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Abstract: In recent years, the remote sensing of marine plastic litter has been rapidly evolving and the
technology is most advanced in the visible (VIS), near-infrared (NIR), and short-wave infrared (SWIR)
wavelengths. It has become clear that sensing using VIS-SWIR bands, based on the surface reflectance
of sunlight, would benefit from complementary measurements using different technologies. Thermal
infrared (TIR) sensing shows potential as a novel method for monitoring macro plastic litter floating
on the water surface, as the physics behind surface-leaving TIR is different. We assessed a thermal
radiance model for floating plastic litter using a small UAV-grade FLIR Vue Pro R 640 thermal camera
by flying it over controlled floating plastic litter targets during the day and night and in different
seasons. Experiments in the laboratory supported the field measurements. We investigated the
effects of environmental conditions, such as temperatures, light intensity, the presence of clouds, and
biofouling. TIR sensing could complement observations from VIS, NIR, and SWIR in several valuable
ways. For example, TIR sensing could be used for monitoring during the night, to detect plastics
invisible to VIS-SWIR, to discriminate whitecaps from marine litter, and to detect litter pollution over
clear, shallow waters. In this study, we have shown the previously unconfirmed potential of using
TIR sensing for monitoring floating plastic litter.

Keywords: plastic litter; thermal infrared; natural waters; pollution; UAV

1. Introduction
1.1. Current Research in the Remote Sensing of Floating Plastic Litter

There is growing global concern over the chemical, biological and ecological impacts
of marine plastic pollution. Every year, 5 to 13 million metric tons of plastic litter enter
the oceans [1], and exactly what happens to this plastic is unknown. Significantly less
material has been observed on the ocean surface than has been predicted by budgeting
exercises [2–4]. One of the reasons for the “missing sink” is the scarcity of data for most of
the world’s oceans. Remote sensing has the potential to provide long-term and spatially
and temporally coherent observations on a global scale; remote sensing for plastics in
the ocean has been evolving rapidly in recent years. To date, most progress has been
made in the remote sensing of plastic macro litter (>5 mm) in the visible (VIS), near-
infrared (NIR), and short-wave infrared (SWIR) wavelengths. Spectral light reflectance
measurements of floating plastic macro litter have been made in situ [5,6], from unmanned
aerial vehicles (UAVs) [6–8], airplanes [6,9], and the Sentinel-2 satellite [7,8,10,11]. Another
recent approach is imaging floating plastic litter with VIS and applying automated image
recognition techniques using an RGB (red-green-blue) camera mounted on a bridge [12],
vessel [13,14], or aircraft [15]. These remote-sensing methods operate in the VIS-SWIR
spectrum; measurements in other parts of the electromagnetic spectrum (using passive
as well as active sensors) could improve remote-sensing algorithms for marine plastic
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litter [16–18]. In this paper, we explore thermal infrared (TIR) sensing as one of these
technologies [19,20], using a thermal imaging camera [7].

1.2. TIR Remote Sensing

The atmospheric windows in TIR are in the mid-wave infrared (MWIR, 3–5 µm) and
long-wave infrared (LWIR, 8–14 µm) ranges. In these windows, TIR sensing could, for
example, complement VIS-SWIR measurement for clear (dark-colored) plastic materials
that are transparent (dark) in the VIS-SWIR spectrum but are opaque (bright) in the TIR
spectrum. The physics behind surface-leaving radiance in TIR is not the same as in VIS-
SWIR because the radiance in TIR is composed of reflected and emitted energy, while in
VIS-SWIR, it is only reflected. Emissivity (and, hence, reflectivity) affects surface-leaving
TIR, as does the surface temperature. According to Hecker et al. [21], hydrocarbon-based
materials have a low specific heat capacity (the energy needed to raise the temperature of a
material by 1 ◦C per unit mass of material), meaning that their temperatures change quickly
compared to water, which has a high specific heat capacity. The resulting temperature
differences should be detectable in TIR images. Sunlight can interact with plastic surfaces
differently from water. Every object reflects a certain amount of light while absorbing the
rest as heat energy; this energy is then re-radiated as TIR radiance. Dark-colored surfaces
absorb more light and become warmer than light-colored surfaces. Clear plastic containers
can trap TIR radiance inside them and warm up (greenhouse effect). Unlike remote sensing
in the VIS-SWIR spectrum, TIR sensing requires no external illumination since the sensor
records energy directly from the object. TIR sensing can, therefore, operate during both day
and night.

TIR radiance is routinely measured in the thermal mapping of the Earth’s surface,
including the sea and other water surfaces, but other applications are possible, such as
oil spill sensing in LWIR [22]. Garaba et al. [20] report the laboratory measurements of
hyperspectral TIR hemispherical reflectance spectra (6–14.5 µm at 25 nm spectral resolution)
for different beach-collected plastic litter items and natural items such as sand, shells, and
algae. The data are freely available via an online repository, the PANGAEA database of the
World Data Center for Marine Environmental Sciences [23]. Topouzelis et al. [7] imaged
three 100 m2 targets consisting of plastic bottles, bags and fishing nets floating in the
Aegean Sea during the day (7 June 2018), using a UAV TIR camera 100 m above sea level.
The plastic bottles and the plastic bags were identified with some degree of uncertainty as
brighter surfaces.

The method for TIR remote sensing of floating plastic litter, which was proposed
by Goddijn-Murphy and Williamson [19], is based on the different emissivity values and
surface temperatures of water and of plastic and is explained in more detail in Section 1.3.
Emissivity is the ratio of the energy radiated from a surface, as well as that radiated from a
blackbody at the same temperature. The emissivity of water is very high, near one, and
that of plastics is generally lower. The warmer an object, the more radiance is emitted in
TIR, increasing with increasing emissivity. Therefore, for water and plastic at the same
temperature, the emitted TIR radiance will be higher for water. However, water and plastic
surfaces not only emit their own TIR radiance but also reflect TIR radiance from their
surroundings. For an object of lower emissivity, the reflectivity is higher, which implies
that plastic is generally a stronger reflector than water. Water readings will, therefore, more
closely indicate the actual temperature of the water, while plastic will more closely indicate
the temperature of the surroundings. In conclusion, the TIR signal of plastic is expected to
improve with a lower value of plastic emissivity, enhanced by an increasing temperature
difference between the air and the sea.

This dependence on air and sea temperatures complicates interpretations of the TIR
signal, but this could also be used in our favor, for example, by using the difference
between day and night measurements to detect the presence of plastic. An advantage
of nighttime surveys, especially pre-dawn surveys, is that the uneven solar heating that
occurs during the daytime is much reduced [24], making it easier to extract anomalous
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pixels not related to solar heating. It is clear that we need to separate the temperature
and emissivity dependencies to correctly interpret the TIR signal. Goddijn-Murphy and
Williamson [19] apply a thermal radiative transfer model to floating plastic that addresses
these dependencies, as described in Section 1.3. This model will also support remote-
sensing algorithms based on the spectral signature of plastic in the TIR spectrum [20], as
we expect it to apply to broad- as well as narrow-band TIR.

The goal of our field and laboratory experiments using a UAV TIR camera was to
explore the following questions about the remote sensing of marine plastic litter in TIR.
Can a UAV TIR camera operate as a TIR sensor? How does the TIR radiance transfer
model perform? When and where can we expect the best results? Which plastic litter items
give the best results? Can we separate plastic litter from other features on the water’s
surface? Can we see plastic litter on different surfaces other than water? Finally, how can
TIR sensing complement VIS-SWIR sensing?

