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Abstract: Remotely sensed vegetation indices have been widely used to estimate live fuel mois-
ture content (LFMC). However, marked differences in vegetation structure affect the relationship
between field-measured LFMC and reflectance, which limits spatial extrapolation of these indices. To
overcome this limitation, we explored the potential of random forests (RF) to estimate LFMC at the
subcontinental scale in the Mediterranean basin wildland. We built RF models (LFMCRF) using a
combination of MODIS spectral bands, vegetation indices, surface temperature, and the day of year
as predictors. We used the Globe-LFMC and the Catalan LFMC monitoring program databases as
ground-truth samples (10,374 samples). LFMCRF was calibrated with samples collected between 2000
and 2014 and validated with samples from 2015 to 2019, with overall root mean square errors (RMSE)
of 19.9% and 16.4%, respectively, which were lower than current approaches based on radiative
transfer models (RMSE ~74–78%). We used our approach to generate a public database with weekly
LFMC maps across the Mediterranean basin.

Keywords: live fuel moisture content; wildfire; MODIS; spectral indices; land surface temperature;
random forests

1. Introduction

Live fuel moisture content (LFMC), the mass of water in the foliage and small twigs
relative to its total dry mass, is a key factor affecting fire potential and determining wildfire
danger and activity [1,2]. Fuel moisture is directly related to the amount of energy needed
to evaporate water before ignition [2,3]. Consequently, high moisture values reduce, or
even inhibit, ignitability and subsequent fire spread [4].

Different studies conducted in a wide range of ecosystems have found a significant
correlation between burned area and LFMC [5–7]. More specifically, these studies report
that large fires only occur once fuel moisture crosses critical dryness levels. In Mediter-
ranean regions, longer summer drought periods along with increases in temperature have
been projected under climate change [8]. Such climatic changes could significantly decline
LFMC and consequently enhance the length of the fire season and the rate of high intensity
fires [9]. This situation could be exacerbated with intensifying fuel load accumulation and
fuel connectivity as a result of rural exodus and widespread lack of land management.
As a consequence, the probability and the frequency of extreme fire events is expected to
increase [9]. Accurate and comprehensive spatial and temporal estimations of LFMC are
thus needed to assess wildfire danger [10] and to develop early warning systems for the
evolution of critical conditions [11].
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Regional-scale assessment of LFMC is commonly obtained through expensive and time-
consuming field inventories [12,13] or through meteorological drought indices (e.g., [14]). The
latter allow spatially continuous measurements, but their validity for the Mediterranean
areas has been questioned in various studies [15–17], as they do not take into account
plant-specific differences and the influence of site conditions (e.g., soil water dynamics),
often leading to poor predictions [3].

Remote sensing of LFMC using satellite information provides a valuable alternative
to overcome the limitations of drought indices. Current approaches are mainly grouped
into either physically-based simulation [18–20] or empirical methods [15,21–23]. Generally,
these methods measure how water absorption and leaf properties affect reflectance in the
optical spectrum [24]. Physical approaches, such as radiative transfer models (RTM), are
expected to be more robust than empirical methods [10]. This is because they are based on
the physical associations between leaf-canopy properties and spectral reflectance, which
are independent of sensor and site conditions [19,25]. However, they are also more complex
to parameterize and require additional ecological information and prior knowledge over
large geographical gradients to prevent unrealistic spectra simulations [25]. In contrast,
empirical approaches, which are commonly based on spectral indices (SI), are simpler
and have shown similar or even better accuracies than physical models when applied
locally [19,26] or across specific vegetation types [20].

Combinations of SI have been successfully employed to estimate LFMC [6,15,21,26].
In addition, some authors found stronger predictive power by including land surface
temperature (LST) along with optical data to the empirical relationships [22,27–29]. The
connection between LFMC and LST lies on the interaction between the plant energy
balance mechanisms and its response to water stress [24]. Other recent studies implement
microwave remote sensing to retrieve LFMC [30–32], but their use still has some limitations,
such as data availability.

The application of empirical approaches at continental or global scales is precisely
constrained by the availability of data for calibration during model development [18,21].
The biophysical and structural differences among species impact the functional relation-
ships between LFMC and remotely sensed reflectance spectra [33,34]. Consequently, a
large number of diverse sampling observations is required to reduce the effect of site de-
pendence. Furthermore, the use of many predictive variables potentially related to LFMC
may significantly improve the empirical estimations of the model [20], but also increase
its complexity.

Machine learning (ML) algorithms, such as random forests (RF), are a solid alternative
to physically based RTM methods or the classical regression models on which the empirical
approaches are commonly based. ML algorithms are highly efficient with high dimensional
data and solve the problem of model complexity by applying different functional forms in
the relation between predictors and LFMC, without make explicit a priori assumptions [35].
However, using ML to estimate LFMC from remote sensing is still very recent [28,31,34,36]
and has not been used in the Mediterranean basin.

Despite the importance of wildfires in the Mediterranean basin, we are currently
lacking a specific method to reliably estimate LFMC at the subcontinental scale. For
example, the European Forest Fires Information System (EFFIS) is using the Australian
operational system [20] to estimate LFMC in the European extent, but this method has not
been broadly assessed yet. Other studies have addressed LFMC modelling at local [26,37]
or regional [18,25] scales and they are usually focused on specific vegetation types (e.g.,
grasslands or shrublands). Thus, we are still lacking a product that provides LFMC
estimates for the Mediterranean basin. The only exception is the global LFMC product
developed by Quan et al. [38], which is based on an RTM, and it is not yet known whether
LFMC estimates could be improved through ML approaches.

The present study aims to fill this knowledge gap by developing an RF algorithm
to predict LFMC within the Western Mediterranean basin using the information of the
widely used Moderate Resolution Imaging Spectroradiometer (MODIS), and comparing the
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results with the only other method available for this area, the physically-based estimations
of Quan et al. [38]. We also aim to generalize the model over a wide range of fuel types
with a unique formulation by combining a forward feature selection with a spatial cross-
validation and ML techniques. Finally, our ultimate goal is to develop a database of
LFMC for the Mediterranean basin using available data that improves beyond currently
existing products.

