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Abstract: The time of acquiring remote sensing data was halved after the joint operation of Gao Fen-6
(GF-6) and Gao Fen-1 (GF-1) satellites. Meanwhile, GF-6 added four bands, including the “red-edge”
band that can effectively reflect the unique spectral characteristics of crops. However, GF-1 data do
not contain these bands, which greatly limits their application to crop-related joint monitoring. In
this paper, we propose a spectral reconstruction network (SRT) based on Transformer and ResNet
to reconstruct the missing bands of GF-1. SRT is composed of three modules: (1) The transformer
feature extraction module (TFEM) fully extracts the correlation features between spectra. (2) The
residual dense module (RDM) reconstructs local features and avoids the vanishing gradient problem.
(3) The residual global construction module (RGM) reconstructs global features and preserves texture
details. Compared with competing methods, such as AWAN, HRNet, HSCNN-D, and M2HNet, the
proposed method proved to have higher accuracy by a margin of the mean relative absolute error
(MRAE) and root mean squared error (RMSE) of 0.022 and 0.009, respectively. It also achieved the
best accuracy in supervised classification based on support vector machine (SVM) and spectral angle
mapper (SAM).

Keywords: spectral reconstruction; GF-1; GF-6; Transformer; remote sensing; deep learning

1. Introduction

The GF-6 was successfully launched in 2018 as China’s first medium-high-resolution
agricultural observation satellite, which cooperated with GF-1, China’s first high-resolution
earth observation satellite that was launched in 2013. It can not only reduce the time of
remote sensing data acquisition from 4 days to 2, but also significantly improve the ability
to monitor agriculture, forestry, grassland, and other resources, providing remote sensing
data support for agricultural and rural development, ecological civilization construction [1],
and other significant needs. GF-6 also realized the localization of the 8-band CMOS detector
and added the red-edge band that can effectively reflect the unique spectral characteristics
of crops [2,3].

However, GF-1 was launched earlier and is mission-oriented differently, so it only
contains four multispectral bands. Compared with the GF-6 satellite in Table 1, GF-1 lacks
four bands (purple, yellow, red-edge I, and red-edge II bands), which greatly constrains its
development for crop-related joint monitoring. So, we try to find a spectral reconstruction
method to reconstruct the lacking four bands.

In recent years, spectral reconstruction mainly focused on RGB or multispectral to
hyperspectral. Earlier researchers adopted the sparse dictionary method [4–9]. With the
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development of deep learning, owing to its excellent feature extraction and reconstruction
capabilities, more and more researchers are adopting deep learning methods to gradually
replace the traditional sparse dictionary approach [10–16].

In addition, it should be pointed out that most studies on spectral reconstruction
focus on visible three bands (red, green, and blue) images, while remote sensing images
usually contain at least four bands (red, green, blue, and nir). This results in the lack of one
essential nir band as the input, which does not make full use of the original information,
thereby leading to a waste of information. There are already some studies of remote sensing
spectral reconstruction considering this problem [15,16]. Few studies have been conducted
on large-scale and highly complex scenarios such as satellite remote sensing. On the
contrary, most of them have only done performed research in a relatively small area [15].
Most deep learning methods adopt a lot of up-sampling, down-sampling, and nonlocal
attention structure for ground images. Due to the large-scale, numerous, and complex
ground objects of remote sensing images, these structures are difficult to play an excellent
effect in the spectral reconstruction of remote sensing images [16].

To better adapt to the spectral reconstruction of remote sensing images, we propose
a more suitable spectral reconstruction network (SRT) for GF-1 panchromatic and multi-
spectral sensor (PMS) data based on Transformer and ResNet. This network includes a
TFEM, the RDM, and the RGM. The first module contributes to the extraction of correlation
characteristics between spectra. To avoid the vanishing gradient problem, the second
module reconstructs these features nonlinearly at the local features. The third module,
mainly used for the global reconstruction of these features, prevents loss of texture details.
The main contributions of this article are summarized as follows:

• We propose a spectral reconstruction network. The network trains on GF-6 wide field
view (WFV) images to reconstruct the four lacking bands of GF-1 PMS images, which
significantly increases the classification capability of GF-1.

• We produce a large-scale dataset that covers a wide area and is rich in land types. It
basically meets the ground object information required for spectral reconstruction.

• In order to evaluate the generalization ability of our model, we compare it with other
models in image similarity and classification accuracy, and conclude that our model
has the best result.