1.3. Thermal Radiance Transfer Model

The following is a short review of the radiance transfer model used by Goddijn-
Murphy and Williamson [19]. Following Kuenzer and Dech [24], TIR radiance in a spectral
band, captured by a sensor viewing an object, Lb,obj, is estimated as follows:

Lb,obj = εobjτatm·Lb

(
Tobj

)
+
(

1− εobj

)
τatmLb(Tsur) + Lb,path. (1)

The object can represent either a water body or plastic litter. In Equation (1), the first
term represents the TIR radiance emitted by an object of temperature Tobj, the second term,
TIR radiance of the surroundings, Lb,sur, which is reflected by the object, and the third term,
TIR radiance reaching the sensor and having never interacted with the object. For an open
ocean, Lb,path has been approximated by (1 − τatm)Lb(Tatm), calculated as the emitted TIR
radiance resulting from the absorption of radiation in the atmosphere, with τatm and Tatm
representing atmospheric transmissivity and temperature, respectively [25]. It is difficult to
separate Lb,path and Lb,sur in practice, and we refer to both when we mention background
radiance, Lb,back.

In Equation (1), Lb(T) is the band radiance of a blackbody at temperature T, esti-
mated from the spectral thermal radiance, L, of a blackbody. For temperature, T (K), and
wavelength, λ (µm), L increases with increasing temperature, according to Planck’s law
(Equation (2)):

L(λ, T) =
2hc2

λ5

(
1

ehc/λkBT − 1

)
1024

[
W m−2sr−1µm−1

]
, (2)

with h representing Planck’s constant (6.626 × 10−34 J s), c representing the speed of light
(299,792,458 m s−1), and kB representing the Boltzmann constant (1.3806 × 10−23 J K−1).
Spectral radiance, L(λ, T), is defined so that L(λ, T)dλ is the radiance within the intervals λ
and λ + dλ. Thus, for a spectral band we calculate band radiance, Lb, from λ1 to λ2:

Lb(T) =
∫ λ2

λ1
L(λ, T)dλ

[
W m−2sr−1

]
. (3)

Emissivity, ε(λ), is the ratio of energy radiated from a surface at a given temperature,
Mb(T) (W m−2), and that radiated from a blackbody (a perfect emitter) at the same kinetic
temperature:

ε(λ) =
Mb,obj(λ, T)

Mb(λ, T)
. (4)

All the TIR energy absorbed by a body in thermal equilibrium with its surroundings
is emitted again so that ε(λ) equals absorptivity, α(λ), the fraction of TIR energy absorbed
(Kirchhoff’s law). A blackbody absorbs all incident energy and, therefore, re-radiates
100% of the incident radiance. Most radiation sources are not blackbodies, however, as
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some of the incident energy upon them may be reflected or transmitted. For all bodies
(at thermal equilibrium), the conservation of energy dictates that the sum of absorptivity,
reflectivity (ρ), and transmissivity (τ), equals one (with ρ/τ representing the fraction
of radiance reflected/transmitted). Radiation sources can be of different classes. For a
blackbody, thermal radiance is described by Plank’s curve (ε = 1). For a graybody, the
curve is proportional to Planck’s curve for all wavelengths (ε < 1). For a selective radiator,
spectral radiant emittance varies not only with temperature but also with wavelength (ε(λ)
< 1) [26]. Plastics and other man-made materials, as well as natural materials, are selective
radiators, showing specific absorption features corresponding to their chemical composition.
Garaba et al. [20] present hyperspectral TIR (6–14.5 µm) reflectance measurements that are
collected from natural and anthropogenic material, including sands, shells, algae, nautical
ropes, Styrofoam®, gunny sacks, and several fragments of plastic-based items.

We treat seawater and plastic as opaque (τ = 0) and, together with ε(λ) = α(λ), we de-
rive:

ε(λ) + ρ(λ) = 1. (5)

We can consider seawater to be opaque, as water strongly absorbs TIR radiance. We
assume plastic litter is also opaque in TIR, but this is not certain for all types. The TIR
emission by transparent materials is reviewed by Gardon [27]. Assuming that the emitted
and reflected TIR energy of an object (that object being water or plastic) are Lambertian,
meaning that the emitted TIR radiance is the same in all directions and, hence, Mb(T) = πLb,
we calculated the total captured by a TIR sensor, Lb,obj, using Equation (1).

The emissivity of water, εw, and of aluminum foil, εalu, is 0.98 and 0.036, respectively,
for a wavelength band of 8–14 µm [24], and that of plastic materials, somewhere in be-
tween [19]. Looking at Equation (1), this means that the radiance of water/aluminum foil
in TIR is mostly emitted/reflected. We used water as an approximation of a blackbody
and aluminum foil to assess the background radiance. We applied the above theory to a
broad band in LWIR, but the theory should also apply to narrow bands and to other TIR
wavelengths, such as MWIR.

2. Materials and Methods

The focus of this paper is the TIR imaging of floating plastic litter at sea from a
UAV, using a FLIR (forward-looking infrared) camera. The UAV also carried NIR and RGB
cameras that were taking concurrent recordings, to see how TIR imaging could complement
VIS-NIR data. We supported our field measurements with FLIR measurements in the
laboratory, and we used Equations (1)–(3) to estimate the captured TIR radiance and
evaluate FLIR camera response.

2.1. FLIR Camera and Image Processing

We used the FLIR Vue Pro R 640 (FLIR, Wilsonville, OR, USA) for imaging in the
spectral band, at 7.5–13.5 µm (wavenumber 1333–741 cm−1) in LWIR. “R” stands for
radiometric meaning reading the intensity of thermal radiation. The specifications of this
camera are: sensor resolution = 640 × 512 px, field of view (FOV) = 32◦, and focal length =
19 mm. The ground sample distance (GSD) at 30 m of altitude was 2.7 cm/px, with a frame
height and width of 13.9 and 17.4 m, respectively. The FLIR camera was not calibrated by
the manufacturer.

We recorded FLIR images as a 14-bit TIFF (tag image file format), producing uncom-
pressed and unprocessed grayscale images (raw), making the FLIR’s radiometric settings
irrelevant. Each TIFF file was imported into MATLAB and, for each image, we selected
the surface of interest (water, aluminum, plastic, or wood) and calculated the average
digital numbers (DN) of all pixels in the selection. Kelly et al. [28] recommend selecting at
least 10 pixels; our selections were at least 20 pixels for 30-meter-altitude UAV images and
were >1000 in the laboratory. We defined delta as the DN difference of the target surface
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pixels and water surface pixels, to evaluate the TIR signal from plastic floating on water,
as follows:

delta(target) = DN(target)−DN(water). (6)

In the field, we used 1-min averages of 1-Hz measurements (DN and delta) fol-
lowing the baseline surface radiation network (BSRN) [29]. On the recommendation of
Kelly et al. [28], the FLIR camera was powered up at least 30 min before launch, and its
recording minute was taken after the UAV had been in position above the targets for at
least five minutes (to maximize the stabilization of the FLIR camera). In the laboratory,
where environmental conditions were stable, we used a single image. The FLIR camera
in the laboratory was powered up 1 h before measurements were taken. The FLIR images
showed vignetting, i.e., a bright center and darker areas around the edges [28]. For deriving
the delta value, we, therefore, retrieved the DN values from the target surface and the
nearby water surface. It was necessary to achieve “flat” images for stitching the UAV
images together in a mosaic, to prevent vignetting artifacts in the mosaic, as seen in [7]
(Figure 2e). We applied the MATLAB function imflatfield, with a sigma of 30, to remove the
vignetting patterns; this could produce image artifacts. Section 3.4 details the measuring of
the consequences of the flatfield correction for DN and delta. In the laboratory, where we
could place the target in the center of the view of the FLIR, we did not apply the flatfield
correction. Hence, we used both flatfield corrected and uncorrected images in our analysis
of the TIR signal, as follows:

i. Flatfield, corrected for comparing the DN values of targets in UAV images;
ii. Uncorrected for deriving delta in UAV images, with DN(water) taken close to DN(target);
iii. Uncorrected for DN(water) in the UAV images, taken from the center of the images;
iv. Uncorrected for FLIR images taken in the laboratory, with targets in the center of

the view.

