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Abstract: The altimetry precision of conventional spaceborne Global Navigation Satellite Systems
Reflectometry (GNSS-R) is limited, and the error models are complicated. To compensate for the
shortcomings of conventional methods, we present a new grid search multihidden layer neural
network feature optimization method (GSMHLFO) for sea surface height (SSH) retrieval. Firstly, the
GSMHLFO is constructed by combining the multihidden layer neural network, feature engineering,
and a grid search algorithm. Moreover, the retrieval performance of the GSMHLFO and its sensitivity
to various features are analyzed. By analyzing 14 feature sets with different information details,
we concluded that the elevation, signal-to-noise ratio (SNR), atmospheric delay, and ocean wind
speed can provide essential contributions to the SSH retrieval based on GSMHLFO. Secondly, the
Technical University of Denmark 18 mean sea surface (DTU18 MSS), which is corrected by the TPXO8
global tide model, was used to verify the GSMHLFO. The number of hidden layers and neurons
was optimized using the grid search algorithm. The experimental results show that the proposed
GSMHLFO with four hidden layers and 200 neurons per layer has a better retrieval performance.
Compared with DTU18, the mean absolute difference (MAD), the root mean square error (RMSE),
and the Pearson correlation coefficient (PCC) equal 4.23 m, 5.94 m, and 0.98, respectively. The
retrieval precision obtained is significantly improved compared to that reported in the literature for
the TDS-1 SSH retrieval. Finally, the retrieval performance of the GSMHLFO and the traditional
HALF single-point retracking method were compared. The precision of GSMHLFO is higher than
that of traditional retracking method according to MAD, RMSE, and PCC, which are increased by
32.86, 25.00, and 8.99%. The GSMHLFO will provide innovative theoretical and methodological
support for the high-precision SSH retrieval of GNSS-R altimetry satellites in the future.

Keywords: GSMHLFO; feature engineering; TDS-1; integral delay waveform; DTU18 MSS

1. Introduction

Sea surface height (SSH) is an essential parameter in marine scientific research. It plays
a crucial role in establishing global tidal models, observing large-scale ocean circulation, and
monitoring global climate change [1]. Global Navigation Satellite Systems Reflectometry
(GNSS-R) is a new bistatic satellite remote sensing technology [2,3]. It takes the navigation
satellite signal as the signal source [4,5]. The information on the observed surface can be
obtained by measuring the difference between the direct signal and the reflected signal [6,7].
In 1993, Martin-Neira initially introduced GNSS-R technology to ocean altimetry [8]. This
technology has been successfully verified on various platforms, including ground [9],
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airborne [10–12], and spaceborne [13–15]. Compared with the traditional radar altimeters,
the GNSS-R altimeter has the advantages of being low-cost and having multiple signal
sources and high temporal–spatial resolution [16,17]. For ocean altimetry, the GNSS-R
measurement density, coverage, and resampling frequency are favorable for filling in gaps
between traditional monostatic radar altimetry observations [15,18–20].

In recent years, the UK TechDemoSat-1 (TDS-1), the US CYGNSS, and the Chinese
BuFeng-1 (BF-1) A/B twin satellites have been launched successfully [15,20,21]. These
signify that GNSS-R technology has entered a new phase of detecting global surface char-
acteristics. Clarizia et al. conducted a preliminary investigation on retrieving spaceborne
GNSS-R SSH using TDS-1 data for the first time. The results show that GNSS-R data
can successfully capture large-scale changes in SSH [20]. Xu et al. used TDS-1 satellite
data to retrieve the water level of 351 lakes throughout the world (with an area of more
than 500 km2 and an altitude of less than 3000 m). The results demonstrate that the lake
surface retrieval results of the TDS-1 have an excellent correlation with those of CryoSat-2,
Jason, and Envisat, but there are significant inaccuracies [22]. Mashburn et al. further used
TDS-1 data for ocean altimetry and modeled the various spaceborne GNSS-R SSH retrieval
errors. According to the findings, spaceborne GNSS-R can achieve global ocean altimetry,
with a residual error of 6.4 m [13]. Li et al. used CYGNSS data to compare and analyze
the precision of SSH retrieval of three retracking methods, HALF, DER, and Z-V models.
Results reveal that the Z-V model retracking method has higher retrieve precision [14].
Mashburn et al. used the VZ18 model retracking method to retrieve the SSH based on
CYGNSS spaceborne data in Indonesia and obtained a retrieval bias of about 6 m [15]. In
previous studies, the retracking techniques and model fitting were usually used for GNSS-R
SSH retrieval. The corresponding error models are established to improve the altimetric
retrieval precision by analyzing the various errors in the retrieval models. However, the
traditional retracking methods are mostly empirical models with low precision. In addition,
compression of the Delay-Doppler Map (DDM) information into a single scalar does not
entirely reflect the SSH information. Moreover, building various error models makes the
retrieval model more complicated and not easy to implement.