Table 1. Band specification of the GF-1 PMS and GF-6 WFV images.

GF-1 PMS GF-6 WFV

Band Wavelength (nm) Spatial
Resolution (m) Band Wavelength (nm) Spatial

Resolution (m)
Blue 450∼520 8 Blue 450∼520 16

Green 520∼590 8 Green 520∼590 16
Red 630∼690 8 Red 630∼690 16
Nir 730∼890 8 Nir 730∼890 16

Red edge 1 690∼730 16
Red edge 1 730∼770 16

Purple 400∼450 16
Yellow 590∼640 16

Pan 450∼900 2

The remaining part of this article is organized as follows: Section 2 describes the related
works of spectral reconstruction methods. We present the network of SRT in Section 3.
Section 4 presents our results, including the dataset description, the experimental part,
and its analysis. Section 5 is the conclusion.

2. Related Works

Due to the limitations of the hardware resources (bandwidth and sensors), researchers
have had to make trade-offs in the temporal, spatial, and spectral dimensions of remote
sensing images. With the problem of low spectral dimension, researchers mainly used prin-
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cipal component analysis (PCA) [17,18], Wiener estimation (WEN) [19], and pseudoinverse
(PI) [20,21] to construct a spectral mapping matrix. In recent years, spectral reconstruction
methods have been divided into two branches: prior-driven and data-driven methods.

The first type is mainly based on sparse dictionary learning, which aims to extract
the most important spectral mapping features. It can represent as much knowledge as
possible with as few resources as possible, and this representation has the added benefit of
being computationally fast. For example, Arad and Ben-Shahar [4] were the first to apply
an overcomplete dictionary to recover hyperspectral images from RGB. Jonas et al. [5]
used the A+ algorithm to improve Arad’s approach to the sparse dictionary. The A+
algorithm directly constructs the mapping from RGB to hyperspectral at the local anchor
point, and the running speed of the algorithm is significantly improved. The sparse
dictionary method only considers the sparsity of spectral information and does not use local
linearity. The disadvantage is that the reconstruction is inaccurate, and the reconstructed
image has metamerism [22]. Li et al. [7] proposed a locally linear embedding sparse
dictionary method to improve the representation ability of sparse coding. In order to
improve the representation ability of the sparse dictionary, this method only selects the
local best samples and introduces texture information in the reconstruction, reducing the
metamerism. Geng et al. [8] proposed a spectral reconstruction method that preserves
contextual information. Gao et al. [9] performed spectral enhancement of multispectral
images by jointly learning low-rank dictionary pairs from overlapping regions.

The second type is mainly based on deep learning. With the development of deep
learning, a large number of excellent models have gradually replaced the first method
owing to its powerful generalization ability. However, compared to the first one, deep
learning usually requires enormous amounts of data, and the training process takes a lot
of computational time. However, with the increase in computing power, deep learning
becomes much more effective, and the related methods are used by more and more re-
searchers. Xiong et al. [10] proposed a deep learning framework for recovering spectral
information from spectrally undersampled images. Koundinya et al. [12] compared 2D
and 3D kernel-based CNN for spectral reconstruction. Alvarez-Gila et al. [11] posed spec-
tral reconstruction as an image-to-image mapping problem and proposed a generative
adversarial networks for spatial context-aware spectral image reconstruction. In the NTIRE
2018 [23] first spectral reconstruction challenge, the entries of Shi et al. [13] ranked in first
(HSCNN-D) and second (HSCNN-R) place on both the “Clean” and “Real World” tracks.
The main difference between the two networks is that the former adopts a series method
for feature fusion, while the latter is an addition method. The series method can learn
the mapping relationship between spectra very well. Respectively considering shallow
feature extraction and deep feature extraction, Li et al. [24] proposed an adaptive weighted
attention network, which obtained the first rank on the “Clean” track. Zhao et al. [14]
proposed a hierarchical regression network (HRNet) that obtained first place on the “Real
World” track; it is a 4-level multi-scale structure that uses down-sampling and up-sampling
to extract spectral features. In the processing of remote sensing images, Deng et al. [15]
proposed a more suitable network (M2H-Net) for remote sensing to meet the needs of
multiple bands and complex scenes. Li and Gu [16] proposed a progressive spatial–spectral
joint network for hyperspectral image reconstruction.