The corresponding workflow and their results are illustrated in Figure 1.

Figure 1. Diagram showing the image-processing workflows for FLIR field measurements (I–III)
and laboratory measurements (IV). Processing workflows I–III before the 1-min average applies to
individual images; se is standard error of the mean. Surface pixels in I and IV can be of the water or
the target.

In the following, we report the DN and delta values, specifying whether the flatfield
correction was applied.
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2.2. NIR and RGB Cameras

We used a MAPIR 3N (San Diego, CA, USA), a NIR camera with a single band at
850 nm. Specifications of this camera are: sensor resolution = 4000 × 3000 px, FOV = 41◦,
focal length = 8.25 mm. The GSD of the MAPIR at 30 m altitude was 0.564 cm/px, with
a frame height and width of 17.1 and 22.7 m, respectively. The RGB camera model was a
ZENMUSE X5 (DJI, Shenzhen, China) in the UAV housing, covered by a dome to protect it
from sand and spray. The specifications of the ZENMUSE X5 are: sensor resolution = 4608
× 3456 px, FOV = 71◦, focal length = 15 mm. The GSD at 30 m of altitude was 0.75 cm/px,
with a frame height and width of 26.9 and 34.6 m, respectively. The ZENMUSE X5 camera
lens was set to AF (auto-focus) mode. In this paper, we show JPEG images of the MAPIR
and ZENMUSE X5 to illustrate their views during the daytime surveys. The FLIR, NIR,
and RGB cameras were fixed at different positions on the UAV, which explains why their
images did not line up perfectly.

2.3. Temperature, Light Intensity, and Humidity
2.3.1. Measurements

We need true kinetic temperature measurements of the water and target surfaces,
as well as their surroundings if we want to understand the TIR signal. Thermal inertia,
defined as the resistance of a material to heating, is the product of the specific heat capacity,
density, and thermal conductivity of the material. Man-made materials (e.g., metals and
hydrocarbon-based materials) do not easily remain at a constant temperature, due to a low
specific heat capacity [21]. In the field, therefore, it is important to measure temperatures
at the exact moment of capturing the FLIR image. Temperatures can change quickly, for
example, when targets move in and out of sunlight due to variable cloud cover. Water has
a high specific heat capacity and its temperature, Tw, does not change as quickly as the
temperature of targets. Another challenge is the requirement to measure temperature at the
surface of the material. For a water body, we can measure a vertical temperature profile and
extrapolate this for the surface temperature. For plastic and metal surfaces, it is difficult to
establish the true kinetic surface temperature because a contact thermometer influences the
surface temperature it measures, due to interferences such as reducing cooling by airflow
and heating by the absorption of light. Although measuring air temperature, Tair, may
seem straightforward in comparison because adequate immersion is almost guaranteed, it
is not that easy. Air and gases are not efficient heat-transfer media; even a modest heat input
to the sensor can cause the readings to be high [30]. The thermometer should, therefore, be
protected from airflow, (sun)light, and other sources of radiation.

Handheld probe and data-logging thermometers were used to measure the kinetic
temperatures of air, water, and the floating surfaces, and dataloggers were used to record
light intensity (I) and relative humidity (RH) (details of the sensors are given in Section 2.3.2).
In the laboratory, we mostly used handheld sensors, while in the field, dataloggers with
handheld sensors were used as a backup. In the field, dataloggers took measurements every
10 s (we found that the 1-minaverages of the 0.1 Hz data were not significantly different
from the 1 Hz data) and we smoothed the data using a 1-min window. We matched the
FLIR-imaging minute with the temperature-recording minute, then we took handheld
measurements as close to the FLIR recording as possible. We will assess the performance
of the thermometers in Section 3.3. We could not ascertain which measurement was most
accurate in the case of handheld devices or dataloggers; we will inform the reader what
types were used.

2.3.2. Sensor Details

Handheld sensors. A handheld type-K air/gas probe measured the ambient air
temperature, a type-K right-angle (RA) surface probe measured the temperature of the
target surfaces (plastic and aluminum), and a waterproof Pt100 sensor on a cable measured
the water temperature profiles (Thermosense, Bucks, UK). The accuracy of the type-K
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readings was± 0.15% of reading +1 ◦C, and of the Pt100 sensor, ± 0.05% of reading +0.5 ◦C.
We measured the temperatures as close in time to the FLIR imaging as possible.

Dataloggers. We used the iButton® DS1922L Thermochron data loggers (−40 ◦C
to +85 ◦C) to log the temperatures, with 8-bit (0.5 ◦C) resolution, an iButton® DS1923
Hygrochron temperature/humidity logger (RH, with 8-bit (0.6%) resolution) (MSL, New-
bury, UK), and a HOBO® (Onset, Bourne, MA, USA) miniature temperature and light
logger (temperature ± 0.53 ◦C, from 0◦ to 50 ◦C) and with a light sensor designed for the
measurement of relative light levels from 0 to 320,000 lux (0 to 30,000 lumens/ft2). An
iButton datalogger, submerged in a waterproof casing, measured the water temperature
approximately 15 cm below the water surface. We measured the surface temperatures of
the targets by placing iButtons in miniature plastic bags, tightly taped to the surface. In the
field, we measured Tair,2m with iButton and HOBO loggers that were attached to a small,
expanded polystyrene platform on a stick approximately 2 m above the sand, and Tair,30m
using an iButton attached to the UAV. We tried to place the dataloggers out of the direct
sun, wind, and drafts, but this was not always possible, especially not in the case of those
that were on the target surfaces. In Section 3.3.1, we evaluate the systematic errors between
the handheld devices and dataloggers. We estimated room temperature in the laboratory
by attaching an iButton to the FLIR camera tripod, approximately 1 m off the ground.

2.4. UAV Surveys

The Tetra TD-7 UAV (Tetra, Lincoln, UK) had a ~28-min flight time when unladen. It
carried the three downward-looking cameras in a nadir view to take concurrent images.
The objective of a flight was to image floating plastic litter targets and the aluminum foil
reference target at sea, by hovering over them in one position at a 30 m altitude. We
operated the UAV using the DJI GO app, by which we could follow the view of the RGB
camera and position the UAV. For the night surveys, we deployed two green Lumica 30-min
glow sticks, fixed to moorings in the target area, to help find our targets. The floating
glow ticks did not appear in the FLIR images. Our survey site was in Thurso Bay in the
Pentland Firth, on the north coast of Scotland (58.5987◦N, 3.5166◦W), where we performed
four UAV surveys during the day and night and in different seasons (Table 1). The ambient
temperatures during the surveys were sufficiently different to cover a range of conditions.
During surveys 1, 2, 3, and 4, all floating targets were deployed at sea 20, 45, 30, and 50
min before the FLIR recording minute, respectively.

Table 1. Details of four field surveys, LT = UTC + 1; location: Thurso Bay (58.5987◦N, 3.5166◦W).