2. Materials and Methods
2.1. Data
2.1.1. LFMC Field Measurements

We used all the LFMC data publicly accessible within the Mediterranean basin. Most
of the data available so far have been compiled in the Globe-LFMC database [39] (last
accessed June 2021). The Globe-LFMC is a global compilation of 161,717 LFMC destructive
field measurements of leaves and small twigs (<6 mm) from 1977 to 2018 at 1383 sampling
sites with different species and characteristics in 11 fire-prone countries [39]. Most of the
records in the study area come from The French Réseau hydrique database [13], but we also
found a more recent LFMC time series from Catalonia (Cat-LFMC) [12]. This is a collection
of 21 years (1998–2019) of biweekly field-sampled data compiled by the Catalan Forest
Fire Prevention Service across nine sampling areas within this Spanish region, and focused
on five species representatives of Mediterranean shrublands [12]. Cat-LFMC was added
to the Globe-LFMC to extend the total number of sites and the time interval within the
Mediterranean area. Both datasets have already been technically validated by correcting
inconsistencies and anomalies in LFMC, as described in the relevant publications [12,13,39].
All records are properly georeferenced and inform about the species collected, the sampling
protocol, land cover type, and further eco-physiological and environmental properties
not used in this study. Cat-LFMC additionally includes a quality control flag, indicating
possible outliers related to abrupt changes in LFMC values. These outliers were removed
from the database prior to analyses.

2.1.2. MODIS Data

The MODIS MCD43A4 Collection 6 product [40] was selected as a source of above-
ground spectral information, as it has shown good performance in previous studies [21,26,34].
MCD43A4 provides daily maps at 500 m spatial resolution from a 16-day composite of
Nadir Bidirectional Distribution Function (NBDF)-Adjusted Reflectance for each of the 7
MODIS bands (channels 1–7, Table 1). Using a composite product may reduce the probabil-
ity of cloud cover and shadows. The ‘Good quality’ flag from the simplified band specific
quality layers (BRDF_Albedo_Band_Quality) associated with MCD43A4 was used to keep
the full quality pixels of the composite.

The Terra MODIS Land Surface Temperature (LST) MOD11A2 Collection 6 product
was included as a predictor of LFMC due to the impact of water availability in plant
evapotranspiration and, consequently, on canopy temperature [24]. MOD11A2 is an 8-day
pixel average from the MOD11A1, a daily product of LST measurements from the Terra
satellite [41]. We used the daytime composite values, instead of single day measurements,
because MOD11A2 had fewer data gaps (8% vs. 35%), and their effect on LFMC predictions,
in terms of model RMSE, was the same (~20%, see Section S1). Daytime images cover the
same period as MCD43A4, and they coincide better with the typical sample collection time,
but at a 1000 m spatial resolution. They were resampled to the 500 m spatial resolution of
MCD43A4 using a bilinear interpolation.
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Table 1. List of potential predictors of LFMC.

Variable Description Wavelength (nm) Source

NR1 Nadir Reflectance Band 1 Red 620–670 MCD43A4

NR2 Nadir Reflectance Band 2 Near infrared (NIR1) 841–876 MCD43A4

NR3 Nadir Reflectance Band 3 Blue 459–479 MCD43A4

NR4 Nadir Reflectance Band 4 Green 545–564 MCD43A4

NR5 Nadir Reflectance Band 5 Near infrared (NIR2) 1230–1250 MCD43A4

NR6 Nadir Reflectance Band 6 Shortwave infrared (SWIR1) 1628–1652 MCD43A4

NR7 Nadir Reflectance Band 7 Shortwave infrared (SWIR2) 2105–2155 MCD43A4

SI Vegetation spectral indices: NDVI, EVI, SAVI, VARI, VIgreen,
Gratio, NDII6, NDII7, NDWI, GVMI, MSI, NDTI, STI see Table S2

LST Land surface temperature MOD11A2

DOY_COS
DOY_SIN Cosine and Sine of the Day of Year

Additionally, the annual MODIS Land Cover Type (MCD12Q1) Collection 6 prod-
uct [42] with the International Geosphere-Biosphere Programme (IGBP) classification
scheme was used to distinguish between vegetation types in the analyses. This prod-
uct replaced the land cover field included in the Globe-LFMC database, which is based on
the ESA Climate Change Initiative Land Cover for the year 2015. This is because MCD12Q1
accommodates to the spatial resolution of the reflectance data and the temporal resolution
of the field samples. It also was used for map production (e.g., masking water bodies and
non-vegetation covers).

All MODIS images were downloaded from the NASA Land Processes Distributed
Active Archive Center (LPDAAC) in the U.S. Geological Survey (USGS) Earth Resources
Observation and Science Center (EROS) (https://lpdaac.usgs.gov; accessed on June 2020).

2.1.3. Landsat Data

The Landsat Collection 1 surface reflectance data included in Google Earth Engine
(GEE) [43] was used to assess the MODIS subpixel spatial heterogeneity corresponding to
each sampling site in the LFMC dataset. The revisit time of these satellites is 16 days, and
the resolution is 30 m for the reflective bands. Similarly to Quan et al. [38], we employed
Landsat 5 TM from Feb 2000 to Oct 2011 for high quality pixels, Landsat 7 ETM+ from Feb
2000 to Oct 2011 when Landsat 5 TM had poor quality pixels and also from Nov 2011 to
Apr 2013, and Landsat 8 OLI from May 2013 until 2019. The use of Landsat 5 TM instead
of Landsat 7 ETM+ was due to data gaps produced in the latter by failure in a sensor
component [38]. Snow, cloud, and shadow pixels were removed using the Landsat internal
quality band.

2.1.4. Radiative Transfer Model (RTM) Database

The global RTM-based product developed by Quan et al. [38] was used to compare
the results of the ML-based approach proposed here. We chose this product because it
is the only currently available database that has produced LFMC maps over the whole
Mediterranean basin. It consists of a weekly collection of maps (2001–2019) generated by a
physically based remote sensing model.