3. Proposed Method
3.1. SRT Architecture

Figure 1 shows the architecture of SRT. In training, the model inputs red, blue, green,
and nir bands of GF-6 WFV, and the remaining purple, yellow, red-edge I, and red-edge II
bands are used as labels. The overall structure includes TFEM, RDM, RGM, convolution
operations, and other related operations.
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Figure 1. Network architecture of our SRT.

The whole SRT is an end-to-end structure, which can be divided into three parts:

1. The TFEM is used to extract correlation between spectra by self-attention mechanism.
2. The RDM, which can fully learn and reconstruct these local features to prevent

gradient vanishing in training.
3. The RGM is able to reconstruct these global features. Considering the model is

ultimately used for GF-1 PMS (8 m) images, it doubles the spatial resolution compared
to the trained GF-6 WFV (16 m) images. This module can prevent losing the texture
details in the training or inference process.

3.2. TFEM

Google first proposed the Transformer architecture in June 2017 [25]. The impact on
the whole natural language processing (NLP) field has been tremendous. In just four years
since it was proposed, Transformer has become the dominant model in NLP [26]. Since 2020,
it has started to shine in the field of computer vision (CV): image classification (ViT [27],
DeiT [28]), object detection (DETR [29], Deformable DETR [30]), semantic segmentation
(SETR [31], MedT [32]), image generation (GANsformer [33]) and so on. He et al. [34]
showed scalable self-supervised learners for CV (masked autoencoders, MAE). Once again,
Transformer shined in the CV. Inspired by the development of Transformer, we try to use
Transformer as the backbone of feature extraction for SRT to fully extract relevant features
between spectra with the help of its effective attention mechanism. The architecture of
TFEM is shown in Figure 2.

Figure 2. The architecture of TFEM, where the purple blocks are obtained vectors from each linear
projection of the flattened patch, and the red blocks are the learnable positional encodings of the
corresponding vectors.
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Following ViT [27], we divide the remote sensing images into multiple small patches
and serialize each patch through a linear projection of flattened patches so that a vision
problem turns into a NLP problem. The module needs to add learnable position embed-
ding parameters to maintain the spatial location information between the input patches.
The Transformer encoder extracts spectral features from input sequences with the help
of its multi-attention mechanism. In our experiment, considering Transformer is only
used for feature extraction; we remove the learnable classification embedded in the ViT
and use ConvTranspose to replace the MLP head to ensure that the model maps to the
same dimension.

3.3. RDM

He et al. [35] proposed a residual learning framework (ResNet) to ease the training
of networks that are substantially deeper than those used previously. Based on ResNet,
DenseNet makes each layer connect to all previous layers, it [36] is a new network frame-
work that enriches the CNN network system from LeNet [37] to the present ones. It
connects all layers to ensure maximum exchange of spectral information flow in the net-
work. In addition, DenseNet also has the advantage that it requires fewer parameters
for the same performance or the same number of layers. This is because it has a direct
connection to all the previous layers, so it does not have to relearn some of the features that
have already been learned.

The RDM contains four residual dense blocks which is shown in Figure 3, and a long
skip connection is added in front of the module to prevent the vanishing gradient problem
in the network. The spectral reconstruction model of the residual network and dense
network can alleviate the vanishing gradient problem during training and ensure more
accurate results.

Figure 3. The architecture of residual dense block, where LRelu is leakyRelu.

3.4. RGM

The RGM references SE-ResNet [38] and HRNet [14] which is shown in Figure 4.
Average pooling can bias the features of the image toward the overall characteristics and
prevent the loss of too much high-dimensional information. The final convolution layer
is used for channel number mapping, and the global residual is used to preserve spatial
details in the image of different spatial resolutions.

Figure 4. The architecture of RGM.

3.5. Loss Function

We use the mean relative absolute error (MRAE, Equation (1)) as the loss function,
due to the reflectance of the same object on the ground, varies greatly in different bands.
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It replaces the absolute difference of the mean square error (MSE, Equation (2)), with
the mean relative absolute error to achieve adaptive error adjustment according to each
band. In a way, it can effectively reduce the high errors caused by different reflectance and
demonstrate the accuracy of the reconstructed network more visually. In the validation set,
we measure the metric of the models by peak signal-to-noise ratio (PSNR [39], Equation (3)),
and save the best model.

MRAE =
1
n

n

∑
i=1

∣∣Pgti
− Preci

∣∣
Pgti

(1)

MSE =
1
n

n

∑
i=1

(
Pgti
− Preci

)2 (2)

where Pgti
is the gray-scale value of the ith pixel in the reference image, Preci is the recon-

structed gray-scale value of the ith pixel, and n is the number of pixels in the image.