Survey Day (2021) LT Sky Condition Sea State

1 1 April day 07:40 Cloudy smooth
2 23 April night 04:14 Overcast (no stars) slight
3 3 August day 12:01 Overcast (100% cloud cover) calm (rippled)
4 4 August night 01:41 Clear sky (stars and red moon) calm (smooth)

During the field surveys, we flew the UAV over 0.5 × 0.5 m targets floating at sea,
connected to moorings with a 1.5-meter rope. We created these targets using plastic
litter items composed of expanded polystyrene (EPS), polyethylene (PE), polyethylene
terephthalate (PET), high-density polyethylene (HDPE), and low-density polyethylene
(LDPE). Each target consisted of one kind of litter item; these were numbered 1–7, as follows:

1. PET bottles, clear (0.5 L);
2. PET bottles, clear (2 L);
3. EPS foam board, white (thickness 5 cm);
4. EPS foam board, blue (thickness 3 cm);
5. HDPE milk bottles, semi-transparent, white (2.3 L);
6. LDPE/HDPE binbag, black, two thin layers;
7. PE tarpaulin, white, single-layer;
8. Aluminum foil (wrapped around 3);
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9. Wooden tree trunk disk (thickness 4 cm, radius 29 cm).

Polymer compositions of items 6 and 7 were not specifically known; therefore, we
refer to these as a binbag and tarpaulin, respectively. Number 8 was a reference target
used to estimate the background TIR radiance. We deployed the wood disk (9) during the
summer surveys for comparison with plastic. Targets 1, 2, 3, and 5 were previously used by
Goddijn-Murphy and Dufaur in their spectral light reflectance measurements [5].

2.5. Atmospheric Parameters from ERA5

For Tair at higher altitudes, we obtained the temperature profiles from the data set
“ERA5 hourly data on pressure levels, from 1979 to present” from the Climate Data Store
(CDS). The CDS provides hourly reanalysis calculations on a 0.25◦ × 0.25◦ grid for 37
pressure levels, from 1000 hPa to 1 hPa (111 m to 32,435 m) [31]. We calculated the
altitude in meters from the pressure level in hPa, following the NOAA’s National Weather
Service [32]. We also downloaded 0.25◦ × 0.25◦-resolution atmospheric data from “ERA5
hourly data on single levels, from 1979 to present” [33]; these were STRD (surface thermal
radiation downward) values at the Earth’s surface, including clouds, LCC (low cloud
cover), and CBH (cloud base height). We interpolated these ERA5 data between 3–4◦W and
58–59◦N for the survey location and time (Table 2).

Table 2. ERA5 atmospheric parameters from CDS interpolated to the survey location and time. STRD
(surface thermal radiation downward) is measured at the Earth’s surface and includes clouds; LCC
(low cloud cover); CBH (cloud base height).

Tair, 111 m STRD LCC CBH
Survey (◦C) (106 J/m2) (0–1) km

1 1.9 1.0395 0.81 0.9231
2 5.0 1.1465 0.79 0.5344
3 14.6 1.2696 0.82 0.9115
4 13.7 1.1582 0.30 1.5682

2.6. FLIR Measurements in the Laboratory

We turned off all the lights and heating radiators in the room and closed the window
blind to reduce the incoming daylight. For each type of plastic litter, the measurement
(workflow IV in Figure 1) was repeated three times, using different items of the same
type, while we used single measurements of aluminum reference (0.1 × 0.1 m version
of target 8 in Section 2.4) and the water surface on both sides of the three measurements.
The FLIR camera was mounted on a tripod, with its legs against a 1 m × 1 m square of 5
cm-thick EPS foam board on the floor, on which we placed the objects we imaged. These
comprised a basin filled with water and floating targets. We used metal pliers to handle
the targets, as contact with bare fingers would leave warm fingerprints. The camera was
tilted downward at an angle of approximately 45◦ so that it did not record its own reflected
heat. We positioned all targets in the center of the FLIR view and did not need to apply a
flat-field correction to rectify the vignetting of the camera. We used water as a near-perfect
TIR emitter (black body) and aluminum as a near-perfect TIR reflector. Water temperature
was regulated by using hot water from the tap and ice from the freezer. The aluminum foil
was wrapped around an oven brick and placed in a furnace to achieve temperatures of >
100 ◦C. While imaging the hot brick, it was placed on a heat-resistant tile.

In the laboratory experiments, we used the same plastic litter items (dry and wet) as
in the field surveys. The laboratory experiments comprised: measuring the FLIR camera
response to water temperature and calculated TIR radiance; measuring the FLIR camera
response to aluminum foil temperature; measuring the FLIR camera response to floating
plastic litter and as a function of water temperature and plastic litter density; and a bio-
fouling experiment.
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2.7. Biofouling Experiment

Biofouling can affect TIR sensing in different ways. Biofouling can cause plastic litter
to sink below the water surface and remove it from view, but this problem is beyond the
scope of our research, and we refer to other studies on this subject (e.g., [34]). Biofouling can
produce a surfactant film on the water surface, which may be seen by a thermal imaging
camera [22]. This is also beyond the scope of this project. The aim of our experiment was
to assess how biofouling on a plastic litter affected the surface-leaving TIR, as measured
with the FLIR camera. This could be through biofouling changing (1) surface emissivity, (2)
surface temperature, and (3) wetness of the surface.

In our biofouling experiment, we used two sets of a small PET soft-drink bottle (1),
blue EPS foam board (4), an HDPE milk bottle (5), a white tarpaulin (6), and a black bin
bag (7) (numbers of targets as listed in Section 2.4). Bottles were uncapped and the sizes of
4, 6, and 7 were 10 cm × 10 cm. In one set, we had three of each litter item, all pre-dried
(at 30 ◦C for 24 h) and pre-weighed (using an Avery Berkel FA-114 electronic balance,
Smethwick, UK). Following the procedure of Fazey and Ryan [34], we tethered a set of
plastic litter items to a 1-meter PVC (polyvinyl chloride) pipe with 15-centimeter pieces
of strong fishing line. Both racks were deployed on 13 April 2021 (expecting to catch the
spring algal bloom) in a sheltered location under a floating pontoon in Scrabster harbor
(58.6122◦N, 3.5490◦W). We also kept a clean, ‘virgin’, set for comparison. One rack was
retrieved after two weeks to assess the first signs of biofouling and the other was retrieved
after three months, for denser biofouling cover [34]. The biofouled items were re-dried and
re-weighed after retrieval, to estimate the mass growth of biofouling. The biofouled items,
both wet and after drying, were FLIR-imaged on an EPS panel wrapped in aluminum. For
each wet (dry) plastic litter item, we measured a wet (dry) virgin item, followed by three
wet (dry) biofouled items. We also imaged the TIR radiance leaving the water in a small
container, along with an aluminum reference. Photos were taken in NIR and VIS.

3. Results
3.1. Assessing the FLIR Camera Response

We used FLIR images of the water surface to estimate the FLIR response because water
emissivity, εw, is close to one, so that the water-leaving band radiance captured by the FLIR
camera is mostly controlled by the TIR emittance of the water surface (Equation (1)). For
measurements taken in the laboratory, the FLIR camera response, quantified by the DN of
water, to Tw was linear over Tw ranges (5–35 ◦C and −9–1 ◦C) (Table 3).

Table 3. Curve fitting results of DN as a function of Tw to p1x + p2, derived in the laboratory, with
Tair and Tw measured using handheld sensors. Std is standard deviation of the mean and RMSE root-
mean-square-error of the fit.

Tair (mean ± std) (◦C) Tw (◦C) p1 p2 R2 RMSE (DN)

19.8 ± 0.2 6 to 35 24.9 ± 0.7 6852 ± 15 1.00 10
22 ± 1 4 to 35 22.9 ± 0.5 6922 ± 12 1.00 13

19.7 ± 0.3 −9 to 1 31 ± 3 6820 ± 10 0.98 18

Over the whole Tw range (−9 to 35 ◦C), a quadratic relationship was closer (Figure 2):

DN = −0.169Tw
2 + 30.6Tw + 6839 (7)

where (R2 = 0.99; RMSE = 29 DN), with uncertainty in the quadratic coefficient, linear
coefficient, and offset being ± 0.06, ± 2, and ± 10, respectively.
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Figure 2. Scatter plot of the DN of the water surface (uncorrected) as a function of Tw (◦C), with circles
indicating laboratory measurements in green Tair/Tw = 19.8 ± 0.2/6–35 ◦C, red 22 ± 2/4–35 ◦C,
and blue 19.5 ± 0.5/−9–1 ◦C; black squares/triangles indicate the April/August field surveys, with
open/filled symbols representing day/night. The dashed line indicates Equation (7).

