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Abstract: Rooftop solar photovoltaic (PV) retrofitting can greatly reduce the emissions of greenhouse
gases, thus contributing to carbon neutrality. Effective assessment of carbon emission reduction
has become an urgent challenge for the government and for business enterprises. In this study,
we propose a method to assess accurately the potential reduction of long-term carbon emission by
installing solar PV on rooftops. This is achieved using the joint action of GF-2 satellite images, Point of
Interest (POI) data, and meteorological data. Firstly, we introduce a building extraction method that
extends the DeepLabv3+ by fusing the contextual information of building rooftops in GF-2 images
through multi-sensory fields. Secondly, a ridgeline detection algorithm for rooftop classification is
proposed, based on the Hough transform and Canny edge detection. POI semantic information is
used to calculate the usable area under different subsidy policies. Finally, a multilayer perceptron
(MLP) is constructed for long-term PV electricity generation series with regional meteorological
data, and carbon emission reduction is estimated for three scenarios: the best, the general, and the
worst. Experiments were conducted with GF-2 satellite images collected in Daxing District, Beijing,
China in 2021. Final results showed that: (1) The building rooftop recognition method achieved
overall accuracy of 95.56%; (2) The best, the general and the worst amount of annual carbon emission
reductions in the study area were 7,705,100 tons, 6,031,400 tons, and 632,300 tons, respectively;
(3) Multi-source data, such as POIs and climate factors play an indispensable role for long-term
estimation of carbon emission reduction. The method and conclusions provide a feasible approach
for quantitative assessment of carbon reduction and policy evaluation.

Keywords: GF-2 remote sensing images; building rooftop recognition; rooftop solar PV; DeepLabv3+;
MLP; carbon reduction

1. Introduction

At present, the primary energy sources globally are non-renewables including coal, oil,
and natural gas. With global economic growth, energy demand continues to increase. Huge
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energy consumption reduces the availability of non-renewable energy, and the energy
crisis has become one of the major problems plaguing the world [1]. In addition, the
exploitation of fossil energy is a key factor in global environmental change and pollution,
bringing serious ecological and environmental problems such as the greenhouse effect
and global warming [1,2]. Among new energy types including wind, solar, tidal, and
biomass power, solar can be considered a key solution for relieving environmental climate
change [2]. As a representative technology for solar energy conversion, solar photovoltaic
systems (photovoltaics, PV) already demonstrate competitive performance in terms of
energy payback time (EPBT), greenhouse gas (GHG), and levelized cost of energy (LCOE)
compared with conventional energy sources [3].

Retrofitting distributed rooftops with solar PV is an effective means of promoting
“carbon peaking” and “carbon neutral” strategies. Rooftop solar PV is geographically
unrestricted. The PV cells can be closely integrated into buildings without taking up addi-
tional land resources, not only saving land resources but also improving their utilization
rate. In addition, the importance of large-scale PV development has been emphasized
in the national renewable energy development plan [4]. Therefore, accurate assessment
of long-time-series carbon emission reductions due to rooftop solar PV has become an
important research topic.

The current estimation methods for long-term carbon emission reduction due to
rooftop solar PV are still relatively crude due to the influence of building identification
accuracy, building rooftop types (e.g., terrace rooftop, pitched rooftop), local subsidy
policies, PV installation processes, and local climate conditions. The challenges can be
summarized as follows:

(1) Recognition of building rooftops in complex scenes. In recent years, high-resolution
remote sensing images have provided a large variety surface features and rich spatial
information for building rooftop recognition [5–7]. However, influenced by small
targets, multiple sizes, multiple morphologies, and different types of building rooftops,
the accuracy of building rooftop recognition is relatively low, with inferior image
segmentation [8–11]. Multi-scale feature information hidden in high-resolution remote
sensing images is not fully explored [12–17]. How to better extract and fuse multi-level
features has become the focus of current research [18–21];