PSNR = 20 · log10

(
MAXI√

MSE

)
(3)

where MAXI is the maximum value of the gray-scale value. All data in this experiment is
normalized, MAXI is 1.

3.6. Network Training and Parameter Settings

The parameters of the Transformer encoder are set by default, and the network hyper-
parameters are set according to Table 2. The size of each convolution kernel in the network
is 3 × 3. For the optimizer, we choose Adam.

Table 2. Hyper-parameters setting of SRT network.

Parameter Name Parameter Setting

Batch size
Initial learning rate

32
0.01

Optimizer Adam
Decay rate 0.1
Learning rate decay steps 2000 steps
Epochs 200

Activation function
Relu
Sigmod
Leaky-Relu

The computer configuration in this study: CPU is Intel (R) Xeon (R) Gold 6148, GPU is
Telsa V100 16 G, and RAM is 16 G. Paddle2.2 was chosen as the development environment.

4. Experiments

The experiment evaluates the quality of the spectral reconstruction by accuracy and
classification. Furthermore, AWAN, HRNet, HSCNN-D, and remote sensing image recon-
struction (M2H-Net) are the four outstanding methods that are selected to compare with
our model SRT, SRT*, and the former three are spectral reconstruction champion methods
in the NTIRE challenge. SRT* removes the RGM compared to SRT to test the effect of
the module.

4.1. Dataset Description

We use image scenes from GF-1 PMS and GF-6 WFV. The data acquisition for the study
areas is shown in Figure 5.
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Figure 5. Image regions used for training and testing from China Center For Resources Satellite Data
and Application website [40].

We select nine GF-6 WFV images to form the dataset, six for training and three for
testing. The dataset covers a wide range of land types and provides sufficient feature
information for the spectral reconstruction of GF-1 PMS. We randomly divide the training
images into 13,500 overlapping patches of 128 × 128 pixels, 90% of them for training and
the rest for validation. The testing ones are divided into 2000 overlapping patches of
128 × 128 pixels.

The image shown in Area1 is the Songhua River, located in Yilan, Heilongjiang. It is a
cropped GF-6 WFV test image that contains abundant information on water, vegetation,
tree, and so on. The size of it is 2275 × 2174.

Area2, imaged by GF-1 on 11 Aprill 2016, is located in Tengzhou, Shandong, and contains
ample information on building, vegetation, and road. The size of its image is 2500 × 2322.

Area3, imaged by GF-1 on 21 June 2018, is located in Nenjiang, Heilongjiang, and con-
tains rich vegetation, bare land, and tree. The size of its image is 3254 × 3145.

The preprocessing of GF-1 PMS and GF-6 WFV images includes radiometric correction
and atmospheric correction in ENVI 5.3. The parameters for the correlation correction are
obtained from China Resource Satellite Application Center [40].

Table 3 lists the detailed number of pixels of the training and testing samples for
classification in the three areas. Each of them is manually annotated into six classes in
ENVI 5.3 software (Exelis Inc., Boulder, CO, USA) to test the classification ability of the
reconstructed images, as is shown in Figure 6.

Table 3. Details of the ground truth in Area1–3.

Area1 Area2 Area3

Train Test Train Test Train Test

Water 6381 2451 3992 2661 1921 3487
Build 738 392 3008 2005 1219 1598

Bare land 101 99 4306 2870 1397 1491
Plant 2431 1273 4169 2780 7204 8551
Tree 10371 8361 1691 1127 6518 3131
Road 87 146 1592 1062 300 259
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Figure 6. Distribution of the selected sample objects in Area1–3.

4.2. Evaluation Metrics

We use five indicators to evaluate the different methods, including RMSE, MRAE
(Equation (1)), PSNR (Equation (3)), spectral angle mapper (SAM [41]), and structural
similarity (SSIM [42]). The formulas of RMSE, SAM, and SSIM are given as follows:

RMSE =

√
1
n ∑n

i=1
(

Pgti − Preci

)2

N
(4)

SAM = cos−1 PT
gtPrec(

PT
gtPgt

)1/2
(PT

recPrec)
1/2

(5)

where Pgti
is the gray-scale value of the ith pixel in the reference image, Precc is the recon-

structed gray-scale value of the ith pixel, and n is the number of pixels in the image.