The inverse of Equation (7) (using kDN) is:

Tw = 9.7kDN2 − 101kDN + 236 (8)

where (R2 = 0.99; RMSE = 1), with uncertainty in the quadratic coefficient, linear coefficient,
and offset being ± 3, ± 40, and ± 140 respectively. Equation (8) was valid for indoors and
Tair of 21 ± 2 ◦C; in the field, the DN(water) was significantly lower.

We could calculate the first and second terms of Equation (1) using Equations (2) and
(3), but not Lb,path. Therefore, we estimated Lb,w−Lb,path for Tw using Tsur = Tair, with εw =
0.98 and τatm = 1. Tsur = Tair was an approximation for both variables in the laboratory and
over the open ocean. However, since we multiplied Lb(Tsur) with (1 − εw), we deemed this
to be acceptable.

A scatter plot of Lb,w−Lb,path against DN illustrated an approximation of the captured
band radiance leaving the water surface, as a function of DN (Figure 3). An exponential
curve fit resulted in:

Lb,obj − Lb,path = 0.41e0.65·10−3DN (9)

where (R2 = 0.99, RMSE = 0.8), with uncertainty in the exponential slope (intercept) of ±
0.02·10−3 (± 0.05). Figure 3 shows how, for the same DN, the Lb,w−Lb,path estimated for
the field surveys was higher than in the laboratory; we explained this finding by Lb,path
being lower over the open ocean than indoors, where the walls and other objects radiated
in TIR. We investigated this further using the aluminum foil reference in Section 3.2.

Figure 3. Scatter plot of the modeled Lb,w−Lb,path (Equations (1)–(3)) as a function of DN, using data
from Figure 2. The dashed line indicates Equation (9).
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3.2. Response of the FLIR Camera to Background TIR Radiance

Aluminum foil-leaving radiance, Lb,alu, is dominated by the background TIR radiance
and not by the aluminum foil temperature, Talu, as its emissivity is near zero. It follows
from Equation (1) (with τatm = 1), that:

Lb,alu ≈ Lb(Tsur) + Lb,path (10)

We could recognize this in the scatter plot of DN a function of Talu obtained in the
laboratory (Figure 4); DN was near-constant over the Talu range and slightly higher/lower
for a higher/lower Tair. The estimated background TIR in the laboratory from a mean
DN(alu) of 7.415 ± 0.07 kDN was related to Tair = 20.4 ± 3 ◦C (Equation (8)). This was
not significantly different from the mean measured Tair of 21.5 ± 1.5 ◦C and implied that
in approximation, the room, the walls, and everything inside was in thermal equilibrium.
It also implied that the aluminum foil reference gave a reasonable estimate of Lb,back and
background temperature. In the field, DN(alu) was significantly lower and ranged from
5.7 to 6.7 kDN (Figure 4). If we applied Equation (8), these values were associated with
background temperatures of −25 to −4 ◦C.

Figure 4. Scatter plot of DN on the aluminum foil surface (field survey data, corrected with sigma =
30) as a function of Talu (◦C), with circles indicating laboratory measurements, in green Tair = 19.8 ◦C,
red Tair = 22 ◦C, and blue Tair = 19.3 ◦C; black squares/triangles indicate April/August field surveys,
with open/filled symbols representing day/night.

3.3. Temperatures
3.3.1. Environmental Temperatures

In the laboratory, the surface and water temperatures measured using the handheld
sensors and iButton dataloggers were similar, but datalogger Tair was about 1 ◦C higher
than Tair, measured using the handheld air/gas probe. In the field, the difference between
Tair,2m when measured using a logger and a handheld sensor was ± 2 ◦C (Table 4); the
dataloggers recorded a higher (lower) Tair,2m during the day (night). The difference between
the iButton and HOBO Tair,2m was insignificant. The measured water temperature, Tw,
with the iButton datalogger was up to 0.5 ◦C higher than that measured with the handheld
sensor. We did not find evidence of thermal stratification of the water column using
the latter.
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Table 4. Environmental conditions, measured during the UAV survey using handheld probes and
dataloggers, with temperatures in ◦C and wind speed in km/hr.

Handheld Datalogger

Survey Tair,2m Tw Tsand Wind iButton
Tair,2m

HOBO
Tair,2m

iButton
Tair,30m

iButton
Tw

iButton
RH%

HOBO
I (lux)

1 5.7 5.6 6.0 5 6.1 5.9 7.6 6.1 66.8 5511
2 7.4 7.3 6.8 1 6.6 6.4 7.1 7.6 87.6 0
3 17.0 13.2 17.7 3–16 19.0 19.2 17.9 14.1 66.0 14,467
4 13.5 12.7 13.9 2–6 11.6 x 12.6 13.6 98.8 0

3.3.2. Surface Temperatures of Floating Plastic

In the field, we saw all temperatures vary by the minute while the targets were
deployed at sea (Figure A4). It was, therefore, important to match temperatures to the FLIR
recording minute (Table 5) for a valid comparison. We could relate the rising temperatures
during the daytime surveys (Figure A4a,c) with increasing light intensity. During the
summer night survey, all temperatures started dropping around 01:25 (Figure A4d). At the
same time, RH started rising from 97% to 100%. In the following, we use the means over
the FLIR recording minute (Table 5).

Table 5. Target surface, water, and air temperatures during the FLIR recording minute, using the
iButton dataloggers (1-min averaged over 0.1 Hz measurements).

Temperature (◦C)
Survey Water PET S PET L EPS White EPS Blue HDPE Binbag Tarp Alu Air, 2 m

1 6.1 6.1 6.6 5.6 6 5.8 6.1 6.1 6.1 6.1
2 7.6 7.1 6.6 6.8 6.6 6.1 7.5 7.6 7.4 6.6
3 14.1 15.1 17.6 24.6 22.6 24.1 15.6 14.8 22.7 19.0
4 13.6 12.1 11.1 11.0 11.1 11.7 12.1 12.6 11.6 11.6

In survey 1, Tair,2m was equal to Tw and all target surfaces, except PET L, were at the
same temperature or were colder than the water. In night survey 2/4), Tair,2m was 1/2 ◦C
lower than Tw, and all target surface temperatures were the ‘same or lower’/lower than Tw.
Measured temperatures during daytime survey 3 around noon were very different. Tair,2m
was approximately 5 ◦C higher than Tw, and all target surfaces were warmer than the
water. The binbag was warmer than the tarpaulin, which was likely related to the binbag
(tarpaulin) being black (white) and absorbing (reflecting) sunlight. The temperatures of
EPS boards and HDPE bottles were the highest, being up to 10 ◦C higher than the water.
As in survey 1, PET L was warmer than PET S, but not warmer than air. It may be that
the bottles were not in the sun for long enough for the greenhouse effect to raise the
surface temperature.

Indoors, in the absence of wind and sunlight, when Tair was 19.8 ◦C and Tw ranged
between 4.9 and 35.5 ◦C, we observed surface temperatures of three (two)-dimensional
litter items that were closer to air (water). For two-dimensional items, wet and dry surface
temperatures were not significantly different, but for the three-dimensional items, wetness
brought the temperature generally closer to Tw. In the field, we recognized the two-
dimensional binbag and tarpaulin and three-dimensional PET S, which were closer to the
water temperature than the other three-dimensional targets.