Machine learning (ML) can fully use the self-learning and adaptive capabilities of
neural cells to deal with complex nonlinear problems [23]. Compared with previous
retrieval models, ANN (Artificial Neural Network) algorithms are simpler and can establish
the relationship between multiple observations and SSH. The physical variables connected
to the SSH can be utilized entirely, which partially compensates for the drawbacks of
traditional retrieval methods [24]. ML algorithms have been steadily integrated into the
GNSS-R field with remarkable results. Liu et al. used a multihidden layer neural network;
Chu et al. used a convolutional neural network (CNN), and Luo et al. used a tree model
to build the GNSS-R wind speed retrieval model, respectively [25–27]. The results are
far superior to those obtained using the traditional GNSS-R wind speed retrieval method.
Jia et al. employed the XGBoost ML algorithm to retrieve soil moisture properties from
shore-based GNSS-R data [28]. Yan et al. used the CNN algorithm for sea ice detection
and density prediction. All achieved remarkable retrieval outcomes [29]. However, ML
research in GNSS-R ocean altimetry is still in its infancy. Wang et al. constructed a new
machine learning fusion method based on the airborne data of the Baltic Sea. Compared
with the DTU15 validation model, the mean absolute difference (MAD) and the Pearson
correlation coefficient (PCC) equal 0.25 m and 0.75, respectively. This study successfully
applied ML algorithms to the field of GNSS-R ocean altimetry [11].

For the inadequacies of previous studies, we propose a deeper and denser ANN,
namely, the new grid search multihidden layer neural network feature optimization method
(GSMHLFO), for SSH retrieval. The DTU18 mean sea surface corrected by the TPXO8
global tide model was utilized to evaluate the retrieval performance. In addition, to obtain
a more useful feature set for the SSH retrieval model, fourteen feature sets with different
information details were applied to train the GSMHLFO. The sensitivity of the SSH retrieval
performance to various input parameters was analyzed. The HALF conventional retracking
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algorithm was also implemented in this study. And the retrieval results were compared to
the suggested GSMHLFO.

2. Materials and Data Filtering
2.1. Datasets

The experimental data in this paper used all available DDM data acquired by the
TDS-1 project from February to December 2018, with specular points located between 80◦N
and 60◦S latitude. The data were obtained from the MERRByS website (ftp.merrbys.co.uk,
accessed on 12 January 2022). TDS-1 provided daily L1B data stored in four groups of H00,
H06, H12, and H18 at 6 h intervals [13].

The L1B data consisted of DDM data and the corresponding metadata data. Table 1
lists the brief information of the L1B variables used in our analyses, which include DDM,
signal-to-noise ratio, antenna gain, incident angle, and the longitude and latitude of the
specular point. The DDM consisted of 128 delay pixels and 20 Doppler pixels with a
Doppler resolution of 500 Hz and a time-delayed resolution of 0.25 chip. Delay waveforms
(DW) were taken as the 1-D slice of correlation power as a function of delay in the 0-Hz
Doppler bin. Due to the lack of real SSH data, in this paper, we used a verification model to
verify the precision of the SSH retrieval model [30]. The validation model was composed
of the DTU18 global mean sea surface (DTU18 MSS) model developed by the Technical
University of Denmark and the TPXO8 global ocean tide model provided by Oregon State
University (OSU) [31,32]. The SSH obtained from the validation model can be expressed
as [11]:

SSH = DTU18 + TPXOtide (1)

where TPXOtide represents the tidal correction calculated by the TPXO8 global ocean tide
model.

Table 1. List of brief information about L1B variables used in this paper.

Variable Name Description

DDM Delay-Doppler Map
SpecularPointLat Specular point latitude
SpecularPointLon Specular point longitude
SPIncidenceAngle Specular point incidence angle

AntennaGainTowardsSpecularPoint Antenna Gain
DDMSNRAtPeakSingleDDM Signal-to-Noise Ratio

2.2. Data Quality Control

To ensure the quality of the TDS-1 data, the selected L1B measurements were quality
controlled and filtered before the neural network training. The quality control was mainly
based on the following criteria:

(1) Power signal: The Signal-to-Noise Ratio (SNR) and Antenna Gain (AG) of DDM
can reflect the strength of reflected signal power. The data with SNR and AG greater than
5 dB were screened for SSH retrieval in this paper [13].

(2) Excluded sea ice data: Sea ice is a significant hindrance for GNSS-R technology
used in ocean altimetry. Figure 1a,b show the DDM of sea surface and ice surface reflection,
respectively. From Figure 1b, it can be seen that the reflection of the ice surface reflection
signal is specular, and the signal in the DDM is concentrated in a minimal Doppler and
delay range. Since the sea surface produces scattering, DDM can measure the reflected
signal within a more extensive range of dopplers and delays. To eliminate the effect of sea
ice, only data within ±55◦ of latitude were retained.

ftp.merrbys.co.uk
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Figure 1. DDM with different reflective surfaces. (a) DDM with sea surface reflection; (b) DDM with
sea ice reflection; (c) DDM with land edge reflection; (d) DDM with noise.