2.2. Methods

The following sections describe all the steps we used to estimate LFMC (Figure 1). The
first section explains how we prepared the data for analyses. The second section briefly
introduces the modelling approach. The last sections describe the variable selection process,
the calibration and validation methods, and the software used in all steps.

https://lpdaac.usgs.gov
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2.2.1. Data Preparation

First, we cropped the Globe-LFMC dataset to the Mediterranean region (Figure 2) and
used it, along with the Cat-LFMC, only for the dates with available MODIS data. Then,
LFMC samples collected within the same day and site, but corresponding to different
species or vegetation layers (e.g., understory and canopy), were aggregated by arithmetic
means to obtain a single value per site. Nolan et al. [6] observed that average LFMC per
site has a stronger correlation with spectral data than any individual vegetation layer alone.
However, some studies have observed that spectral information may more closely reflect
signals from the upper part of the canopy, particularly for closed forests [24]. We were
interested in developing an indicator of LFMC representative of the entire canopy (upper
canopy but also of the understory) because the understory often burns during a fire, which
explains why we used the average LFMC value.
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Figure 1. Overview of the pre-processing, modelling, and analysis steps.
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Figure 2. Distribution of sampling sites and extension of the mapping area for the database and
future map productions. The background layer represents terrestrial biomes based on [44]. Gray
areas were discarded from map production.
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For each resultant LFMC sample, pixel values from remote sensing data were obtained
by a simple pixel extraction (that is, the nearest grid cell centroid) matching their sampling
date. We performed some preliminary tests observing that the simple pixel extraction
method showed no significant differences (p-value = 0.9; see Section S2, Table S1) relative
to conducting a focal mean (e.g., from a 3 × 3 window). Afterwards, various vegetation
spectral indices (SI; Table S2) potentially related to LFMC were calculated by combining
information from different MODIS spectral bands and used as predictors of LFMC in
addition to atmospherically corrected reflectance. SI tend to reduce directional anisotropic
and soil background effects and highlight specific properties of the vegetation canopy [24].
We also used land surface temperature (LST) from the LST 8-day average composite, as
previously discussed (see Section S1). Finally, we added the day of year (DOY) of the
ground LFMC samples as auxiliary variables to take into account the seasonal trends in
LFMC [22,27]. To do so, DOY was normalized to [0, 1] and reconverted to [−π, π], such that
DOY 1 and DOY 366 corresponded to −π and π, respectively. With the resulting values, we
calculated the sine (DOY_SIN) and cosine (DOY_COS) to maintain the information on the
periodicity as performed in Zhu et al. [34]. Consequently, DOY_SIN varied from −1 to 1
between the wettest and driest season, while DOY_COS varied from winter (coldest; −1)
and summer (hottest; 1).

After defining the potential predictors described above (Table 1), we removed LFMC
samples with missing data from any variable, and we discarded values outside the thresh-
old 20–250%, which is considered the biological range of LFMC [13]. We then averaged
multiple observations in the same day and MODIS-grid cell and randomly assigned the
values to one of their locations to have a single daily LFMC value for a given pixel value.
The resulting dataset contained a total of 10,374 LFMC field measurements between 2000
and 2019 from 118 sites located in Spain, France, Italy, and Tunisia (Figures 2, S1 and S2).
These sites are mostly concentrated in the ecoregions ‘Northeast Spain and Southern France
Mediterranean forests’ and ‘Italian sclerophyllous and semi-deciduous forests’ (~80%).
Ecoregions with Mediterranean woodlands and coniferous, broadleaf, and mixed forest
formations are also represented to a minor degree. In conjunction, mean annual tempera-
ture ranges from 6 to 20 ◦C and mean annual rainfall ranges from 250 to 1100 mm [44]. Site
altitude ranges from 11 to 1660 m.

For model validation, Quan et al. [38] RTM data were only acquired for the sample
records that coincided with the available dates of such products. We also assigned
land cover information from the MCD12Q1 layers to each ground sample by matching
the year of sampling with the year of the layer. Misclassified sites (e.g., croplands,
permanent wetlands, and urban covers) were discarded or manually corrected based
on the species collected, location, and the land cover type field included in the Globe-
LFMC database. To simplify the analyses, the IGBP land cover classes present in the
study were re-classified into four vegetation (or fuel) types accounting for different
structural characteristics (Table S3). These new land cover classes were defined as
grasslands, shrublands (closed and open shrublands), savannas (tree cover 10–60%;
savannas and woody savannas), and forests (tree cover > 60%; evergreen broadleaf,
evergreen needleleaf, and mixed forests).

Additionally, the NDVI coefficient of variation (NDVICV) derived from Landsat data
were used to assess the homogeneity of vegetation ‘greenness’ surrounding each site coor-
dinates, as performed in Quan et al. [38]. The authors suggest using these metrics to filter
highly heterogeneous areas within a specific satellite footprint since they may not be suit-
able for predictive attributions [39]. Lower values correspond to more homogeneous sites.
NDVICV was calculated with the Landsat surface reflectance values from a 500 × 500 m2

buffer that matched the MODIS cell where site coordinates were located. To do so, we
adapted the GEE script publicly shared by Yebra et al. [39], such that the NDVICV value was
the monthly average that corresponded to the sampling date. Monthly average maximizes
the quality (unmasked pixels) and the stability of the NDVICV statistic. Only values with
more than 80% good quality pixels (without no snow, clouds, or shadows) were retained.
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2.2.2. Machine Learning Approach

Random forests (RF) was the ML algorithm chosen to empirically estimate LFMC at
the Mediterranean basin because of its simplicity, its ability to deal with a large number of
covariates, and because it is not necessary to have prior knowledge of the functional form
of the relationships between these covariates and the response. Furthermore, the presence
of outliers does not have a great influence on its performance [35].

RF is a non-parametric data-driven statistical method proposed by Breiman [45],
which is based on Classification and Regression Trees (CART, also called decision trees)
and bagging. Several decision trees are constructed in different bootstrap samples of the
data, on which every data split (node) is forced to consider an arbitrary subset of available
predictors. All individual-tree responses are then aggregated to obtain the final output
predictions. The hyperparameters needed for model calibration and used in the subsequent
analyses are explained in the associated Supplementary Materials (Table S4). Full details
on CART, bagging, and RF can be found in Kuhn and Johnson [35].

2.2.3. Variable Selection: Forward Feature Selection

Variable selection was needed because many of the variables (or features) used as can-
didates to estimate LFMC were highly correlated with each other, as expected (Figure S3).
This is because the SI were formed by close combinations of different spectral bands. On
the other hand, predictor variables that are highly autocorrelated in space can be misinter-
preted by the RF algorithm, leading to poor predictions outside the locations of the training
data [46].

Here, we used the Forward Feature Selection (FFS) method proposed by Meyer
et al. [46] to eliminate uninformative predictors and reduce the spatial over-fitting. First,
the algorithm trains models using all possible combinations of two predictor variables
and keeps those with the lowest prediction error based on a spatial cross-validation that
discards entire sampling sites, as described later. Then, FFS iteratively increases the number
of variables and evaluates the new model until none of the remaining variables improves
the performance of the current best model. Additionally, we introduced a modification
of the original method that consisted of calculating the average error over 25 different
data splits. This avoided the dependence of cross-validation data splitting and aimed at
stabilizing the error estimation [47].