3.4. FLIR Signals of Floating Plastic

Conditions during the surveys are presented in Tables 1, 2 and 4, and the surface
temperatures in the field are given in Table 5. Snapshots of the images taken with the three
cameras of the floating plastic targets at sea are shown in Appendix A.1.

Except during survey 3, all targets looked cooler in the images than the water, while the
aluminum reference and EPS white looked cooler than the water in all surveys (Figures A1–A3).
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Figures A5 and A6 illustrates the DN/delta values of all the targets and water during the
FLIR recording minute; we could see how they varied and followed each other during this
minute. The variation was smallest during survey 4, under a clear night sky. Table 6 presents
all DN- and delta values retrieved during the UAV surveys. Table 6b lists delta calculated
using flatfield-corrected images (relating to the DN values in Table 6a), and Table 6c, delta
values calculated using uncorrected images. A comparison revealed that the flatfield correction
reduced delta, implying that it brought the DN values of different targets closer together. Data
from Table 6a,c, except for aluminum foil, are illustrated in the form of bar charts (Figure 5).
Figure 5b shows that for surveys 1, 2, and 4, |delta| was largest for the EPS boards (3 and
4), followed by the bottles (1, 2, and 5) and the binbag (6). We found the same ranking in the
laboratory for wet and dry surfaces (Tw > Tair) and dry surfaces (Tw < Tair). We did not expect
a large |delta| value for the tarpaulin (7) in survey 4 (the only survey with useful tarpaulin
images) from the laboratory experiments. Survey 3 was different, as the sun warmed all targets;
this likely explained the large positive delta for the black binbag (6). We could not relate delta
< 0 for the white EPS board (3) to a low surface temperature as it was the warmest measured
surface (Table 5). For all four surveys, white EPS revealed the lowest DN levels of all targets
(except aluminum), including blue EPS.

It is difficult to keep the target surfaces dry or wet when deployed at sea; hence,
we studied the effect of wetness in the controlled environment of the laboratory. These
experiments showed that wetting the surface decreased the sensitivity of delta to the
presence of plastic on the water surface, except when Tw ≈ Tair. When Tw ≈ Tair, delta
≈ 0 for dry surfaces and delta < 0 for the wet surfaces; this was presumably caused
by evaporation cooling the surface. In the field, the FLIR signal did not correlate with
surface temperature.

Figure 5a shows that DN was highest during survey 3; this can be explained by the
sun warming all surfaces (Table 5). This resulted in different delta responses from those
retrieved during the other surveys (Figure 5b) and in the laboratory. From the theory
and the laboratory experiments, we expected delta values of near-zero for Tw ≈ Tair, but
for surveys 1, 2, and 4 (when Tw ≈ Tair,2m when averaging the handheld and datalogger
measurements), the delta value was significantly smaller than zero for all targets. Delta
was most negative for survey 4, when we took measurements under a clear night sky.

Figure 5. (a) FLIR signal (kDN) for all imaged surfaces during all UAV surveys, except the aluminum
foil reference (flatfield-corrected with sigma = 30), and (b) delta (DN) using uncorrected images.
Legends indicate: 1-PET S, 2-PET L, 3-EPS white, 4-EPS blue, 5-HDPE, 6-bin bag, 7-tarpaulin, and
9-wood. Error bars were too small to show.
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Table 6. (a) FLIR signal (kDN) for all imaged surfaces, obtained from survey “S”. Values are the
means over 60 images (a) after flatfield correction with sigma = 30, SE < 0.001 kDN (b) concurring
delta (DN), SE < 0.1 DN, and (c) delta (DN), estimated using uncorrected FLIR images, SE < 0.1 DN.

(a)

FLIR kDN

S Water PET S PET L EPS White EPS Blue HDPE Binbag Tarpaulin Alu Wood

1 6.805 6.785 6.784 6.729 6.754 6.79 6.799 NaN 6.56 NaN
2 6.862 6.83 6.827 6.772 6.783 6.837 NaN NaN 6.641 NaN
3 6.979 7.004 6.995 6.956 7.089 6.978 7.261 NaN 6.745 7.045
4 6.795 6.751 6.747 6.697 6.687 6.753 6.768 6.691 5.647 6.769

(b)

Delta (DN)

S PET S PET L EPS White EPS Blue HDPE Binbag Tarpaulin Alu Wood

1 −21 −20 −71 −48 −14 −9 NaN −255 NaN
2 −29 −31 −85 −73 −23 NaN NaN −191 NaN
3 23 14 −21 102 14 265 NaN −373 85
4 −41 −44 −105 −96 −38 −24 −96 −1073 −26

(c)

Delta (DN)

S PET S PET L EPS White EPS Blue HDPE Binbag Tarpaulin Alu Wood

1 −25 −23 −92 −56 −16 −12 NaN −262 NaN
2 −34 −37 −95 −82 −26 NaN NaN −219 NaN
3 30 22 −24 114 18 294 NaN −245 90
4 −51 −55 −133 −114 −46 −36 −110 −1214 −31

3.5. Background TIR Radiance over the Open Ocean

In Section 3.2, we measured the response of the FLIR camera to background TIR in
the laboratory and compared these with observations of DN(alu) during our four field
surveys. Over the open ocean, background TIR radiance appeared to be generated in colder,
sub-zero temperature environments, i.e., at higher altitudes than near the surface. This was
best seen in summer day survey 3, when Tw was 14.1 ◦C and Tair at 2, 30, and 111 m and
19.0, 17.9, and 14.6 ◦C, respectively, but where more TIR radiance left the water than the
background TIR radiance reflected from aluminum foil. We measured DN(alu) increasing
with the increasing LCC, lowering the CBH estimated from ERA5 (Figure 6); a relationship
with ERA5′s STRD was not found.

Figure 6. Scatter plots of DN(alu) from images after flatfield correction with sigma = 30, as a
function of (a) LCC, and (b) CBH; black squares/triangles indicate April/August field surveys with
open/filled symbols representing day/night.
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3.6. Biofouling

After two weeks, significant biofouling was already visible in VIS and NIR, looking
like a brown algal coating, with a mass increase ranging from 0.4% (PET) to 7% (binbag).
After three months, biofouling had substantially increased and consisted of, in addition
to more brown-green algal coating, brown-green stringy algae, colorless bryozoans, and
on the black binbag, small white barnacles. Mass had increased from 8% (PET) to 400%
(binbag), compared to virgin items. The biofouling darkened all surfaces in VIS and NIR
images, except for white barnacles on the black binbag, which looked bright.

The fact of Tair being about 1 ◦C higher than Tw during the FLIR measurements in
the laboratory was recognized in DN(alu) > DN(water). For all wet plastic (biofouled
and virgin, except the PET bottle), DN(target) < DN(water). Two weeks of biofouling
significantly reduced the DN of wet plastic litter, thereby making the delta value more
negative. This could be related to biofouling dampening the TIR reflectance or cooling the
plastic surface. We did not find proof that three months of biofouling decreased the delta
value of wet plastic further, although we identified more biofouling in the NIR and VIS
images. Depending on water and air temperatures, biofouling could enhance or decline the
visibility of wet plastic litter in water. For dry plastics, we could not ascertain changes in
surface-leaving TIR radiance after two weeks’ biofouling but, after three months, there were
significant effects. The DN of the black binbag went from zero to >DN(water), indicating
increased reflectivity. For dry PET and HDPE bottles, the DN went from >DN(water) to
zero, indicating reduced reflectivity. These observations corresponded with the increased
and reduced reflectivity in NIR and VIS. We found no relationship between mass increase
and changes to DN.

