55.9 66.5 67.5
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Figure 8. Experimental results in the SARShip dataset. (a): ground truth images; from (b–l): predicted
results of Faster RCNN, YOLOv3, Cascade R-CNN, PAA, ATSS, DETR, Deformable DETR, Tood,
YOLOF, Cascade R-CNN Swin, and ESTDNet, respectively. The ground truths, detection results,
missed detection results and the false detection results are indicated with green, red, yellow, and blue
boxes, respectively.

3.5. Ablation Experiments

The ablation experiments of ESTDNet, as exhibited in Table 6, are performed on the
SSDD dataset, with the Cascade R-CNN acting as the baseline. We use the FESwin module
and AFF module for the ablation study. The detection performance metrics of ESTDNet
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were all effectively improved using the FESwin module, and the improvement was even
more pronounced for large ships compared to the Cascade R-CNN Swin. Compared with
Cascade R-CNN Swin, the detection performance of the ESTDNet with only the AFF
module can acquire significant improvement with regard to the large ships, while there is a
slight enhancement in detection performance for the other. In addition, in order to ensure
the stability of the experimental results. We conducted 20 experiments on ESTDNet and
recorded the average detection accuracy of multiple experiments in Table 6. The values in
parentheses indicate the standard deviation of the results of multiple experiments.

Table 6. The experimental result of ESTDNet on the SSDD dataset.

Methods FESwin AFF AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

Cascade R-CNN Swin 56.6 91.5 64.7 53.5 63.5 51.3

ESTDNet

√
58.8 93.8 68.3 54.6 66.6 58.9√
57.5 92.3 66.2 54.3 64.3 54.2√ √

59.4 (0.1%) 93.8 (0.3%) 69.1 (0.2%) 55.4 (0.3%) 66.7 (0.2%) 60.3 (0.4%)

In this paper, FESwin is the ESTDNet backbone network module with superior feature
extraction capability, due to the fact that both global-local and spatial-channel characteristics
are comprehensively considered. As shown in Table 6, the detection performance of large,
medium, and small ships is improved using the FESwin module compared to the Cascade
R-CNN Swin. Among them, the most significant improvement in large ship inspection APL
increased by 7.6%, and the APS and APM of small and medium-sized ship inspection also
increased by 1.1% and 3.1%. In addition, the targeting is more precise, with AP, AP50, and
AP75 all boasting 2.2%, 2.3%, and 3.6% improvements. Using the AFF module compared
with Cascade R-CNN Swin increases the information mobility between the underlying
features and the higher-level features, with 0.9%, 0.8%, 1.5%, 0.8%, and 0.8% improvement
in AP, AP50, AP75, APS, and APM metrics, and 2.9% improvement in APL for large ship
objects. The full ESTDNet brings a 2.8%, 2.3%, 4.4%, 1.9%, 3.2%, and 9% improvement
in each metric compared to Cascade R-CNN Swin. The above phenomenon shows that
the use of the FESwin module has an important contribution to the detection accuracy
improvement of ESTDNet, and the combination with the AFF module has improved the
detection accuracy to different degrees without depleting the improvement effect of the
FESwin module. Therefore, both the FESwin module and the AFF module of ESTDNet
can improve the model detection performance, and the combination of the two can yield a
more robust ship detection model for SAR images.

3.6. Comparison of Inference Time

We compare the inference time of ESTDNet with other methods. Table 7 shows that
the inference time of ESTDNet is higher than the baseline Cascade R-CNN Swin, with about
nine milliseconds more inference per image and 1.5 images per second less processing.
This is because ESTDNet increases some computation modules on the Cascade R-CNN
Swin baseline for better accuracy. In addition, ESTDNet is 13.5 milliseconds faster than the
inference time of Deformable DETR on the SSDD dataset and 11 milliseconds slower than
the inference time of Deformable DETR on the SARShip dataset. The inference speed of
CNN’s methods is slightly higher than transformer’s methods, and ESTDNet is comparable
to other the inference times of transformer methods are similar.
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Table 7. Comparison of methods inference time.

Methods

FPS
(Image/Seconds)

Inference Time
(Milliseconds/Image)

SSDD SARShip SSDD SARShip

Faster RCNN 16.9 21 59.1 47.6
YOLOv3 47.4 41 21.1 24.4

Cascade R-CNN 13.7 15.7 73.1 63.7
PAA 13.2 12.9 75.6 77.8
ATSS 18.9 23.2 53 43.1
DETR 15.7 15.8 63.7 63.4

Deformable DETR 10.6 13.1 94.8 76.2
Tood 19.1 16.3 52.4 61.4

YOLOF 29 37.2 34.5 26.9
Cascade R-CNN Swin 13.7 12.8 73 78.1

ESTDNet 12.3 11.5 81.3 86.9

4. Discussion

We verify the superiority of ESTDNet by conducting several experiments using the
SSDD and SARship datasets. The ablation experiments of FESwin and AFF modules on
the SSDD dataset have proved that each of them can improve ship detection performance,
and the combination of both can achieve better detection results. In order to observe
more intuitively the enhancement effect of the two modules, we show the output of the
two modules separately with heat maps.