(3) Excluded land data: When the specular point is close to land or an island, it receives
a portion of the reflected signal. Due to the difference between the scattering coefficients
of land and sea, an asymmetric waveform was observed in the DDM data as shown in
Figure 1c. To exclude land data, this paper used the high-resolution world coastline data
provided by the Global Self-consistent, Hierarchical, High-resolution Geography Database
(GSHHS) [33]. The complete database contains about 10,222,509 points with an average
point spacing of about 178 m.

(4) GNSS-RO: GNSS radio occultation (GNSS-RO) occurs when a GNSS satellite falls
or rises behind the edge of the earth. Choosing an elevation angle larger than 60◦ can
eliminate GNSS-RO occurrences [34].

(5) Wind speed: The roughness of the sea surface will worsen as the wind speed
increases, resulting in weaker reflected signal power in the DDM. Reynolds et al. used
DDM data to retrieve the wind speed [23]. The results show that good retrieval results
can be obtained at medium and low wind speeds. In contrast, there is still a significant
deviation in the retrieval results of wind speeds above 12 m/s. To improve the retrieval
capability of the model, TDS-1 data with low and medium wind speeds (<12 m/s), were
used for SSH retrieval.

(6) Remove other noises: Hu et al. reported 14 DDM data with anomalies [35]. These
abnormal data contain not only the normal DDM waveform but also abnormal bright spots
and other weak signals. Such data will affect retrieval results and need to be eliminated.
Figure 1d gives a DDM containing an abnormal signal. Generally, the DDM reflected from
the sea surface is horseshoe-shaped, and the power peaks appear near the 0-chip delay and
0-Hz Doppler. However, the DDM pattern in Figure 1d is cluttered and has no obvious
shape. Figure 2 gives statistics of the time delay and Doppler pixel location where the peak
power of DDM data is located. It can be seen that the delay of the peak power is mainly
concentrated between 63 pt and 73 pt, and the Doppler is mainly concentrated between
9 pt and 14 pt. To further improve the data quality, we excluded the abnormal data with
peak power outside the above thresholds.
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Figure 2. Statistical results of the time delay and Doppler pixel position where the peak power of
DDM data is located.

2.3. Data Matching

After quality control and data filtering, about 6.0 million TDS-1 DW datasets were
obtained. The TDS-1 spaceborne data are a continuous time-varying collection. In contrast,
the DTU18 MSS is a grid data with both latitude and longitude of 1′. We spatially matched
the TDS-1 spaceborne dataset with the DTU18 MSS to extract the DTU18 MSS value
corresponding to the longitude and latitude of the TDS-1 data. The mean sea surface height
(MSS) corresponding to the nearest point in latitude and longitude to the TDS-1 specular
point was found in the grid data of the DTU18 model as the matched SSH. The sample
points of the two datasets were within 0.5′ of each other in latitude and longitude. Then the
tide correction was calculated and superimposed on the DTU18 MSS to obtain the SSH of
the DTU18 verification model. The original matchups consisted of the TDS-1 DW dataset
and the corresponding SSH of the DTU18 validation model. Figure 3 shows the global
distribution of the filtered TDS-1 dataset, with SSH values between −100 m and 80 m.
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To train the ANN model, 80% of the total matchups were randomly selected as training
data to optimize the model hyperparameters. The remaining 20% of the data were used as
test data. The test data was an entirely blind dataset not involved in model building. This
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blind dataset was only used to evaluate the final precision and generalization ability of the
model.

3. Methods

The ANN can learn the relationship between input and output data without providing
any analytical equations. The learning algorithm uses the gradient fastest descent method.
The weights and thresholds of the neural network were continuously adjusted by the error
back-propagation method. Figure 4 shows the schematic diagram of the ANN structure. It
can be seen that the ANN generally consists of the input layer, hidden layer, and output
layer. An ANN with multiple hidden layers is a multihidden layer neural network (MHL-
NN). The GSMHLFO proposed in this paper mainly consists of the MHL-NN model,
feature engineering, and grid search. Firstly, the feature extraction method was used to
downscale and optimize the original DW data. Secondly, the feature construction method
was used to construct new features sensitive to SSH by analyzing the effects of signal
propagation path, traditional retracking algorithm, and sea surface roughness. Finally, the
MHL-NN was used to build the SSH prediction model, and the number of hidden layers
and the number of neurons in each layer were used for hyperparameter optimization by
the grid search algorithm. The use of the GSMHLFO to establish an SSH prediction model
was essentially a supervised learning regression problem. The DDM data of TDS-1 and
other related information were used as input, and the corresponding SSH was used as an
output to train the model. The model was optimized by observing the performance of the
trained model on the validation set. In addition, the ultimate precision of the model was
evaluated on a completely blind test set.
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Assuming that the GSMHLFO has L hidden layers. Given a set of delay waveforms
(DW), the output of the GSMHLFO can be expressed as:

CSMHLOSSH =
LGS

∏
i=1

σ
(

WNGS
i · TDSFeature(DW) + bi

)
(2)

where CSMHLFOSSH represents the output of the GSMHLFO; NGS and LGS represent the
optimal number of hidden layers and the optimal number of neurons in each layer resulting
from the grid search algorithm, respectively; Wi and bi represent the weight and bias of the
ith hidden layer, respectively; TDSFeature represents the algorithm for feature engineering;
σ represents the activation function of the hidden layer. The training task of the GSMHLFO
is to find the optimal set of parameters that minimize the loss between the output value of
the GSMHLFO and the target value.
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Three precision metrics, MAD, (RMSE), and PCC [36], were used to evaluate the
validity of the model. The smaller the MAD and RMSE are, the better the predicted and
true values will fit. The closer the PCC is to 1, the better the correlation between the retrieval
results and the DTU18 validation model. The corresponding definitions are [37]:

MAD =
1
n

n

∑
i=1
|Ti− Ai| (3)

RMSE =

√√√√ 1
n
×

n

∑
i=1

(Ti− Ai)
2

(4)

PCC =
Cov(T, A)

σTσA
(5)

where T represents the prediction sequence of the model; A represents the SSH value
verification sequence provided by the corresponding DTU18 model; Ti represents the ith
predicted value of the model; n represents the number of predicted values. Cov(T, A)
represents the covariance of the predicted value and the validation value; σT and σA
represent the predicted and the true value variance, respectively.

3.1. Determining the GSMHLFO Configuration
3.1.1. Basic Settings

(1) Activation function: The activation function describes the functional relationship
between the output of the upper layer and the input of the next layer in a multihidden
layer neural network. The powerful representation capability of the deep network model is
achieved mainly through the nonlinearity of the activation function. Any differentiable
function can be used as the activation function. The commonly used activation functions
are Sigmoid, Tanh, and ReLU. The ReLU function was selected as the activation function in
this paper [30]. Sigmoid and Tanh contain exponential operations. When backpropagating
to solve the error gradient, the model can be computationally intensive due to the chain
derivation rule and the structure of the function itself. The ReLU function has a simple
form that can successfully minimize network complexity while increasing the nonlinearity
of the network.

(2) Loss function: The loss function is essential for model training, which is used
to estimate the discrepancy between predicted and real values. It is a nonnegative real-
valued function. Usually, the smaller the loss function, the better the robustness of the
model. In this paper, the MAE function was used as the loss function, and the formula is as
follows [23]:

L(Y, f (X)) =
N

∑
i=1

(yi − f (xi))
2 (6)

where L(Y, f (X)) represents the loss function; f (x) represents the predicted value of the
model; y represents the corresponding true value.

(3) Optimization algorithm: Due to the complex structure and numerous parameters
of deep neural networks, a large amount of time and computational resources are required
for training. The Adam adaptive optimization algorithm was used in this paper [24]. The
Adam algorithm has the advantages of high computational efficiency and less memory
required, and it is suitable for solving optimization problems with large-scale data and
parameters.

3.1.2. Cross-Validation and Hyperparameter Optimization

Cross-Validation is a statistical analysis method to verify the performance of the model,
which can make full use of the training data. It can improve the generalization performance
of the model and prevent overfitting [38]. Compared with other validation methods, K-fold
Cross-Validation (K-CV) can completely exploit the training data, and the resulting model
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is robust [27]. K-CV randomly divides the training data into K groups. Each subset of
data is taken as the validation set once, and the remaining K − 1 subset of data is used as
the training set to obtain a total of K models. The final performance metric of the model
is computed by averaging the predictive performance of the K models in the validation
set. In this paper, we used 5-fold cross-validation to train and verify the model on the
training set [38]. The random seed was used to control the pattern of dividing the training
set and validation set. Changing the number of random seeds was equivalent to reslicing
the original dataset, and different division results can be obtained.

Hyperparameters are parameters that need to be set artificially before the neural
network training. An optimal set of hyperparameters allows the trained model to perform
better based on the intrinsic algorithm. The number of hidden layers and the number of
neurons in each layer are two important hyperparameters in the GSMHLFO. Therefore,
these two hyperparameters must be prespecified before the model training. In this paper,
we used the grid search (GS) algorithm to optimize these two hyperparameters [39]. GS
is an exhaustive search method for tuning parameters. In the selection of all candidate
parameters, every possibility is tried through loop traversal. The set of hyperparameters
with the highest model score is the optimal hyperparameter. Figure 5 shows the variations
of RMSE and PCC for different numbers of layers and neurons. The results reveal that
with the increase in the number of layers and neurons, the RMSE of the retrieval results
gradually decreases, and the PCC gradually increases. When the number of layers is
greater than 3 and the number of neurons is greater than 200, the RMSE and PCC of the
retrieval results of GSMHLFO are almost the same. That means the reversal performance
of GSMHLFO is stabilized. Ultimately, the GSMHLFO structure with 4 hidden layers and
200 neurons in each layer can achieve the best performance with RMSE of 6.27 m and PCC
of 0.96, respectively.
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3.2. Feature Engineering

Feature engineering uses domain knowledge of the data to create features that make
ML algorithms feasible. The objective is to extract the features that contain sufficient
information for the retrieval task. The more flexible the extracted features are, the better
the model will be built. Missing or redundant features will seriously affect the precision of
the model.