4. Discussion
4.1. Measurements

The camera response (DN) measured in the laboratory was linear to the surface tem-
perature over limited temperature ranges, with higher intercepts for higher Tair (Table 3).
Kelly et al. [28] derived a DN = 25Tbb + 7593 and DN = 23Tbb + 8748, using a blackbody
of temperature Tbb for the respective ambient air temperatures of 10 and 21 ◦C. We be-
lieve that a higher intercept for higher Tair could be caused by an increased Lpath. The
nonlinearity in Equation (7) could be a consequence of increased (lessened) Lpath, due to
the presence of warm water (melting the ice) near the FLIR and not the camera’s response.
Similarly, the slightly higher DN(alu) for Talu (Figure 4), while Tair was 19.8 ◦C, could be
explained by the hot brick enhancing the Lpath. According to Kelly et al. [28], during UAV
flight conditions, temperature uncertainty in FLIR measurement is ± 5 ◦C and, during
stable laboratory conditions, ± 1 ◦C. The latter uncertainty was confirmed in our own
measurements (Equation (8), RMSE).

Goddijn-Murphy and Williamson [19] followed Peckham et al. [25] in approximating
Lb,path over the open ocean using (1 − τatm)Lb(Tatm), but our results revealed that this
was an oversimplification. Goddijn-Murphy and Williamson [19] used Tair,2m to estimate
Lb,sur over the open ocean but, in reality, we do not know how high and wide we need
to look or how we can calculate Lb,sur. The aluminum foil reference target was useful
to assess background radiance Lb,back (Lb,path and Lb,sur combined). Lb,back appeared to
originate in the higher atmosphere, where sub-zero temperatures existed. The presence
of clouds also affected the background TIR. In truth, it is difficult to calculate Lb,back and,
by subtracting Lb,w from Lb,target, we eliminated Lb,path (Equation (1)). It follows that by
using delta (Equation (6)), the contribution of Lb,path was minimized since DN(target) was
approximately linear to Lb,target–Lb,path (Figure 3). Delta could be either positive or negative
and controlled by water, air, and surface temperatures; the larger its absolute value, the
more distinct a target was from the surrounding water. The flatfield correction reduced
|delta| somewhat.

Measuring kinetic temperatures correctly has many challenges [30]; our temperature
measurement methods could introduce errors that were greater than the given sensor
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uncertainties, especially in the field. Logger- or handheld-type thermometers produced
significantly different results and we cannot say which sensor was the most accurate. It
was, therefore, important to report what type of sensor was used and to keep this in mind
when interpreting and comparing the results.

4.2. Questions Answered

We evaluate the following questions we set out to answer in Section 1.2, using the
results from our experiments, in the following.

Can a UAV TIR camera operate as a TIR sensor? The FLIR camera is designed to
measure temperature; we recognized this by its response to temperature being near-linear.
The relationship between Tw and DN that we derived in the laboratory was quadratic
over Tw, from −9 to 35 ◦C (Equation (7)) but was linear over smaller temperature ranges
(Table 3). It was difficult to estimate the corresponding TIR radiance leaving a surface,
due to TIR radiance that has not interacted with the surface (Lpath) and surrounding TIR
radiance that is reflected from the surface (Lsur), captured by the FLIR. It is likely that
this background TIR radiance introduced the non-linearity in the camera’s response to
temperature. In the laboratory, where we could approximate thermal equilibrium, we
could estimate Lpath and Lsur by blackbody radiance at room temperature (Equations (2)
and (3)). In the field, we recommend imaging an aluminum foil reference target, to assess
background radiance. By using delta (Equation (6)), we could reduce the contribution
of Lpath. When imaging the ocean from a UAV, we had to account for vignetting (cooler
corners) as it was too difficult to keep our targets centered in the view. We could use a
flatfield correction to remove the vignetting patterns, but this lessened the DN differences
between targets. For estimating delta, we used water and target surface pixels that were
close together in uncorrected images.

How does the TIR radiance transfer model perform? The TIR radiance transfer
model [19] was helpful in interpreting our observations. We learned that using Tair,2m to
calculate Lsur was reasonable in the laboratory but, in the field, we had to look at radiance
originating in the higher atmosphere, where there was cold air and the presence of clouds.
We need more research to better estimate Lpath and Lsur. We also need accurate estimations
of the kinetic temperatures of water, air, and plastic surfaces as model input. In the absence
of daylight, we can use Tair,2m to approximate the surface temperature, Tobj, of three-
dimensional objects and calculate Lb(Tobj). For two-dimensional items, it is more accurate
to use Tw. During the day, the absorption of daylight could warm surfaces considerably
above Tair at the surface, especially dark-colored plastic.

When and where can we expect the best results? TIR images of floating plastic and
the consequent delta values were different in the absence or presence of sunlight; we can
describe two scenarios accordingly:

(A) Little or no daylight. At night and in the early morning (surveys 1, 2, and 4) all
targets looked cooler than water, reflecting the cold background radiance from the
higher atmosphere. The cooler the background radiance, the more negative the DN
difference and delta. As the presence of clouds increased the sky’s thermal radiance,
we saw the largest |delta| under a clear sky. Increased cloud cover and low cloud
cover height appeared to reduce |delta| more than warmer air from the surface to a
111-meter altitude. In this scenario, the TIR signal of floating plastic was dominated
by the reflectance of cold background radiance, controlled by low cloud cover and
cloud base height.

(B) Daylight. During survey 3, at around noon, although the sky was overcast, sunlight
warmed the targets and all logged kinetic surface temperatures were above water
temperature, with some above air temperature. The latter did not include clear plastic
bottles, but the targets were possibly not deployed for long enough to see a strong
greenhouse effect. The black binbag looked warmest in the TIR image, relating to
the enhanced absorption of light by dark colors. In the Aegean Sea survey, the clear
PET bottles looked brighter than the binbags [7], this could be because the binbags
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were light blue and not a dark colour. White EPS looked the coolest (although the
logged temperature was the highest) which would indicate low thermal emissivity.
In scenario B, the TIR signal of most floating plastic was dominated by their raised
surface temperatures.

In summary, the TIR sensing of marine plastic litter will work best under dark and clear
skies (cool-looking plastic), or in the sunshine and warm surface air (hot-looking plastic).

Which plastic litter items give the best results? Depending on the conditions, some
kinds of plastic litter items were easier to detect in water than others. In scenario A, |delta|
increased, from the black binbag, to bottles, to EPS foam board. In scenario B, dark plastic
gave the largest |delta|. White EPS foam board stood out as a plastic, with the lowest
emissivity (highest reflectivity). This would relate to the relatively high reflectivity (low
emissivity) measured for white Styrofoam [20]. The white tarpaulin became too submerged
to be visible in TIR in the first three surveys; in the last survey, when the sea was very
smooth, the delta value was comparable to that of the blue EPS foam board. According
to our laboratory experiments, the delta value was less sensitive to the presence of plastic
litter on the water when it was wet. Biofouling on wet plastic reduced the reflectivity
and surface temperature. Dense biofouling on dry plastic could enhance or decrease TIR
reflectivity, corresponding with the reflectivity in NIR and VIS. Of course, the larger the
plastic litter and the more buoyant it is, the more visible it is in TIR under all conditions.
We do not expect to directly see microplastics in TIR, as the small particles sink below the
water surface and TIR radiance is absorbed in the first 1 mm of water [35].