FFS is complex and computationally intensive to execute parallel with RF parameter
selection [47], and this step was performed before model calibration using a fixed set of
hyperparameters (Table S4).

2.2.4. Model Selection and Performance Evaluation

In order to select the final model, we first assessed the general performance of different
forms of the RF (depending on the selected predictors and whether or not the NDVICV filter
for heterogeneous pixels was applied) independently from a specific model calibration. We
then adjusted the best performing model and evaluated its predictions.

Initial model performance assessment (MP) consisted of a bias-reduced predictive
performance evaluation done using a nested 5-fold leave-location-out cross-validation
(LLOCV) [47]. Nested cross-validation divides the data two times, first to develop the
model and then for independently testing its performance. LLOCV means that the cross-
validation folds are made of the observations left out of complete locations, assuring
spatial independence [46]. More specifically, the data were divided into 5 outer folds,
where one was kept for testing and the remaining were split again into 5 nested folds
to iteratively train and select the optimal tuning using a standard LLOCV. Five optimal
models were obtained for each outer partition, and the accuracy metrics (described in
the section below) were then calculated based on the collection of predictions from all
the outer folds. The same procedure was repeated 100 times with different data splits
(that is, 500 independent validations), and the overall predictive power metrics were the
mean of all repetitions.



Remote Sens. 2022, 14, 3162 8 of 21

Using this method, we assessed MP over 5 different model combinations with the en-
tire set of variables, with the variables selected during the FFS, and with/without applying
the NDVICV filter. NDVICV was treated as an additional hyperparameter and implemented
in both the whole dataset (training and test) and only to the training partition. The five
models consisted of: (1) all variables without filters; (2) all variables with NDVICV filters
on the whole dataset; (3) FFS-selected variables without filters; (4) FFS-selected variables
with NDVICV filters on the whole dataset; and (5) the best of all/selected variables with the
NDVICV filter only applied to the training partition. This method of evaluation provides an
appropriate estimate of model reliability since the reported metrics are not a function of a
specific model calibration, and many alternative independent datasets (outer folds) are used
for testing [47]. Thus, models 1–4 allowed us to examine the effectiveness of the NDVICV
filter on the model performance, and the predictive improvement achieved by using only
the selected features along with different parameter combinations than the fixed ones in
the FFS process. With model 5 we tested how well a model optimized for homogeneous
sites (defined by the selected NDVICV value threshold) predicted independent sites that
represent both homogeneous and heterogeneous pixels. The best alternative was employed
in the subsequent calibration and validation strategies.

After selecting the best approach, we evaluated the predictions by first calibrating
the model with LFMC samples from 2000 to 2014 (~80% of the total dataset) and then
validated it using the samples collected in 2015–2019 (~20% of the total dataset). That
is, we first determined the optimal hyperparameter values for a single model using the
samples collected during 2000–2014 by training the algorithm iteratively on one-fifth of the
sampling sites and tested on the remaining ones using a standard LLOCV. This process
was repeated over 25 random site-resamples for each of the model candidates to stabilize
the error rate and eliminate the effect of a particular data partition [47]. The model with the
lowest average predictive error was selected and calibrated again to obtain predictions on
the whole 5 cross-validation folds. The respective accuracy metrics (called CAL) referred to
estimates within the sample period but are not independent from model calibration, as they
are the outer-fold metrics in MP. We then evaluated how well the model extrapolates outside
the sample period using the samples collected in 2015–2019. This validation phase (named
EXT) included some new locations (3 sites) not used in CAL, which means validating future
predictions also at unknown points in space.

The final model was used to compare the RF predictions against the RTM estimations
produced by Quan et al. [38]. To be a fair comparison, both estimates were contrasted over
the same ground-truth samples separately for the LFMCRF predictions inside (CAL) and
outside (EXT) the training period.

The optimal hyperparameters for model calibration were chosen from an initial set of
possible inputs performing a grid-search scheme [47]. We considered a wider range of pos-
sible values (Table S4) of the grid-search scheme for the MP, and then we limited the range
according to the results obtained from all fitted models. For CAL, each parameter combi-
nation in the grid was iteratively assessed. In the MP, a random subset of combinations
(e.g., 50) was implemented at each training process to be more computationally effective.
In this case, the choice of hyperparameters was not so important since the cross-validation
estimates were a generalization of the model performance.

In all cases, models were optimized to predict new locations, which is the inter-
est of remote sensing(that is, to estimate LFMC over areas without available ground
data), and it prevents spatial over-fitting [46]. For MP and CAL grid-search steps, these
locations were selected using the method of Meyer et al. [46] to benefit splitting di-
versity. In the final model adjustment, prior to predictions, sample-site splitting was
conducted by means of their coordinates and the K-means algorithm to ensure equal
spatial distribution [48].
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2.2.5. Validation Methods and Map Production

The predictive capabilities of the model were characterized by means of the root mean
square error (RMSE), the mean absolute error (MAE), the mean bias error (MBE), and the
unbiased RMSE (ubRMSE), as well as the variance explained by predictive models based
on cross-validation (VEcv) [49] and the Lin’s concordance correlation coefficient (CCC) [50].
RMSE, MAE, and MBE measure, respectively, squared, absolute, and mean departures
between the estimated (ŷi) and observed (yi) test values of LFMC in the same units of the
outcomes. RMSE was the statistic used as a criterion for parameter tuning and variable
selection processes. We included the ubRMSE following Zhu et al. [34], which shows the
error after removing the tendency to over- or under-predict in the model:

ubRMSE =

√√√√ 1
n

n

∑
1
(yi − ŷi)

2 −
(

1
n

n

∑
1
(yi − ŷi)

)2

(1)

Here, n is the number of observations in a validation dataset. VECV is similar to the
coefficient of determination R2, but it measures the predictive accuracy of a model by
comparing observations and predictions derived from cross-validation and not the square
correlation between observed and fitted values. It is defined as:

VECV = 1 − ∑n
1 (yi − ŷi)

2

∑n
1 (yi − y)2 (2)

where y is the mean of the observed values. Otherwise, CCC provides a measure of
correlation relative to the line of agreement, which is expected to be unbiased with a slope
of 1 and apply a penalty (Cb) if the relationship is far from this line. From CAL, EXT,
and the RTM, we also obtained the slope and intercept from the linear regression between
observed against predicted to assess general deviation trends.