The noise floor is the result of the internal noise action of the receiver and does
not contain the information of the DDM. To enhance the sensitivity of the feature value
extracted from the DDM image to the SSH, the DDM image must be filtered. As shown
in Figure 6a, the red box area without scattering signal in the DDM image was chosen as
the noise floor calculation area. The noise floor can be obtained by averaging the scattered
power values in this area.
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The integrated delay waveform (IDW) was calculated by incoherent integration of the
delayed waveform (DW) within a given Doppler bin in the DDM image. With the Doppler
bin between −1000 Hz and 1000 Hz, the scattered signal in the DDM image is significantly
concentrated and sensitive to the SSH [40]. Therefore, we used incoherent integration on
the DDM image within this range to obtain IDW. The formula is as follows [40]:

IDW =
1
M

M

∑
m=1

Y
(
τj, fdm

)
(7)

where τj represents delay waveform; fdm represents the Doppler shift band; M represents
the number of delay waveforms in the Doppler bin. Figure 7 presents a heatmap of
the correlation of DW and IDW with the SSH of the DTU18 validation model where the
horizontal and vertical axes in the figure indicate different sequences; different numbers
indicate the waveform sequences at different time delay positions of DW and IDW, and
DTU18 indicates the DTU18 SSH sequence. It can be seen that, as compared to the DW data,
the IDW data have a stronger correlation with the SSH of the DTU18 validation model.
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TDS-1 spaceborne IDW data are a collection of a 128-dimensional dataset. This dataset
contains numerous redundant features unrelated to SSH, which increases the training
time of the model and easily leads to overfitting. To improve the training efficiency and
precision of the model, we used the Pearson correlation coefficient method to filter the
dataset and exclude features whose correlation coefficients were less than 0.1 with the
DTU18 validation model [41]. The dimension of the filtered IDW dataset was reduced from
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128 to 18. Additionally, the Principal Component Analysis (PCA) [11] method was used to
extract the 15-dimensional feature sets with a cumulative contribution rate of 95% as the
final IDW dataset.

3.2.1. Feature Construction

Feature construction is a method of artificially constructing new features that are
advantageous to model training and have some engineering significance. The new features
are created by analyzing raw data samples and combining machine learning experience
and professional knowledge in related fields. The following new features were constructed
in this section by analyzing the effects of signal propagation path errors, conventional
retracking algorithms, and sea surface roughness.

(1) The leading edge slope (LES), as the leading edge slope of IDW, is often used to
estimate the variation of significant wave height. And the LES has a strong correlation
with the surface roughness. The slope of the linear function fitted with the best first-order
polynomial was used as the LES of IDW. The formula is shown as follows [42]:

LES = argmin
ac

{
2

∑
k=1

[I(τk)− (ατk + c)]2
}

(8)

where I(τk) represents the leading edge function of the integrated delay waveform;α and c
represent the slope and intercept of the best fitting straight line, respectively.

(2) Delay-Doppler Map Average (DDMA): The scattered power is concentrated around
the specular point, and this region has the most significant impact on ocean altimetry. The
primary information in DDM can be stated in scalar form by DDMA, which reflects the
average value of scattered power in a specified region around the specular point. The delay
range between −0.25 chips and 0.25 chips and the Doppler range between −1000 Hz and
1000 Hz were used to calculate DDMA in this paper. A typical DDMA calculation area in a
DDM image is shown in Figure 7b. The red rectangle of 5 (Doppler) × 3 (Delay) centered
on the specular point is the DDMA calculation area. The calculation formula of DDMA is
as follows [40]:

βDDMA(∆τ, ∆ fd) =

N
∑
j

M
∑
m

Y
(
τj, fdm

)
MN

(9)

where Y
(
τj, fdm

)
represents the DDM image after subtracting the noise floor.

(3) Retracking algorithm: To extract features containing sufficient DDM informa-
tion, three features sensitive to SSH were constructed based on the traditional retracking
algorithm. The following are the definitions for the terms:

(a) The delay of the peak correlation power (PCP): This feature takes the specular
reflection delay at the peak correlation power. The peak correlation power is defined as [11]:

τspec = argmax
τ
{W(τ)} (10)

where τ represents time delay; W(τ) represents the power delay waveform related to the
reflected signal.

(b) The delay of the 70% peak correlation power (PCP70): This feature takes the
specular reflection delay at 70% of the peak correlation power.

(c) The waveform leading edge peak first derivative (PFD): This feature takes the
specular reflection delay from the maximum first derivative on the waveform leading edge.
The waveform leading edge peak first derivative is defined as [11]:

τspec = argmax
τ

{
dW(τ)

dτ

}
(11)
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(4) Atmospheric delay (ATM): Ionospheric delay and tropospheric delay are the prin-
cipal effects of atmospheric delay on ocean altimetry.