Can we separate plastic litter from other surface features on the water surface? In
the TIR images, whitecaps were invisible (Figure A2a), while they were visible in VIS and
NIR (Figure A1a,b), which was expected as seafoam emissivity is very close to that of water
(Figure 7); presumably, so was its surface temperature. The aluminum foil reference surface
looked very different in TIR, due to a very different emissivity; this is promising, in terms
of the ability to separate litter like aluminum cans and steel oil drums and needs further
research. We added a wooden disk to compare driftwood with man-made plastics, but
we did not make enough measurements to establish whether its TIR signal was distinct
enough. We did not capture naturally occurring organic material, e.g., floating seaweed in
our TIR images; this should be a subject of further study. We did not encounter living sea
life, such as surfacing mammals or drifting seabirds, but we expect those to show up as
hot spots, especially in scenario A. It may be possible to separate plastic litter from other
floating items, and maybe from each other, if we could repeat the aerial surveys in TIR
under many more different conditions. For example, the white EPS was the only target
(other than aluminum foil) that generated delta < 0 in scenarios A and B. We could relate
this to the high TIR reflectivity of white Styrofoam, as measured by Garaba et al. [20]. Their
0.025 µm-resolution hyperspectral TIR spectra of man-made and natural materials that
were found along the shore show that the TIR reflectance of the former (e.g., Styrofoam,
ropes, and gunny sacks) is higher than the latter (e.g., shells and algae). We could, in
theory, separate different materials using spectral features, such as absorption bands, in
TIR reflectance. We have measured TIR radiance using a FLIR camera, which operates
in the 7.5–13.5 µm spectral band, but findings such as the air, water, and target surface
temperature dependence would also apply to narrow bands. When using spectral TIR
signatures to identify materials in the field, we need to consider the effects of water, air,
and target temperatures on spectral TIR reflectance; we would recommend performing
these types of measurements during the night (scenario A).

Can we see plastic litter on different surfaces than water? Floating objects stand out
in images of the water surface because of three factors:

(1) Their surface temperature is different from Tw.
(2) Their emissivity is different from εw, which is close to one.
(3) We found Tw to be spatially homogeneous, providing a suitable background.

Regarding (1), water has high thermal inertia, which means that Tw does not change
as quickly as does Tair and the temperature of plastic. Dry rock and sand have low thermal
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inertia and follow Tair more closely (Table 4), reducing the temperature and, hence, the
difference in plastic litter and land-leaving TIR radiance. However, Lavers et al. [36] found
that the moderate (but not low and high) plastic pollution of sandy beaches increased the
daily maximum (minimum) by 2.45 (−1.50) ◦C at 5 cm of depth by altering the thermal
inputs and outputs. We could possibly use this finding in the TIR sensing of plastic
pollution levels on beaches. Cagnazzo et al. [37] recognized beach litter in thermal images
as hotter spots in conditions of air that was warmer than the wet, sandy soil.

Regarding (2), ground with an equally high emissivity (low reflectance) as water should
provide a good background for the TIR-sensing of plastic litter. Ice has a thermal emissivity
that is similar to or lower than liquid water, with ε of 0.97–0.98, while for dry sand, ε is 0.93 for
8–14 µm [24] and is, therefore, less promising, specifically in scenario A. The TIR reflectance
spectra of a wide range of surfaces, such as rocks, soil, vegetation, and water, are available
from the Jet Propulsion Laboratory’s ECOSTRESS spectral library [38–40]. We calculated ε
as 1–ρ (assuming opaque materials), averaged over 7.5–13.5 µm (Figure 7). These show that
the emissivity of snow is higher than εw and of grass, which is similar to εw, making these
backgrounds suitable for the TIR sensing of plastic litter. Dry sand has lower emissivity and is
therefore a less promising background.

Regarding (3), we do not know how the surface temperature patterns of snow, ice,
sand, and other land surfaces can be distinguished. We observed in our FLIR images of the
beach that sand can look patchy in TIR images, due to the puddles of water.

Figure 7. Spectral reflectance from 7.5–13.5 µm of brown to dark brown sand, white gypsum dune
sand, green rye grass, seafoam, seawater, ice (water), medium granular snow, and fine granular snow
from the ECOSTRESS spectral library [38–40]. Mean ε is shown in the box.

How can TIR sensing complement VIS-NIR-SWIR sensing? A valuable special
feature of TIR sensing was that no external source of radiance, such as the sun, was needed.
The night surveys and the early morning low-light-level survey gave excellent results. We
observed additional useful qualities of TIR sensing. As expected, the sea bottom was clearly
visible in VIS but not in the NIR and TIR images. This implied that NIR and TIR sensing
could help to detect floating plastic litter in shallow coastal waters, where VIS sensing can
struggle. Seafoam was clearly visible in our VIS and NIR images, but not in TIR. This was
supported by the spectral reflectance of sea foam being close to that of water (Figure 7) and
implied that TIR sensing could help separate plastic from oceanic whitecaps, both seen
in VIS-NIR, provided that the spatial resolution is high enough. Clear and dark-colored
plastics, which can be a challenge in VIS-SWIR sensing, were seen in TIR images.
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5. Conclusions

We have shown the previously unconfirmed potential of using TIR sensing for floating
plastic litter. A UAV TIR camera could monitor floating plastic litter at sea by imaging
surface-leaving TIR radiance. Our findings will also, of course, apply to TIR remote
sensing from fixed-ground stations (e.g., from a bridge over a river) and they can be used
as a starting point for investigating the detection of plastic litter from plane- and space-
based TIR sensors. However, the resolution of the latter is currently lower than that of
VIS-SWIR satellite observations, and the intervening atmosphere needs to be taken into
account. Different scenarios (identified by water, air, and plastic surface temperatures,
light intensity, and the presence of clouds) produced different relationships between the
radiometric response of the camera and the plastic litter surface in view. This complicated
the relationships but could also bring unique opportunities, such as the ability to use the
contrast between day and night measurements, although this would be limited in the sea
due to the dynamic condition of the floating accumulations. More surveys under a range
of different environmental conditions are needed to fully explore this. TIR sensing could
complement VIS-SWIR sensing in several valuable ways. For example, TIR sensing could
be used during the night, and to detect plastics invisible to VIS-SWIR.
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Appendix A

Appendix A.1. Snapshots

Figure A1. Images taken during the four surveys in (a) 1 April, RGB, (b) 1 April, NIR, (c) 3 August,
RGB, (d) 3 August, NIR. Numbers indicate targets: 1-small PET, 2-large PET, 3-EPS white, 4-EPS blue,
5-HDPE, 6-binbag, 7-tarpaulin, 8-aluminum, 9-wooden disk.

Figure A2. Images taken during the four surveys with the FLIR camera, (a) 1 April, (b) 23 April (c) 3
August, (d) 4 August; the pseudo color scale indicates DN. Numbers as in Figure A1.
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Figure A3. Images as in Figure A2 but seen after flatfield correction, using sigma = 30.

Appendix A.2. Temperatures

Figure A4. Temperature measurements using iButton dataloggers (1-min moving window over 0.1
Hz data) while the targets were deployed at sea for (a) survey 1, (b) survey 2, (c), survey 3, and (d)
survey 4. Dashed lines indicate the FLIR recording minute and the numbers’ targets: 1-small PET,
2-large PET, 3-EPS white, 4-EPS blue, 5-HDPE, 6-binbag, 7-tarpaulin, 8-aluminum.
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Appendix A.3. DN

Figure A5. DN, 1 Hz data obtained during recording minute, after flatfield correction with sigma = 30,
for (a) survey 1, (b) survey 2, (c), survey 3, and (d) survey 4. Numbers indicate targets: 1-small PET,
2-large PET, 3-EPS white, 4-EPS blue, 5-HDPE, 6-binbag, 7-tarpaulin, 8-aluminium, 9-wooden disk.
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Appendix A.4. Delta

Figure A6. Delta, 1 Hz data, obtained during recording minute, using uncorrected images and
DN(water) near each target, for (a) survey 1, (b) survey 2, (c), survey 3, and (d) survey 4; (derived
from Figure A5). Numbers indicate targets: 1-small PET, 2-large PET, 3-EPS white, 4-EPS blue,
5-HDPE, 6-binbag, 7-tarpaulin, 8-aluminum, 9-wooden disk.
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