Spatiotemporal analyses were additionally made through land cover types [31]. More
specifically, we calculated general performance metrics from the CAL and EXT estimates
for each land cover class, and we decomposed the mean RMSE by land cover and the month
of the year to determine the temporal variability of the predictions over each vegetation
functional type.

After the validations, we recalibrated the model using the whole dataset in order to
consider all the available information to train the algorithm. The readjusted LFMCRF was
then used to produce the collection of maps of the reported LFMC database.

2.2.6. Marginal Effects of the Predictors

We used partial dependence plots derived from the fitted model to evaluate the
contribution of each variable to the LFMC estimations. The partial dependence function
represents the average effect of a given variable on the predicted response marginalized
over the effects of the rest of model inputs [51]. Mainly, we divided the distribution of
values of the variable of interest into equal steps (e.g., 50). At each step, we calculated
the average of all possible predictions made on the data holding the value of the step
constant. Finally, we drew a line joining all average points. Resulting plots allowed for
the examination of the functional relationships between the most relevant features and the
LFMC estimates.

2.2.7. Software

Model building and statistical analysis were made with the statistical software R
version 4.2.0 [52] and their base package for generic operations. RF was principally im-
plemented with the R package ‘ranger’ [53] but also with the ‘randomForest’ library [54] to
extract the partial dependence plots. The R packages ‘raster’ [55] and ‘sf ’ [56] were used for
remote sensing and spatial data manipulation, and ‘doParallel’ [57] for parallel computing.
An adaptation of the stratfold3d function of the ‘sparsereg3D’ package [48] was used to
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make the equally spatially distributed LLOCV folds, while the spatially random splits were
created with the CreateSpacetimeFolds function from the ‘CAST’ package [58].

3. Results
3.1. Selected Variables

Results of the FFS indicated that the most important predictors of LFMC, in terms
of error reduction, were the combination of LST and DOY_SIN followed by VARI, NDTI,
and DOY_COS (Figure 3). These five variables alone led to an RMSE of 20.1%. We
also considered NR3 and NR5 because each one represented on average an additional
improvement of ~0.1% in RMSE from the previous stepwise selection, which was greater
than the corresponding RMSE standard error (~0.05%) calculated from the 25 FFS real-
izations. Selected variables for the subsequent developments reached an overall RMSE
of 19.9%.
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Figure 3. Selected variables derived from the combination of the Forward Feature Selection (FFS)
process and the leave-location-out cross-validation (LLOCV). Black dots and vertical segments
represent, respectively, the average LLOCV error and the standard error calculated from the 25
random forests computed at each FFS step.

3.2. Statistical Performance of the LFMCRF

Calibrated and evaluated models within the general model performance assessment
(MP) achieved similar results among them, with overall RMSEs (that is, from all separate
iterations of each MP alternative in conjunction) ranging from 19.1% to 21.4% and VECV
ranging from 0.28 to 0.43. Average performance statistics (Table 2) showed that all MP
alternatives tended towards a slight overprediction (MBE: 0.9–1.5%). Nonetheless, the
ubRMSE values were close to the RMSE (max. difference ~0.07%), further indicating a
relatively low bias of the LFMCRF estimates. In general, models with all the initial predictors
(Allp) showed worse performance than those with only the selected ones (Selp) (Table 2).
The latter benefited from the elimination of the spatially dependent variables and were
used in the successive validation strategies.
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Table 2. Evaluation metrics from predicted and observed values of the model performance (MP),
spatial cross-validation (CAL), and the time extrapolation (EXT) assessment. Different methods
based on the NDVICV filter application and the complete (Allp) or selected (Selp) predictive variables.
Predictions from CAL and EXT broken down by fuel type. RTM extractions and LFMCRF were
validated on the same ground-truth observations separately if they were used in CAL or EXT.

Method Fuel Type Variables Filter * MBE (%) MAE (%) RMSE
(%)

ubRMSE
(%) CCC VECV

#Testing Sam-
ples/Sites

MP All Allp NF 1.10 15.70 20.57 20.54 0.53 0.32 10,374/118

All Allp F1 1.43 15.47 20.29 20.24 0.55 0.35 7633/103

All Selp NF 0.86 15.18 19.90 19.88 0.56 0.37 10,374/118

All Selp F1 1.00 15.07 19.74 19.71 0.57 0.38 7633/103

All Selp F2 1.06 15.18 19.92 19.89 0.57 0.39 7887/109

CAL All Selp NF 0.47 15.10 19.93 19.93 0.56 0.37 8983/115

Forests 0.87 14.49 18.32 18.30 0.54 0.33 2633/27

Savannas 1.94 15.22 19.74 19.65 0.51 0.33 4330/46

Shrublands −7.76 16.20 20.98 19.50 0.53 0.31 442/9

Grasslands −1.94 15.48 22.57 22.49 0.57 0.36 1578/43

EXT All Selp NF 2.75 13.05 16.35 16.12 0.69 0.52 1391/43

Forests 7.40 13.57 16.87 15.16 0.62 0.40 456/17

Savannas 1.63 13.18 16.46 16.38 0.69 0.55 730/22

Shrublands −4.62 12.08 15.27 14.56 0.72 0.54 166/3

Grasslands 0.86 8.56 12.04 12.01 0.72 0.55 39/2

LFMCRF (CAL) All Selp NF 0.86 14.54 18.74 18.73 0.54 0.34 1152/68

RTM (CAL) All - - 65.10 66.56 77.78 42.58 0.04 −10.31 1152/68

LFMCRF (EXT) All Selp NF 3.88 14.15 17.32 16.88 0.66 0.46 157/41

RTM (EXT) All - - 61.87 63.10 74.41 41.33 0.07 −8.98 157/41

* NF: no filter; F1: NDVICV filter applied to the entire dataset (training and test); F2: filter applied only to the
training data.

Application of the NDVICV filter did not show significant effects on the general model
performance (Table 2; Figures S4 and S5). For example, applying the optimal filter in Selp
to the entire dataset (F1) led to a small improvement in RMSE (<2%) and VECV (~0.01),
but also to an increase of MBE (~0.15%) with respect to no filter application. Moreover,
comparing MP with no filter and with the filter only applied to the training data (F2)
resulted in increases in RMSE and MBE by 0.02% and 0.2%, respectively. In addition, the
application of the filter led to the elimination of 26–28% of the dataset. It is worth noting
that only a very small percentage of the data (2–4%) was deleted with NDVICV application
because they were above the optimal filter threshold (0.3–0.35). The rest of the data was
removed because of missing rows in NDVICV, which were derived from poor-quality pixels
in Landsat products. The model with no filter was thus used in subsequent analyses.