Ionospheric delay can produce range errors of several meters along direct and reflected
signal paths. Since the TDS-1 can only obtain single-frequency L1 measurements, it cannot
rely on measures of dual-frequency (usually L1 and L2) to eliminate ionospheric effects.
Therefore, in this paper, we used the global ionosphere maps (GIMs) of IGS to calculate the
ionospheric delay [43]. The total ionospheric delays of the reflected signal caused by the
ionosphere relative to the direct signal are computed as follows [13,44]:

δiono = (δ1 + δ2)− δ3 (12)

where δiono represents the total ionospheric delay; δ1 represents the ionospheric delay from
the GPS satellite to the specular point; δ2 represents the ionospheric delay from the specular
point to the TDS-1; δ3 represents the ionospheric delay from the GPS satellite to the TDS-1
receiver.

The UNB3m model from the University of New Brunswick was used to compute
tropospheric delay [45]. The UNB3m model uses empirically derived latitudinal and
seasonal grid-averaged atmospheric parameters, Saastamoinen zenith delay, and Niell
mapping function to estimate tropospheric delay [15]. As tropospheric delay effects are
concentrated below 10 km above the ground, tropospheric corrections were only performed
to signal paths reflected downward and upward below receiver altitude.

The total atmospheric delay can be expressed as [13]:

ATM = δiono + δtro (13)

where ATM represents the total atmospheric delay; δiono represents the ionospheric delay;δtro
represents the tropospheric delay.

(5) Wind speed: The ocean wind speed data use EAR5 reanalyzed data from ECMWF.
ERA5 is the latest reanalyzed data that can provide high-precision U10 and V10 wind
speed data with a time interval of 1 h and a spatial resolution of 0.25◦. We used the TDS-1
spaceborne dataset and the EAR5 reanalyzed dataset for temporal matching; the time and
spatial matching window are 1 h and 0.25◦, respectively.

3.2.2. Feature Sensitivity Analysis

To further assess the contribution of the DW, IDW, DDMA, LES, specular point eleva-
tion (ELE), DDM signal-to-noise ratio (SNR), atmospheric delay (ATM), ocean wind speed
(EAR5), and retracking algorithm (PCP, PCP70, and PFD) features to the SSH retrieval
model, different combinations of the input parameters were designed as follows:

Set 1: DW
Set 2: IDW
Set 3: IDW and ELE
Set 4: IDW and SNR
Set 5: IDW, ELE, and SNR
Set 6: IDW, ELE, SNR, and ATM
Set 7: IDW, ELE, SNR, and EAR5
Set 8: IDW, ELE, SNR, ATM, and EAR5
Set 9: IDW, ELE, SNR, ATM, EAR5, and LES
Set 10: IDW, ELE, SNR, ATM, EAR5, and PCP
Set 11: IDW, ELE, SNR, ATM, EAR5, and PFD
Set 12: IDW, ELE, SNR, ATM, EAR5, and PCP70
Set 13: DDMA, ELE, SNR, ATM, EAR5, and PCP
Set 14: IDW, ELE, SNR, ATM, EAR5, LES, PCP, and DDMA

For verifying the robustness of the GSMHLFO, the random seed number of the 5-fold
cross-validation was replaced twice. Changing the random seed number was equivalent
to reslicing the training and validation sets. The performance indicators of the three
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experimental outcomes on the test set are summarized in Table 2. As seen in Table 2, the
MAD, RMSE, and PCC of each model do not change appreciably in the three experiments.

Table 2. Performance indicators of the GSMHLFO in different datasets.

Set

The First Experiment The Second Experiment The Third Experiment

MAD
(m)

RMSE
(m) PCC MAD

(m)
RMSE

(m) PCC MAD
(m)

RMSE
(m) PCC

Set 1 13.66 18.28 0.81 13.47 18.15 0.81 13.52 18.09 0.81
Set 2 11.90 17.05 0.85 11.73 16.95 0.85 11.82 16.83 0.85
Set 3 11.40 16.43 0.87 11.47 16.52 0.87 11.40 16.40 0.87
Set 4 11.65 16.66 0.87 11.59 16.62 0.87 11.66 16.9 0.87
Set 5 8.72 12.16 0.91 8.65 12.04 0.91 8.59 11.57 0.91
Set 6 5.54 7.79 0.97 5.67 7.85 0.97 5.59 7.82 0.97
Set 7 6.89 9.60 0.95 6.75 9.49 0.95 6.83 9.62 0.95
Set 8 4.86 6.96 0.97 4.82 6.90 0.97 4.85 6.96 0.97
Set 9 4.78 6.73 0.98 4.75 6.69 0.98 4.71 6.65 0.98
Set 10 4.73 6.67 0.97 4.76 6.71 0.97 4.75 6.69 0.97
Set 11 5.09 7.16 0.97 5.05 7.14 0.97 5.01 7.12 0.97
Set 12 5.15 7.21 0.97 5.11 7.18 0.97 5.09 7.15 0.97
Set 13 5.02 7.30 0.97 5.05 7.26 0.97 4.97 7.10 0.97
Set 14 4.23 5.94 0.98 4.32 6.05 0.98 4.18 5.91 0.98