SSIM(gt, rec) =

(
2µgtµrec + C1

)(
2σgtrec + C2

)(
µ2

gt + µ2
rec + C1

)(
σ2

gt + σ2
rec + C2

) (6)

where µgt is the average value of the reference image, µrec is the average value of the
reconstructed image, σgtrec is the covariance of the reference image and the reconstructed
image, σgt is the standard deviation of the reference image, σrec is the standard deviation of
the reconstructed image, and C1 = (k1L)2 and C2 = (k2L)2 are constants used to maintain
stability. L is the dynamic range of the pixel values and k1 is set to 0.01 and k2 to 0.03.

Classification is an essential application of remote sensing images, and we use SVM
and SAM classification to test the classification performance of images. SVM can solve
linear and non-linear classification problems well, with fewer support vectors to determine
the classification surface, and is not sensitive to the number of samples and spectral
dimensionality. SAM measures the similarity between spectra by treating both spectra
as vectors and calculating the spectral angle between them. Therefore, it is sensitive to
samples and spectral dimensionality.

For the testing of GF-1 PMS images, we cannot use the above indicators to evaluate the
four generated bands, except for the classification accuracy. The assessment steps include
the following: First, input the original image to the model after radiometric calibration and
atmospheric correction. Then, classify the outputs by SVM and SAM methods. Finally,
compare the overall accuracy (OA), kappa coefficient (Kappa), and accuracy for every class
of all the methods with each other.

4.3. Similarity-Based Evaluation

Table 4 shows the accuracy assessment of the reconstructed GF-6 WFV images on the
dataset. Overall, the PSNR and SSIM of the four bands are all high, not less than 38.92 and
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0.970, respectively. Similarly, MARE, SAM, and RMSE are all relatively low, indicating that
the overall accuracy of the reconstruction is high.

Table 4. Quantitative assessment of different spectral reconstruction methods for the dataset. The best
results are shown in bold.

Evaluation Band
Method

AWAN HSCNN-D HRNet M2Hnet SRT SRT*

PSNR

band5 40.06 40.10 43.92 40.80 45.23 44.91
band6 39.37 39.47 43.00 38.92 44.00 43.39
band7 42.51 41.71 46.56 42.50 48.29 47.81
band8 41.23 42.10 44.71 40.95 45.87 45.63

avg 40.79 40.85 44.55 40.79 45.85 45.43

SSIM

band5 0.980 0.972 0.991 0.979 0.991 0.991
band6 0.970 0.983 0.992 0.976 0.991 0.990
band7 0.980 0.985 0.990 0.973 0.992 0.992
band8 0.970 0.981 0.990 0.978 0.992 0.992

avg 0.975 0.980 0.991 0.976 0.992 0.991

MRAE

band5 0.038 0.041 0.024 0.038 0.021 0.024
band6 0.026 0.024 0.019 0.037 0.020 0.020
band7 0.031 0.032 0.022 0.036 0.019 0.025
band8 0.032 0.029 0.021 0.038 0.020 0.022

avg 0.032 0.032 0.022 0.037 0.020 0.023

SAM

band5 1.66 1.59 1.17 1.68 1.06 1.07
band6 1.21 1.23 0.87 1.36 0.81 0.84
band7 1.42 1.43 0.88 1.51 0.80 0.81
band8 1.66 1.50 1.08 1.72 1.00 1.02

avg 1.49 1.44 1.00 1.57 0.92 0.93

RMSE

band5 0.010 0.012 0.008 0.016 0.007 0.010
band6 0.015 0.021 0.007 0.011 0.009 0.014
band7 0.009 0.014 0.009 0.004 0.006 0.008
band8 0.010 0.013 0.007 0.016 0.007 0.010

avg 0.011 0.015 0.008 0.012 0.008 0.011

Among the six methods, the results of the AWAN, HSCNN-D, and M2HNet methods
are similar. HRNet, SRT, and SRT* are much better than the other three methods in PSNR,
MRAE, and SAM. The SRT outperforms HRNet on the dataset, demonstrating that our
TFEM outperforms the multi-scale feature extraction of HRNet. In addition, SRT* lacks
the RGM compared to SRT and is slightly worse than SRT in some indicators, but still has
some advantages compared to other methods.