(2) Estimation of the actual usable area of rooftop solar PV systems, which is affected by
multiple factors. First, high-resolution remote sensing images (e.g., GF-2, Sentinel 2,
etc.) generally discard building elevation information due to economic and data vol-
ume considerations [22]; Second, different PV installations and rooftop types make the
classification of rooftops and the estimation of actual usable area a real challenge [23];
Finally, different local subsidy policies can lead to various practical implementations
of rooftop solar PV systems. Existing research relies only on empirical parameters
with low calculation accuracy [24–27];

(3) Accurate and long-term assessment of the amount of carbon emission reduction.
Single or multiple remote sensing images can only reflect a “snapshot” of PV electricity
generation for a short period in a given area. Due to the influence of climate conditions
and weather factors, atmospheric condition inversion should be considered in the
accurate and long-term assessment of carbon emission reduction due to rooftop solar
PV [28,29].

To overcome these challenges, the highlights of this study can be summarized as follows:

(1) In order to solve the problem of insufficient extraction and fusion of multi-scale
features in building rooftop recognition, this study employed ResNet-101 [30] as the
backbone network of DeepLabv3+, to merge multi-scale contextual information of
GF-2 images during the upsampling process in the decoding layer;

(2) A ridgeline detection algorithm for rooftop classification is proposed based on Hough
transform [31] and Canny edge detection [32]. POI semantic information further serves
the calculation of the usable area of rooftop solar PV under different subsidy policies.
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(3) Annual solar radiation for PV electricity generation was modeled via multilayer
perceptron (MLP) using regional meteorological data. The long-term carbon emission
reduction was then derived under three scenarios: the best, the general, and the worst,
considering the transformational relation between the standard coal consumption and
CO2 emission factors.

The rest of this study is organized as follows: Section 2 introduces related works;
Section 3 presents the methodology; Section 4 describes the experiments; Section 5 dis-
cusses the overall process of estimating long-term carbon emission reduction; Section 6
summarizes the conclusions and indicates future work.

2. Related Works
2.1. Building Rooftop Recognition from Remote Sensing Images

Previous works on building rooftop extraction and recognition in high-resolution
remote sensing images can be divided into two categories: artificial-feature-based methods
and deep-learning-based methods [33]. The former have mainly utilized geometric, spectral,
and background information about building rooftops. Lin and Nevatia [34] proposed an
edge detection algorithm to extract building rooftops by detecting their walls and shadows.
Zhang et al. [35] extracted the appearance of the external morphological boundaries of
building rooftops based on the geometric linear relationship features after edge detection to
improve the accuracy of recognition. Katartzis et al. [36] combined edge detection with the
Markov model and employed aerial images to extract building rooftops. However, the edge
detection method is susceptible to the influence of features similar to building morphology,
resulting in building rooftop identification errors. Andres et al. [37] developed a threshold
determination method based on the K-means algorithm to classify and identify building
rooftops in remote sensing images, with a significant reduction in segmentation errors.
Liu et al. [38] put forward a novel integrated classification method using a Support Vector
Machine (SVM) and Decision Tree (DT), combining spectral transform and geographic
location information for building rooftop recognition. Most of the methods mentioned
above are based on spectral feature difference analysis, which can easily confuse similar
features during recognition [39].

The latter group are deep-learning models that construct feature space automatically
from high-resolution remote sensing images. These methods, especially Fully Convo-
lutional Networks (FCNs) [12], introduce Convolutional Neural Network (CNN) struc-
tures to the image semantic domain, and have been widely used in recent years [40–42].
Liu et al. [43] proposed a new FCN structure consisting of a spatial residual convolution
module for extracting building rooftops from remote sensing images, known as spatial
residual onset. Shariah et al. [44] rewrote FCN without a pooling layer so that the network
could retain as much important and useful information from the original image as possible.
Ding et al. [45] proposed an adversarial method to consider the rectangular shape of build-
ings while performing building extraction. Although FCN-based methods have shown
good performance in building rooftop extraction, such methods are not capable of ulteriorly
fusing multi-scale feature information, due to the diverse patterns of buildings rooftops [46].
New network structures such as the Global Multiscale Codec Network (GMEDN) [47],
U-shaped hollow pyramid pooling (USPP) networks [16], and Atrous Spatial Pyramid
Pooling (ASPP) [48] may alleviate this problem in FCNs, but the object boundaries remain
blurred and not continuous.