From Set 1 and Set 2, it can be seen that the use of the IDW dataset can utilize
more DDM information compared to the DW dataset, which results in better retrieval
performance. The RMSE of the retrieval results is only slightly reduced after adding SNR
and ELE characteristics alone, with no significant improvement (shown by Set 2, Set 3,
and Set 4). However, the simultaneous addition of SNR and ELE features can significantly
improve the retrieval precision of SSH, with PCC increasing by 7.1% and RMSE decreasing
by 26.7% (shown by Set 2 and Set 5). Set 6 and Set 7 demonstrate that the features EAR5
and ATM can contribute positively to the SSH retrieval of the GSMHLFO l, with the
enhancement of the ATM feature being particularly significant (relative to Set 5). Set 8
presents the retrieval results of SSH after adding both the EAR5 feature and the ATM
feature. Compared to the feature Set 5, PCC increased by 6.6%, and RMSE decreased
by 44.3%. This enhancement is mainly because the ATM feature can provide additional
signal propagation path information, and the EAR5 feature provides additional sea surface
roughness information. Feature Sets 9–12 analyze the effect of LES, PCP, PFD, and PCP70
features constructed from DDM on SSH retrieval. It can be seen that LES and PCP contribute
positively to SSH retrieval (Sets 8–10), while PFD and PFD70 contribute negatively (shown
by Sets 8, 11, and 12). Feature Set 13 utilizes DDMA instead of the entire IDW data, and
it can be seen that the retrieval precision is slightly lower than using the entire IDW data
(shown by Set 13 and Set 10). By adding all the positive contribution features as the input
of the neural network (Set 14), the RMSE of the retrieval SSH can be improved to 4.23 m
and the PCC to 0.98.

4. Results
4.1. Analysis of SSH Retrieval Results

In this section, the SSH retrieval performance of the proposed GSMHLFO with four
hidden layers and 200 neurons in each layer is evaluated. The SSH retrieval model was
built by using Set 14 with the best retrieval precision in Section 3.2.2 as the input to the
GSMHLFO. The GSMHLFO performance was evaluated with a completely blind test set.

The training and validation error profiles of the GSMHLFO are given in Figure 8a. It
can be seen that at the early stage of training, both training and validation errors decrease
significantly with the increase in the number of epochs. Additionally, the error gradually
stabilizes after 400 epochs. Meanwhile, the RMSE on the validation set is slightly higher
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than that on the training set after the error function was stabilized. This is mainly because
the model can use all of the samples from the training set for training, while the samples
on the validation set are only used as feedback to adjust the parameters.
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Figure 8. The retrieval results of the GSMHLFO. (a) Training and validation error profiles of the
GSMHLFO; (b) Scatter density plots of the retrieval results of the GSMHLFO.

The scatter density plot between the retrieval results of the GSMHLFO and the SSH of
the DTU18 validation model is given in Figure 8b. It can be intuitively seen that the retrieval
results of the GSMHLFO have a strong correlation with the DTU18 verification model, with
a PCC of 0.98. However, because TDS-1 is not designed for altimetry measurements, the
satellite receiver was not optimized for altimetry. The results have a considerable retrieval
error, with the MAD of 4.23 m and the RMSE of 5.94 m.

The probability density function (PDF) of the SSH of the GSMHLFO and the DTU18
verification model is shown in Figure 9a. It can be seen that the data distribution of SSH
retrieved by the GSMHLFO is almost the same as that of the DTU18 verification model.
However, the GSMHLFO retrievals have slightly lower PDF of SSH in the range of−10~0 m,
−60~−20 m, and 45~90 m than the DTU18 validation model. This is mainly due to the
uneven distribution of different SSHs in the training dataset. Figure 9b shows the error
distribution histogram of the retrieval results of the GSMHLFO relative to the SSH of the
DTU18 verification model. The statistical results are close to a normal distribution in which
69.78% of the retrieval errors are between −5 and 5 m, and 92.13% of the retrieval errors
are between −10 and 10 m.

4.2. Evaluation of SSH Retrieval Results

We compared the retrieval precision of the two methods to verify the superiority
of the GSMHLFO over the traditional spaceborne GNSS-R SSH retrieval method. In the
conventional SSH retrieval, the time delay difference between the reflected signal and the
direct signal was estimated using the HALF retracking method. A point on the leading
edge of the correlation waveform at 70% of the maximum correlation power was chosen
as the retracking point. Moreover, various errors in the time delay measurements were
corrected by building the corresponding error models [46]. Table 3 lists the various errors
in the conventional SSH retrieval method and the related error correction methods [46].
Among them, ionospheric and tropospheric corrections were also used as input features for
the model of GSMHLFO proposed in this paper (in Section 3.2). These provide additional
information on the signal propagation path.
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Table 3. Error factors and corresponding error correction methods.