Compared with the scatter plot in Figure 7, it turns out that the inference results of
bands 5 and 6 have larger areas of scattering compared to bands 7 and 8, which indicates
that the reconstruction is less relevant. It is also reflected by the PSNR metric on Table 4.
The larger the PSNR is, the smaller the scattering region and the strongest the correlation
between the predicted band and the original one. The PSNR of band 7 in Table 4 is the
highest, and the scatter region of band 7 in Figure 7 is the smallest. Therefore, we can
conclude that the reconstruction accuracy of band 7 is the best. It can be seen from the
scatter plot that the reconstruction accuracy of each band is different. Using MRAE as the
loss function compared to RMSE can well avoid the training of the band-dominant model
with large errors.
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Figure 7. The scatter plot shows the predicted bands of each method compared with the origi-
nal bands.

4.4. Classification-Based Evaluation

For GF-6 WFV images, we evaluate the confusion matrix by the classification results of
the original image and the predicted one. Table 5 shows the evaluation results of the SVM
classification. Among them, both the OA and KAPPA coefficients of SRT are the highest,
3.3% and 4.2% higher than AWAN, respectively. In the classification result of vegetation,
the SRT classification result is 6.3% higher than the second-highest M2HNet. In Figure 8,
we can see that the water classification result of M2HNet is significantly different from the
reference image.

Table 5. Accuracy of classification result of Area1 with SVM. The best results are shown in bold.

SVM AWAN HSCNN-D HRNet M2HNet SRT SRT* GF-6

OA 0.8909 0.9015 0.9030 0.9038 0.9237 0.9118 0.9291
Kappa 0.7900 0.8071 0.8106 0.8133 0.8321 0.8215 0.8357
Water 0.9560 0.8272 0.9733 0.9786 0.8324 0.9813 0.9847
Build 0.9217 0.8918 0.9849 0.9295 0.9777 0.9894 0.9817

Bare Land 0.5719 0.7455 0.5855 0.5804 0.5035 0.6646 0.6654
Vegetation 0.8803 0.8836 0.8836 0.8506 0.9140 0.8871 0.9262

Tree 0.8812 0.8196 0.8909 0.8983 0.8657 0.9001 0.9200
Road 0.5756 0.5857 0.5823 0.5785 0.4357 0.5872 0.5768
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Figure 8. Result of SVM and SAM classification on Area1.

Table 6 shows the evaluation results of SAM classification, and the SRT results are still
the best. Its errors in the OA and Kappa coefficients with the original image classification
are only 0.5% and 0.24%. It indicates that the spectral reconstruction capability of SRT is
optimal among other methods.

Table 6. Accuracy of classification result of Area1 with SAM. The best results are shown in bold.

SAM AWAN HSCNN-D HRNet M2HNet SRT SRT* GF-6

OA 0.8743 0.8709 0.8782 0.8701 0.8939 0.8854 0.8992
Kappa 0.7435 0.7409 0.7513 0.7401 0.8012 0.7821 0.8036
Water 0.8970 0.8683 0.8324 0.8498 0.8823 0.8849 0.8500
Build 0.5148 0.6386 0.5077 0.5339 0.4636 0.4851 0.4715

Bare Land 0.7121 0.7490 0.5035 0.6606 0.5539 0.5746 0.8823
Vegetation 0.9518 0.9429 0.914 0.9492 0.9202 0.9411 0.9278

Tree 0.8799 0.8774 0.9157 0.8862 0.9258 0.9028 0.9331
Road 0.5703 0.6183 0.4357 0.6449 0.4196 0.6977 0.6976
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For GF-1 PMS images, our classification results should be higher than GF-1 (8 m
spatial resolution, four bands). Table 7 shows the accuracy metrics for SVM classification in
Area2. Most methods improve the classification evaluation metrics, with SRT improving
OA and KAPPA by 2.1% and 4.3%, respectively. Except in the two classes of tree and road,
the classification accuracy of SRT is higher than the original GF-1 PMS for other classes.

Table 7. Accuracy of classification result of Area2 with SVM. The best results are shown in bold.