The DeepLabv3+ network [49] adds the encoder-decoder structure based on an ASPP
module to make full use of multi-scale feature information, paving a new direction for
building rooftop recognition from high-resolution remote sensing images.

2.2. The Actual Usable Area of Rooftop Solar PV Systems

The methods for estimating the actual usable area of rooftop solar PV systems can be
broadly classified into three categories: fixed-value methods, manual intervention methods,
and GIS-based methods [50].
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The advantage of fixed-value methods is that the calculations are fast. For example,
Vardimon [24] applied a constant value of 30% to calculate usable rooftop areas in Israel.
However, the result was imprecise because the actual factors of influence were not con-
sidered. Manual intervention methods make assumptions based on empirical utilization
factors [21,51]. Izquierdo et al. [52] estimated the available rooftop solar PV potential in
Spain by combining information on population, number of buildings and land use with
various coefficients (e.g., shading), although this method lacks generality. GIS-based meth-
ods can take more roof details into account, including 3D information from LiDAR, slope,
orientation, and building structures [53–55]. However, high-resolution remote sensing
images (e.g., GF-2, Sentinel 2, etc.) generally discard building elevation information for
reasons of economics and data volume [22]. Moreover, different local subsidy policies can
lead to various practical implementations of rooftop solar PV systems, an aspect which has
been neglected in most existing research [56]. Table 1 summarizes the different PV policies
implemented in different regions in China.

Table 1. PV subsidy policies in different regions of China.

Region Subsidy Object Subsidy

Beijing
Resident-owned industries 0.30 RMB/kWh
Parks and commercial facilities 0.30 RMB/kWh
Universities, primary schools and hospitals 0.40 RMB/kWh

Shanghai
Industries and commerce 0.25 RMB/kWh
Schools 0.55 RMB/kWh
Individuals and nursing homes 0.40 RMB/kWh

Yiwu, Zhejiang
Residents 0.20 RMB/kWh
Companies providing space 0.30 RMB/kWh
Investment companies 0.10 RMB/kWh

Suzhou, Jiangsu Parks 0.10 RMB/kWh

Finally, different PV installation features (e.g., the installation inclination, the spacing
of the arrays, etc.) directly affect the efficiency of the PV panel system. Two popular PV
panel mounting installation methods are shown in Figure 1.
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Figure 1. Different PV installation methods: (a) PV installation on terrace rooftops. It is necessary
to consider the installation inclination and the mutual shading between the PV panels. (b) the PV
installation on pitched rooftops. The PV panels are installed directly onto the pitched rooftops. Most
of the buildings in northern China have terrace rooftops, and most use a combination of arrays to
choose the best installation inclination according to the angle of solar radiation.

2.3. Rooftop Solar PV Potential Assessment

To accurately assess carbon emission reduction due to rooftop solar PVs, a popular
large-scale PV electricity generation assessment model, PVWatts, is relatively simple and
free to operate [57]. PVWatts uses data from the National Solar Radiation Database and can
estimate annual and monthly electricity generation based on location, basic parameters, etc.
Sampath [58] et al. applied this model to estimate rooftop solar PV capacity in Bangalore,
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India based on remote sensing image segmentation, which has the advantages of being
fast and low cost, but the estimation process was carried out under standard experimen-
tal conditions. Tang et al. [59] employed PVsyst software to simulate the PV electricity
generation of different solar cells in Chongqing. Wang et al. [60] considered different PV
systems and conversion efficiencies in their assessment of PV electricity generation in China.
However, most of these studies ignored the effect of weather conditions on the amount of
solar radiation, which in turn affects the volume of rooftop solar PV electricity generation.
Kais et al. [61] proposed a climate-based PV electricity generation assessment model using
global meteorological data MERRA to assess the PV potential in the Association of South-
east Asian Nations (ASEAN). The results confirm the geographical correlation between
climate and PV electricity generation. However, due to the low resolution of MERRA
data, a large amount of valid information was lost, ultimately affecting the accuracy of
the evaluation results. In addition, some studies that directly considered climate factors
used Global Climate Model (GCM) projections, which do not reliably reflect local climate
characteristics [62].