Errors Correction Method

Ionospheric delay GIM
Tropospheric delay UNB3m
Antenna baseline Metadata
GPS orbit error IGS Ephemeris

TDS-1 orbit error Metadata
Delay error Reflected Signal Geometry

TDS-1 data bias Metadata
Tracking error noise HALF

Figure 11 shows the error statistics of the global SSH retrieved by the HALF retracking
method and the GSMHLFO when compared with DTU18 data. The retrieval results of
the GSMHLFO are superior. The retrieval error of the GSMHLFO is smaller, and about
92.13% of the retrieval error is between −10 and 10 m, while the HALF retracing method is
only 67.63%.

Figure 10a,b show the global SSH retrieval results of the traditional HALF retracking
method and the GSMHLFO on the test set, respectively. Figure 10c shows the SSH of the
corresponding DTU18 validation model. Figure 10 shows that both models have good
retrieval results, and the resulting SSHs are globally consistent with the DTU18 validation
model SSHs. Furthermore, in the red box, GSMHLFO exhibits better retrieval results with
fewer errors with the DTU18 validation model compared to the traditional HALF retracking
method. GSMHLFO can more accurately mine the relationship between the raw input data
and SSH by increasing the information available to the DDM.
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Figure 11. Global SSH error statistics were obtained by the HALF retracking method and the
GSMHLFO.

The precision indicators of the two models are quantitatively presented in Table 4.
The GSMHLFO outperforms the traditional retracking algorithm in MAD, RMSE, and PCC
precision metrics. The application of the GSMHLFO effectively improves the precision of
SSH retrieval. The MAD and RMSE are reduced by 32.86% and 25.00%, respectively, and
the PCC is improved by 8.99%.

Table 4. Comparison of SSH retrieval performance between the GSMHLFO and HALF retracking
method.

MAD (m) RMSE (m) PCC

HALF 6.30 7.92 0.89
GSMHLFO 4.23 5.94 0.97
Improve (%) 32.86 25.00 8.99

5. Discussion

The retrieval results of the proposed GSMHLFO with four hidden layers and 200 neu-
rons in each layer strongly correlate with the DTU18 validated model, with a PCC of 0.98.
However, because TDS-1 is not designed for altimetry measurements, the satellite receiver
has not been optimized for altimetry. The results have a considerable retrieval error, with a
MAD of 4.23 m and an RMSE of 5.94 m. The main reasons for the error are: (1) For altimetry
missions, TDS-1 L1B-level data suffer from limited delay resolution (224.3942 ns), narrow
receiver bandwidth (~2 MHz), and low peak antenna gain (13.3 dB). (2) Since TDS-1 can
only obtain L1 single-frequency measurement signals, atmospheric delay errors cannot be
eliminated by dual-frequency measurements. (3) Some abnormal DDM data that have not
been removed from the data will also affect the SSH retrieval results. The issues above will
have an overall error of 3.5~7 m in the retrieval results [22,46]. After analyzing 14 feature
sets with various information details, it can be observed that ELE, SNR, ATM, and EAR5 can
make significant contributions to GSMHLFO-based SSH retrieval, while PFD and PFD70
provide negative contributions. Moreover, compared to the traditional HALF retracking
method, the SSH retrieval algorithm based on the GSMHLFO can effectively improve the
precision of SSH retrieval.
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6. Conclusions

The traditional GNSS-R altimetry method has a more complicated error model and
limited retrieval precision. To address this deficiency, in this research, we developed the
GSMHLFO for SSH retrieval. The main research results can be summarized in the following
points:

(1) The GSMHLFO is constructed by combining the MHL-NN, feature engineering,
and grid search algorithm. First, the feature extraction method was used to downscale
and optimize the original DW data. Second, the feature construction method was used to
construct new features sensitive to SSH by analyzing the effects of signal propagation path,
traditional retracking algorithm, and sea surface roughness. Third, the MHL-NN was used
to build the SSH prediction model, and the number of hidden layers and neurons in each
layer were optimized using the grid search algorithm.

(2) The retrieval results of the proposed GSMHLFO with four hidden layers and
200 neurons in each layer strongly correlate with the DTU18 validated model, with a PCC
of 0.98. However, affected by the quality of the TDS-1 L1B data (limited delay resolution,
low receiver bandwidth, and low antenna gain) and atmospheric delay error, the RMSE
and MAD are equal to 5.94 and 4.23 m, respectively.

(3) After analyzing 14 feature sets with various information details, we observed
that compared with the DW dataset, GSMHLFO trained by the IDW dataset can achieve
better retrieval results. Moreover, the ELE, SNR, ATM, and EAR5 can provide significant
contributions to the SSH retrieval based on GSMHLFO.

(4) Compared to the traditional HALF retracking method, the SSH retrieval algorithm
based on the GSMHLFO can effectively improve the precision of SSH retrieval. The MAD
and RMSE are reduced by 32.86% and 25.00%, respectively, while the PCC is improved by
8.99%.

The new MHL-NN model proposed in this study presents a new idea for the future
GNSS-R ocean altimetry algorithm, which can precisely retrieve the global SSH. In addition,
the work of this paper needs to be continuously improved. The proposed MHL-NN model
can be further optimized by training on more extensive datasets. Furthermore, more
physical parameters related to SSH can be explored to improve the retrieval precision.
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