4.1. FESwin Module Effect Validation

In this paper, we compare the effect of feature extraction between FESwin and Swin
transformers, and use a heat map for verification. Figure 9 visualizes the results of feature
extraction at four different scales for Swin transformer and FESwin, respectively. The more
highlighted color in the heat map indicates the more feature attention received in the
feature map. In order to illustrate the effect more cleanly, we selected six images of large,
medium, and small ship objects including far sea and near shore. As shown in Figure 9,
FESwin enhances the feature information that originally existed only in the first stage for
medium and small ships, solving the problem of losing feature information as the model
deepens. FESwin makes it possible for medium and small ship objects to have ship feature
information of interest in at least stages one, two, and three, providing multiple scales
of information support for detection. For large ship objects, FESwin expands the feature
information focus that initially existed only in phases 1 and 4 to feature information focus in
all four phases. Second, near-shore images are more difficult to detect than far-sea images.
When the Swin transformer performs feature extraction, there are many false concerns as
the depth of the model increases because of the extensive similarity between the object
and the background. FESwin dramatically eases these problems and reduces the need
for erroneous focus in the coastal context. In summary, the heat map shows that FESwin
optimizes the performance of the feature extraction model, brings the ship into focus in
more multi-scale feature maps, enhances the utilization of ship information in SAR images,
and improves the feature representation capability of the feature extraction model.
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stages of FESwin.

4.2. AFF Module Effect Validation

For the AFF effect, this paper uses the heat map for verification. Figure 10 visualizes the
results of the five-scale feature fusion for FPN and AFF, respectively. The more highlighted
color in the heat map indicates the more feature attention received in the feature map.
In order to illustrate the effect more cleanly, we selected six images of large, medium,
and small ship objects including far-sea and near-shore areas. The Swin transformer is
used as the backbone network to ensure the fairness of the experiment. From the results in
Figure 10, the useful feature information concerns in the FPN when detecting far-sea images
are only present in the fourth and fifth layers, and the feature information mainly comes
from the feature extraction in the fourth stage. FPN suffers from long feature information
transmission paths, excessive information gaps between high and low layers, and attention
scattering in the first, second, and third layers after feature fusion, resulting in the inability
to provide effective ship feature information. AFF uses adjacent lower-level features to
complement the higher-level features, so that attention to ship feature information appears
in all the second, third, fourth, and fifth-level feature maps, effectively alleviating the
problem of attention dispersion. Secondly, the degree of attention received by the ship
is consistent with the scale distribution of the ship, which is beneficial to ship detection.
Because the near-shore background is complex, ship detection in near-shore is not friendly
to the feature extraction model. When using FPN for multi-scale feature fusion, there are
many incorrect feature focus sites, and there is also the problem that the practical feature
focus information is concentrated in four or five layers. AFF performs adjacency fusion
of feature maps from bottom to top, reducing the focus on relative errors in each layer,
avoiding the focus on coastal background feature information, and focusing attention
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effectively. Taken together, AFF enhances the information flow between feature maps at
each scale, reduces the information difference between the bottom features and the top
features, and alleviates the problem of attention scattering in multiple scales. A multi-
scale feature map with richer feature information is obtained using AFF, allowing ship
information in SAR images to be used effectively.

We can see from the results in Figures 9 and 10 that the increase in background
complexity and ship density impacts the detection results. In the future, we will consider
combining geometric features to construct a ship detection network with a stronger feature
representation to solve the background complexity problem. On the other hand, ship
objects in SAR images show the multi-angle distribution and no overlap between objects,
and we will try to use a rotate anchor detection method to solve the problem better.
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5. Conclusions

In this paper, we propose ESTDNet for ship detection of SAR images. FESwin and
AFF are essential components of ESTDNet, where the FESwin module is responsible for
the feature extraction work of the images to obtain more feature information. The AFF
module is more beneficial for fusing the extracted ship feature information. We use ablation
experiments to confirm the effectiveness of these two modules. The ESTDNet based on
FESwin and AFF can improve the accuracy of ship detection in SAR images. Moreover, we
conduct experiments on the SSDD and SARShip datasets. The results reveal that ESTDNet
achieves higher other detection performance than other methods and is a superior ship
detection method in SAR images. This is of great importance in aviation, aerospace, military,
and civil fields.
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ESTDNet is a combination of transformer and CNN detection methods. In the future,
our research will consider reducing the computational complexity caused by the trans-
former model. In addition, we will investigate the light-weighting of the transformer model.
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