3.3. Prediction Assessment and Intercomparison

Accuracy metrics from the calibrated model (CAL) were consistent with the general
performance (MP) of the LFMCRF (Table 2). These results were expected because CAL was
developed with 80% of the data employed in MP, but they proved that the adjusted model
was not overfitted to the particular data or by the current hyperparameter optimization
(Table S4). In contrast, the EXT validation showed smaller RMSE (~3.5%) and higher VECV
(~0.15) than CAL, probably due to differences in the validation samples.

We did not observe any significant bias in the LFMCRF estimations, as the y-intercepts
and slopes were close to 0 and 1 in the fitted line between measured and predicted values
of LFMC, respectively (Figure 4a,d). However, the residuals between predictions and obser-
vations revealed a linear pattern along the range of LFMC in both CAL and EXT (Figure S6).
For example, the model highly underestimated values above 120% (MBE CAL = −33.97%
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and MBE EXT = −22.58%) and overestimated values below 30% (MBE CAL = 45.7%; no data
in EXT). This explained the aforementioned better outcomes from EXT, because the range
of the actual LFMC for testing (31–209%) excluded values where the model performed
worst. Within the LFMC values (30–120%) where live fuels transition from flammable to
non-flammable, the model attained a smaller RMSE (MAE) of 16.75% (13.35%) for CAL
and 15.10% (12.19%) for EXT relative to the overall performance of the corresponding
estimates, with a small propensity to overestimate (MBE of 3.30% and 5.24% for CAL and
EXT, respectively). It is worth noting that 92% of the data was within the range of 30–120%,
and data below 30% may have represented curing.
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Figure 4. LFMC field measurements versus predictions from CAL (upper plots) and EXT (lower
plots): all predictions (a,d), LFMCRF predictions made on the same data points available in RTM
(b,e), and the corresponding RTM (c,f). Dashed black line and red line indicates the expected 1:1
relationship and the fitted linear model, respectively. Color scale indicates point density.

LFMCRF had better performance than RTM-based estimates when comparing against
the same validation samples. In fact, poor correlation and large errors between observed
and predicted values occurred in RTM simulations (Table 2). RTM systematically overpre-
dicted LFMC when LFMC exceeded ~76% (Figure 4c,f). Negative values of VECV (−10.15
and −8.98) indicated that these LFMC estimates were less accurate than using the mean of
observations as predictions. Otherwise, the LFMCRF estimations used for this comparison
showed the same level of accuracy as in the previous sections (Figure 4b,e), given that they
were subsets of predictions from CAL and EXT.

3.4. Evaluation across Vegetation Types

Assessing the performance across vegetation types, LFMCRF reached better results
in EXT (RMSE: 12–17%; CCC: 0.6–0.7) than in CAL (RMSE: 18–23%; CCC: 0.5–0.6) for all
fuel types (Table 2). This coincides with previous results and may be because of the greater
range in LFMC variation observed in the CAL dataset (Figure S2). Forests showed the
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smallest errors in CAL (MBE = 0.87%; RMSE = 18.32%), but the largest in EXT (MBE = 7.40%;
RMSE = 16.87%). Grasslands obtained the best performance within the EXT validation
(Table 2). However, they represented < 3% of the validation records and were mainly
concentrated (~80% of the total) in Jul–Aug, where the model performed better (Figure 5c,d).
In both cases, LFMCRF significantly underpredicted LFMC in shrublands (MBE −7.76 to
−4.62). Temporally, the smallest errors (RMSE: 16–19%) were obtained during the hottest
months (Jul–Aug), where field samples were primarily collected (Figure 5a,b), and also
in winter months (Jan–Feb), matching with the lowest LFMC variability (Figure S2d).
Forests showed larger stability during the entire year in both RMSE (Figure 5c) and LFMC
measurements (Figure S2c). Contrarily, the performance of the model greatly fluctuated
in grasslands. Grasslands reported the largest RMSE (36.7%) in May, one of the wettest
months of the Mediterranean region, when fires are scarce, declining to an RMSE of 14.9%
(Figure 5c) during the driest month.
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Figure 5. Number of testing samples and RMSE from CAL (a,c) and EXT (b,d) by vegetation type and
month of the year. Gray cells in c and d indicate no data available. The IGBP classes from MCD12Q1
were aggregated by the vegetation functional type to which they belong.

3.5. Marginal Effects of the Predictors

Partial dependence plots exposed different patterns on the variation of LFMC esti-
mates (Figure 6). VARI and DOY_SIN exerted the strongest effects on predictions. LFMCRF
estimates monotonically increased as the VARI values increased. Conversely, LFMC gener-
ally monotonically decreased with increases of DOY_SIN, indicating that the highest LFMC
values occurred in spring (−1) and the lowest in late summer (1). LST had non-significant
effects on the LFMC estimations up to 20 ◦C but then presented a clear negative relationship.
NR5 showed a concave shape, with marked increases at higher values of NR5 (>0.3; last
decile). NDTI, NR3, and DOY_COS showed little effects on the predictions of LFMC, but
they were still considered informative. The partial dependence of DOY_COS on the LFMC
prediction may have been masked by the marginal effects of LST, as they were highly
correlated (Figure S3).
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Figure 6. Partial dependence plots from the fitted model. Blue lines describe the average effect
of a given predictor in the LFMC estimates. Small lines in the x axis indicate the deciles of the
predictor values.

4. Discussion

We propose a novel method to estimate LFMC from remote sensing at the subconti-
nental scale by means of a selected set of remote sensing predictors and the RF algorithm.
LFMCRF outperforms current approaches used in the Western Mediterranean basin in terms
of validation errors and provides a solid alternative to predict LFMC over a wide range of
environmental conditions using a simple but robust model with a unique formulation. In
the next sections, we discuss the contribution of each selected predictor, the general and
the spatiotemporal performance of the model, as well as their potential applicability and
future improvements.

4.1. Selected Predictors

The key explanatory features derived from the FFS process were the variables derived
from the day of the year (DOY_COS, DOY_SIN), LST, VARI, and NDTI, along with nadir
reflectance bands 3 (blue) and 5 (NIR) to a minor degree.