3. Methodology

Here we describe a proposed comprehensive approach that utilizes multi-source data
to perform large-scale accurate estimation of potential carbon emission reduction. First, we
applied an automatic labeling method to establish a building sample library and to improve
DeepLabv3+, in order to complete multi-scale extraction and fusion of context information
from high-resolution remote sensing images through image feature extraction and semantic
segmentation. On this basis, we employed multi-source data including POI semantic
information and meteorological data to quantify comprehensively the impact of building
rooftop types, building occupancy types, regional PV subsidy policies, and regional climate
characteristics on long-term carbon emission reduction. The general architecture is shown
in Figure 2.
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teorological data for the study area. Based on these datasets, we carried out experiments on building
roof identification, roof PV usable area estimation, and estimation of carbon emission reduction.
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3.1. Building Rooftop Recognition

Our study area was a demonstration region for PV retrofitting in Beijing, and currently
there are only a few PV installations in this area. Here we omitted the existing PV installa-
tions and identified all building rooftops from high resolution remote sensing images.

Due to the small size of building targets, an improved DeepLabv3+ network model was
designed to improve the accuracy of the semantic segmentation recognition results. As shown
in Figure 3, the DeepLabv3+ network contains an encoding–decoding architecture [63].

3.1.1. Encoder

In the encoder–decoder structure, the encoder is applied to extract the multi-scale
features from the input image. In our model, we employed ResNet-101 as the backbone
network of the encoder, which was operated by convolution and pooling layers to finally
obtain a feature map 1/16 of the original image size. With the help of ASPP, multi-scale
contextual information was extracted through the atrous convolution layer. ASPP contains
1 × 1 convolution, atrous convolution with atrous rates of 6, 12, 18, and a global average
pooling layer, which can extract multi-scale contextual information and help the whole
network to obtain more robust results. The obtained feature map was then convolved by
1 × 1 to reduce the number of channels.

3.1.2. Decoder

The decoder is responsible for recovering the spatial resolution and location infor-
mation of the image. In the decoding stage, the feature map obtained after the encoding
stage was first bilinearly upsampled by a factor of four, and connected with the feature
map obtained after 1 × 1 convolution of layer1 in the encoder network. Unlike the original
DeepLabv3+, our model adds an operation to fuse the underlying features of the backbone
network. The obtained feature map was subjected to 3 × 3 convolution, then double up-
sampled, and connected to the feature maps generated by layer0 of the backbone network
after the 1 × 1 convolution. Finally the feature map was subjected to 3 × 3 convolution
and then double upsampled, to obtain more refined recognition and segmentation results.
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3.2. Method for Estimating Usable Area of Rooftop PV

The study area was located in Daxing District, Beijing, China, which has a neat
distribution of buildings with different rooftop types (i.e., terrace rooftops, pitched rooftops)
and different occupancy categories (residential buildings, commercial buildings, public
buildings, etc.). Figure 4 shows different rooftops in the study area.
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Figure 4. Different rooftops in the study area: (a) the location of the study area in Beijing (marked
with yellow lines); the red-marked pentagram is a typical village in our field research, located in
Weishanzhuang Town, Daxing District in a surburb of Beijing. (b) an example of a terrace rooftop.
(c) an example of pitched rooftops in the study area.

3.2.1. Rooftop Type Classification

Because different rooftops are associated with specific PV installation methods, this
study distinguished rooftop types by combining the main direction of the house and the
ridgeline determined by Hough transform and Canny edge detection. Figure 5 shows the
flow chart of rooftop type classification.
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As shown in Figure 5, the image color space was transformed from RGB to HSV, and
Canny edge detection was performed on the V component of the luminance channel to
obtain the edge of the building roof. Then, the Hough transform was applied to identify
the ridge line candidates from the edge. Finally, by obtaining the minimum outer rectan
gle of the building, the main direction of the building was defined as the angle between the
longest side of the minimum outer rectangle and the x-axis, then the direction of the set of
straight lines detected by the Hough transform was judged. The ridgeline was judged by
the straight line closest to the main direction of the house; the judgment condition was:

Lilen ≥ Len ∗ 0.6 (1)

where Lilen is the length of Li in the set of straight lines {Li} detected by the Hough transform,
and Len is the length of the longest edge in the smallest outer rectangle.