SVM AWAN HSCNN-D HRNet M2Hnet SRT SRT* GF-1

OA 0.8662 0.8749 0.8839 0.8788 0.8862 0.8853 0.8648
Kappa 0.8309 0.8359 0.8507 0.8399 0.8655 0.8548 0.8223
Water 0.9754 0.9808 0.9854 0.9880 0.9881 0.9844 0.9775
Build 0.7527 0.7638 0.8299 0.8045 0.7590 0.7514 0.7519

Bare Land 0.8378 0.8879 0.8492 0.8600 0.9398 0.9395 0.8527
Vegetation 0.9614 0.9505 0.9535 0.9555 0.9543 0.9573 0.9531

Tree 0.8279 0.7876 0.8358 0.8227 0.7940 0.7907 0.8370
Road 0.6650 0.6784 0.6947 0.6547 0.6458 0.6558 0.6264

Table 8 shows the evaluation results for the SAM classification, where all the methods
are still higher than the original results, and the SRT method is the best. Additionally,
the results in Figure 9 show that the accuracy of the SVM is higher than the SAM, especially
for urban scenes.

Figure 9. Result of SVM and SAM classification on Area2.



Remote Sens. 2022, 14, 3163 13 of 17

Table 8. Accuracy of classification result of Area2 with SAM. The best results are shown in bold.

SVM AWAN HSCNN-D HRNet M2Hnet SRT SRT* GF-1

OA 0.8046 0.7954 0.8047 0.8058 0.8196 0.8066 0.7923
Kappa 0.7920 0.7836 0.7921 0.7947 0.8048 0.7956 0.7822
Water 0.9973 0.9972 0.9907 0.9972 0.9997 0.9990 0.9988
Build 0.9087 0.9104 0.9087 0.9381 0.8822 0.9140 0.9015

Bare Land 0.4623 0.4403 0.4625 0.4288 0.4812 0.4611 0.4233
Vegetation 0.8059 0.7872 0.8059 0.7959 0.8418 0.8062 0.7775

Tree 0.8610 0.8726 0.8610 0.9264 0.9429 0.8737 0.9160
Road 0.9874 0.9886 0.9874 0.9875 0.9779 0.9852 0.9776

Table 9 shows the classification accuracy of Area3. Compared to the GF-1 image
classification results, it can improve the OA and Kappa of SRT by 2.41% and 2.0%, respec-
tively. Most classes’ accuracies are better than before. Except for water and bare land,
the classification accuracy of SRT is higher than that of other methods for other classes.
As shown in Table 10, SRT remains the highest. However, the SAM classification accuracy
of all methods in Area3 is much lower than that of SVM. The original image’s OA and
Kappa coefficients of the SAM classification are lower than the SVM, with differences as
high as 8.8% and 16.7%, respectively. From Figure 10, it also can be seen that the difference
between SVM and SAM results classification. SAM classification does not classify the build
area well, it divides a small part of bare land into water and divides bare land into two lots
of tree. This vast difference may result from the lower spectral dimensions, while the SAM
method is more sensitive to the spectrum, so the classification accuracy of SAM is lower
than before.

Table 9. Accuracy of classification result of Area3 with SVM. The best results are shown in bold.

SVM AWAN HSCNN-D HRNet M2Hnet SRT SRT* GF-1

OA 0.9303 0.9212 0.9327 0.9322 0.9487 0.9406 0.9246
Kappa 0.9258 0.9127 0.9302 0.9190 0.9357 0.9348 0.9157
Water 0.991 0.9854 0.9897 0.9888 0.9880 0.9853 0.9931
Build 0.6304 0.6299 0.5710 0.5933 0.6650 0.5944 0.4950

Bare Land 0.9047 0.9347 0.9545 0.9564 0.9248 0.9525 0.9149
Vegetation 0.9571 0.9358 0.9624 0.9608 0.9798 0.9725 0.9691

Tree 0.9520 0.9492 0.9598 0.9503 0.9728 0.9725 0.9472
Road 0.9620 0.9535 0.9638 0.9613 0.9894 0.9682 0.9660

Table 10. Accuracy of classification result of Area3 with SAM. The best results are shown in bold.

SVM AWAN HSCNN-D HRNet M2Hnet SRT SRT* GF-1

OA 0.8298 0.8344 0.8439 0.8301 0.8490 0.8438 0.8367
Kappa 0.7397 0.7445 0.7563 0.7420 0.7599 0.7509 0.7484
Water 0.8583 0.8583 0.8714 0.8485 0.8856 0.8892 0.8574
Build 0.3822 0.4195 0.4016 0.4119 0.4345 0.4338 0.3973

Bare Land 0.8599 0.8617 0.8804 0.8596 0.8800 0.8779 0.877
Vegetation 0.6271 0.6101 0.6786 0.6732 0.6758 0.6205 0.6083

Tree 0.9309 0.9289 0.9396 0.9237 0.9375 0.9276 0.9363
Road 0.6356 0.6634 0.6574 0.6634 0.6647 0.6634 0.6436
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Figure 10. Result of SVM classification on Area3.