DOY_SIN and DOY_COS had a significant influence on the LFMC estimates due to
the seasonal variation in LFMC. In general, LFMC dynamics follow the distribution of the
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balance between evapotranspiration and rainfall in the Mediterranean region [21,26,34].
DOY_SIN partly reflects the average annual pattern in soil water availability and acts as
a complement of the SI, maintaining the periodicity of LFMC within the year. Similarly,
DOY_COS reflects changes in the temperature and is more related to vegetation surface
temperature, which is measured by the LST [22,27].

As we expected, LST was a key factor explaining LFMC, and it showed a negative
relationship with LFMC when temperatures were above ~20 ◦C [22,27,28]. LST is a key
determinant of the energy balance of the vegetation, and its difference with air temperature
is related to evapotranspiration and water losses [59]. Such differences between air temper-
ature and LST depend on the density of vegetation cover, and previous works have shown
strong relationships when combining LST and a vegetation index (e.g., [27]), as was done
here. DOY_COS and LST are complementary because the former keeps the inter-annual
variation of LFMC trends, while the latter provides better spatial information (that is, local
deviations from the average trends) [27]. The partial dependence of LFMC on LST was
similar to that reported in previous studies in that LST only affected LFMC after a certain
temperature threshold [28]. LST is related to VPD [60], which is a variable that can also
affect plant water content as a primary driver of evapotranspiration [61]. The importance of
LST may thus be related to the fact that VPD significantly acts on leaf moisture content after
a certain threshold is reached. Therefore, it is also possible that LST could be reflecting local
differences in surface temperature and VPD. Further work is needed to fully understand
the mechanisms by which LST affects LFMC.

VARI combines different visible wavelength bands (blue–green–red), and it has the ability
to detect chlorophyll content and leaf structure variations, which are indirectly associated
with changes in canopy moisture [19]. Several authors [15,19,23,26,30] have shown that
VARI is one of the best indices for predicting LFMC on different vegetation types, and
we also demonstrated a notable dependency of the LFMCRF estimations (Figure 6). Other
authors found stronger correlations with indices that include SWIR [37] and NIR [21,62] bands
predicting LFMC at local scales.

Reductions in chlorophyll content can result from water shortage but also from changes
in leaf age, nutrient deficiency, health, and phenological stages [33,63]. Introducing NDTI
from SWIR bands in the spectral region greatly sensitive to plant water content [33,64],
was necessary to correct for VARI changes not driven by the moisture status of plants.
Moreover, Wang et al. [63] described a connection (r = 0.45) between NDTI and dry matter
content of vegetation. Dry matter weight is the denominator of the LFMC equation and
could lead to variations in the spectral response and LFMC due to plant seasonal growth,
independently of drought changes [30,65].

On the other hand, NIR (NR5, centered at 1240 nm) is partly influenced by water
content but also by leaf internal structure and dry biomass [33,65]. This particularity may
explain the concave effect that this variable had on predictions. Water loss produces an
increment of NR5 as a result of lower water absorption [64]. However, at certain species
and LFMC levels, water stress leads to leaf cell structure changes (reducing reflective areas
by wilting) and leaf curling, which cause a decrease in NR5 [24,64].

We acknowledge that topography could have affected our results as it alters microcli-
matic variables influencing LFMC, such as solar radiation. However, a previous study that
used reflectance bands as main explanatory variables [34] indicated a rather small effect on
LFMC estimations with an RMSE improvement of ~1%.

4.2. Model Performance Assessment

Generalization errors of the LFMCRF (RMSE: 16–20%; MAE: 13–15%) were lower
than in other studies attempting to model LFMC at large spatial scales. For instance, Zhu
et al. [34] reported an overall RMSE of 27.9% using a similar spatial validation strategy but
for the contiguous US. They also achieved an RMSE of 22.7% performing a standard cross-
validation, which normally results in higher accuracy because the training and testing sets
are not spatially independent. LFMCRF also showed smaller RMSE than did Rao et al. [31]
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(25%), who used the same spatial approach as Zhu et al. [34] but ignored multi-species sites
with high LFMC seasonal variation, where predictions tend to be more uncertain.

The proposed model tended to underestimate large values and overestimate small
values of LFMC (Figure S6). Poor performance of an RF-based model towards the extremes
is a well-known problem within RF models [35]. Nonetheless, similar problems were also
reported in previous works based on machine learning [34,36], classical regression [23,26]
and RTM simulation [20] methods. One reason for the systematic bias at high moisture
levels can be the lower sensitivity of optical spectra to capture changes in water content
while the vegetation gets wet [25,38]. Our strategy to address this problem was to assess
LFMC over a very wide range, such that extreme values, those where LFMC estimation
is problematic, are largely out of range. The lower level of LFMC in this study was 20%,
but fuel moisture below 30% often corresponds to dead fuel (e.g., cured grass) and is thus
beyond our scope, since we were interested in LFMC [24]. Similarly, the higher LFMC
values (above 200%) may be related to harvested samples with the presence of primary
tissues from a new vegetative period [21], plant parts other than leaves (e.g., fruits, flowers),
or the inadequately inclusion of samples collected after rain or dew events [20].

The LFMCRF showed a better performance that RTM predictions from Quan et al. [38].
The RTM-based estimates were highly biased with a strong tendency to overpredict beyond
76% LFMC. This coincided with the results reported by Marino et al. [26], who found
an identical pattern starting at the threshold of 65% using the RTM developed by Yebra
et al. [20]. This demonstrates a better predictive power for our data-driven approach, even
though physically-based approaches are expected to be more precise when applied to
sites not used for calibration [24]. At any rate, we acknowledge that comparing a regional
dataset like this one against a global dataset is not entirely fair, given the scale gap, but
our results highlight that the RMSE of the global RTM hinders any local application for
operational purposes.

The critical LFMC level associated with fire occurrence in the Mediterranean forests,
and other parts of the world occurs around 100% [5–7]. Our model improves current
products, but MAE around the critical threshold of 100% LFMC is still ~13%. Differences
of 10% in LFMC estimation from field measurements are generally acceptable for fire
management [26]. However, these results indicate that there is still room for further
improvements, particularly towards the critical threshold, so as to avoid reporting of false
fire alerts or omission of danger situations [19].

4.3. Evaluation across Vegetation Types

The predictive errors obtained by the LFMCRF within the training period
for forests/savannas (RMSE 18–20%), shrublands (RMSE ~21%), and grasslands
(RMSE ~23%) were similar between them and comparable to those reported by
other studies for the same vegetation types (forests/savannas 22–32%, shrublands
14–29%, grasslands 29–49% [18,20,31,34,38].) Despite the methodological differences,
this comparison demonstrates that a single model can be as accurate or even better than
formalizing a model for each fuel class separately. This could be due to the RF architecture
that allows using the spectral and thermal information itself to discriminate between vege-
tation functional types. Furthermore, misclassification problems of the land cover products
used to differentiate between fuel classes can further increase the uncertainty of the LFMC
estimates [20,34].