Tables 4–10 show that both the SRT and SRT* outperform other methods in terms of
overall accuracy, which indicates that the TFEM has a significant advantage in performing
spectral feature extraction. The SRT results are still the best in terms of SVM and SAM.
By comparing the results of SRT and SRT*, we find that SRT needs to use RGM to prevent the
model from losing some details during GF-1 PMS image inference. In addition, under the
condition of the same samples, the classification result of SAM is lower than that of SVM.
We think that the main reason is that the number of image bands used for classification is
too small compared to hyperspectral images, which cannot exert the performance of SAM.

Our method has a robust spectral reconstruction capability, and the reconstructed
bands can improve the classification capability of GF-1 PMS images.

4.5. Comparison of Computational Cost

Table 11 shows the parameters, GFLOPs (giga floating-point operations per second),
and the running time of all test methods on an input image of 4 × 128 × 128 pixels.
Comparing the parameter quantities of SRT and SRT*, it can be found that the parameter
quantity of RGM is only 0.08 M, and the GFLOPs and running time increase by 1.21 and
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0.02 s, respectively. In addition, the SRT method is only higher than HSCNN-D in the
number of parameters and lower than the other three methods. Although the parameter
quantity of HSCNN-D is small, the running time is very long, much higher than 0.27 s
of SRT, mainly due to the series structure of HSCNN-D, the number of network layers is
deepened, and the network operation takes a lot of time.

Table 11. The complexity comparison of different models

AWAN HSCNN-D HRNet M2Hnet SRT SRT*

Params (M) 21.58 4.62 32.04 22.73 17.62 17.54
GFLOPs 352.85 75.64 40.89 245.86 121.66 120.45
Time (S) 0.21 1.21 0.41 0.24 0.27 0.25

5. Conclusions

This article proposes a Transformer- and ResNet-based network (SRT) to reconstruct
GF-1 PMS images from GF-6 WFV. SRT consists of three parts: the TFEM, the RDM,
and the RGM. The TFEM learns correlation between spectra by the attention mechanism.
We use the RDM to reconstruct these relevant features locally and apply the RGM to
globally reconstruct.

To ensure the model’s generalization, we produce a wide-range, land-type-rich band
mapping dataset and test the accuracy in similarity and classification. Meanwhile, to verify
whether the knowledge learned from the GF-6 WFV images can be applied to the GF-1
PMS images with inconsistent spatial resolution, we refer to the method of Deng [15] and
Li [16]. We believe that the reconstructed band can improve the classification ability of the
original image and test it on the Area2 (city is the main scene) and Area3 (farmland is the
main scene) GF-1 PMS images. The results show that SRT performs well on both the testing
set and the classification accuracy of Area1, Area2, and Area3 compared to other spectral
reconstruction methods. The classification accuracy of the reconstructed 8-band images is
significantly higher than that of the original 4-band GF-1 PMS images.

In future work, our method still has the following aspects worth expanding on and
improving: (1) The structure of the model needs to be improved. Although the parameter
quantity of SRT decreases, the detection time does increase slightly. (2) Can it be extended
to other satellites, such as GaoFen-2 and GaoFen-4?
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Appendix A

Table A1. Data acquisition for the study areas.

Application Satellite Sensor Acquisition Data Location

Train

GF-6 WFV 10 October 2018 85.8◦E 44.6◦N
GF-6 WFV 4 September 2018 100.5◦E 31.3◦N
GF-6 WFV 11 October 2018 102.5◦E 40.2◦N
GF-6 WFV 5 October 2018 110.1◦E 26.9◦N
GF-6 WFV 29 October 2018 114.8◦E 31.3◦N
GF-6 WFV 18 September 2018 118.6◦E 42.4◦N

Test
GF-6 WFV 1 October 2018 88.8◦E 40.2◦N
GF-6 WFV 17 October 2018 114.9◦E 38.0◦N
GF-6 WFV 16 September 2018 129.9◦E 46.8◦N

Area1 GF-6 WFV 16 September 2018 129.9◦E 46.8◦N
Area2 GF-1 PMS1 4 November 2016 125.3◦E 48.8◦N
Area3 GF-1 PMS2 21 June 2018 117.2◦E 35.2◦N
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