In general, we observed that the uncertainty of the LFMC predictions (Figure 5)
depended on the range of LFMC values for testing and their local and temporal variability
(Figure S2). For example, forests showed more stable behavior in both LFMC dynamics and
prediction agreement. Deep root systems in trees reduce the seasonal LFMC variation [2].
On the contrary, grasslands reported the highest errors in spring (the wettest part of the
year) and the lowest in the driest periods (summer, when fires are more likely). These
patterns overlapped with the monthly maximum and minimum values of LFMC, that is,
larger LFMC errors under higher LFMC values and smaller LFMC errors under lower
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values. Shrublands instead had a low temporal variability but presented a significant bias
(MBE from −5 to −8%), likely because of the high proportion of large LFMC values (>120%)
in their ground-truth sample distributions (16.4% of the total ground-truth samples). The
error associated with predictions outside the training period (EXT) was similar to that
from the CAL dataset (Figure 5). However, RMSE was slightly lower with the EXT dataset
because of the lower LFMC variability in the EXT dataset relative to CAL. We thus conclude
that the fitted model with historical data can be safely applied in future situations without
the need for frequent readjustment, but with careful interpretation in the wettest months
and for LFMC values below 30%.

4.4. Applicability and Potential Improvements

The relatively coarse resolution (~500 m) of the final product is appropriate for
landscape-scale use and does not guarantee smaller-scale applications. Each individual
pixel normally contains information from a mixture of vegetation canopy layers, species,
surface litter, and soil elements with different properties that cannot be unambiguously
separated [10,20]. We acknowledge that a limitation to this study is that we did not explic-
itly assess the representativeness of the samples within the site. We therefore took into
account small-scale heterogeneity by implementing an NDVICV filter, as in Quan et al. [38].
However, we did not observe any significant improvement after applying this filter, likely
indicating that sample areas were relatively homogenous. In any case, sub-pixel variation
and the scale mismatch between sample-plot size and pixel resolution hinder establishing
relationships between field observations and satellite-derived variables, introducing un-
certainties into the predictions. The latter could be solved using higher spatial resolution
data (e.g., Sentinel-2 or Landsat) [26,36,37,62], but these satellites usually have lower revisit
frequency disabling near-real-time usage and introducing a time lag between the images
and the sampling date [26]. Future work should extend the use of our methods to these
newer satellites because historical LFMC field data currently available is not yet sufficient
to achieve this goal.

Further progress will come from joining our approach with microwave remote sensing
data. Microwave observations (active and passive) can also detect changes in vegetation
water content but are less sensitive to atmospheric conditions (e.g., clouds) than optical
wavelengths [30] and have the ability to penetrate deeper into the canopies [31]. The
recently available non-commercial radar data supplied by the Sentinel-1 A/B Synthetic
Aperture Radar (SAR) may represent a great opportunity to infer the improvement of
LFMC models at the operational level [31,32].

Sample representativeness is a general constrain in the empirical models [24]. In this
study, field samples were not evenly distributed across the whole Mediterranean basin.
They could be considered representative of the Western Mediterranean conditions since
they were abundant in number (space and time) within their specific biome, as well as in
species and environmental conditions. Thus, application of the LFMCRF should be limited
to areas with similar characteristics, and LFMC estimates must be interpreted with caution
in underrepresented areas (e.g., temperate zones). Despite that, the generated maps extend
to the entire Mediterranean biome included in the Mediterranean basin, as well as some
meridional areas of the temperate biomes of Europe (e.g., northern Spain) (Figure 2).

5. Conclusions

We successfully tested an RF algorithm as an approach to predict large-scale LFMC
using the spectral and thermal information of MODIS and two static variables representing
seasonal patterns. The LFMCRF is applicable to a wide variety of vegetation types, and the
performance of the fitted model (MBE = 0.47%, RMSE = 19.9%, VECV = 0.37, CCC = 0.56)
was comparable to that of other studies with similar purposes but with a higher degree
of complexity than LFMCRF, including the RTM-based methods with applications in the
Mediterranean basin. The architecture of RF allows the introduction of new explanatory
variables that would help to reduce the uncertainty in the predictions. LFMC maps were
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produced at 8-day intervals from 2001 to 2021. The final product provides a complete asset
for studying the relationships between LFMC and the influencing factors that promote
wildfire activity and fire regimes in the Mediterranean basin. Furthermore, after the
imminent MODIS decommission, the new Visible Infrared Imaging Radiometer Suite
(VIIRS) is expected to provide long-term continuity with better spatial resolution [24].
Continuous retrievals, either with MODIS or VIIRS, might be a valuable tool for quasi
near-real-time fire risk assessment and for operational applications such as the mobilization
of resources and people or the planning of preventive actions for fire mitigation (e.g., fuel
reduction or prescribed burns).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133162/s1, Table S1. Performance metrics from the focal
mean and simple pixel extraction comparison; Table S2. Spectral vegetation indices used to estimate
LFMC; Table S3. Land cover classes from samples used in the study; Table S4. Boundaries of the
RF hyperparameters grid-search space, adjusted parameters for the Forward Feature Selection (FFS)
process and optimized hyperparameters for the final model; Figure S1. LFMC ground samples
overall and by country distributions; Figure S2. Mean and standard deviation (SD) matrices from
CAL and EXT of the LFMC field measurements shown by fuel type and month of the year, and the
overall of each one; Figure S3. Correlation matrix between LFMC and predictive variables; Figure S4.
Performance metrics profiles from the general model performance assessment (MP) alternative with
the selected variables and the NDVICV filter applied to the entire dataset and only to the training
partition; Figure S5. LFMC field observations versus predictions from the CAL validation theoretically
rejected by the 0.3 NDVICV threshold; Figure S6. Residuals between predictions and observations
against the LFMC observations and their marginal density distributions for CAL and EXT. This SM
are distributed in 8 sections of additional methods and analyses: S1, Land surface temperature; S2,
Data extraction method [66]; S3, Spectral vegetation indices; S4, Land cover definitions; S5, Model
parametrization [67]; S6, Data description; S7, NDVICV filter; S8, Additional prediction analysis.
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