If the above judging conditions were met, the ridgeline was detected and the rooftop
type was categorized.

3.2.2. Building Occupancy Classification with POIs

According to regional policies related to PV installation, buildings are treated differ-
ently based on their usage. Public and commercial buildings, such as schools, hospitals,
shopping malls, large enterprises, and parks, are required to install PV stations compulso-
rily. Individual houses can be voluntarily put forward for PV retrofitting depending on
different local subsidy policies. POI data provide a feasible means to identify real building
occupancies. Three major building occupancy categories, including public, commercial and
residential buildings [64], are listed in Table 2.

POI data was crawled from Baidu Map [65] in json format, then parsed to obtain se-
mantic information such as ID, longitude and latitude coordinates, address, name, category,
etc. Boundary coordinate information was also derived from POI data.

Building occupancy categories were identified using a simple ray method. The pixel
coordinates of the center point of the building were found by the smallest outer rectangle,
and the coordinates of the center point were obtained from the resolution and conversion
information from the remote sensing images. Based on the obtained coordinates of the
center point and the set of coordinates of the POI boundary vertices, a horizontal ray was
drawn from the center point to the right (or left), and the number of intersection points
between the ray and each side of the polygon was recorded. If the number of intersection
points was odd, the point was inside the polygon, and if even, it was outside the polygon.
If the center point was within the polygon formed by the coordinates of the vertices with
the POI boundary, the real building occupancy type was identified within the category of
POI semantic information. Figure 6 shows the flow chart.

3.2.3. Estimation of Usable Area for Rooftop Solar PV

The calculation of the usable area for rooftop solar PV was based on the building
recognition results, rooftop classification results, and building occupancy classification
results. The rooftop area attributes were calculated taking into account the resolution of the
remote sensing images and the number of recognized building pixels.

Whether the structure of the building can support the PV modules is a very important
influencing factor. In this study, according to the statistics of the Housing and Construction
Commission [66], most of the buildings in northern China are made of brick and stone-
based materials, and are strong enough to meet the conditions for PV module installation.
We simplified this influencing factor and made an assumption that all buildings in the
study area met the requirements.
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Table 2. POI categories of building occupancies.

Building categories

Public buildings

Education and
Training

Higher education institutions, secondary schools,
elementary schools, kindergartens, adult education,
parent–child education, special education schools, study
abroad agencies, research institutions, training
institutions, libraries, science and technology centers

Medical
General hospitals, specialist hospitals, clinics, pharmacies,
medical centers, sanatoriums, emergency centers, and
disease control centers

Transportation
Facilities

Airports, train stations, subway stations, coach stations,
bus stations

Government
Agencies

Central agencies, governments at all levels, administrative
units, public prosecution and law enforcement agencies,
foreign-related agencies, party groups, welfare agencies,
political education agencies

Sports and Fitness Stadiums, extreme sports venues, fitness centers

Tourist Attractions
Parks, zoos, botanical gardens, amusement parks,
museums, aquariums, seaside baths, heritage sites,
churches, scenic spots

Commercial
buildings

Food
Chinese restaurants, foreign restaurants, snack and
fast-food restaurants, cake and dessert stores, cafes,
cafeterias, bars

Hotels Star hotels, fast hotels, apartment hotels

Shopping
Shopping centers, department stores, supermarkets,
convenience stores, home building materials, home
appliances and digital, stores, bazaars

Company Enterprise Companies, campuses

Beauty Beauty, hairdressing, nail care, body care

Residential buildings Real Estate Office buildings, residential areas, dormitories,
neighborhoods, villages

Based on the classification results, this study simulated the calculation of rooftop solar
PV retrofittable areas under three different scenarios: (1) the best case: all buildings can be
retrofitted with PV; (2) the general case: all public buildings and commercial buildings such
as large shopping malls, companies, parks and 50% of individual buildings can be retrofitted
due to subsidy policies; (3) the worst case: only public buildings can be retrofitted.

Finally, this study sets the actual impact factors of the rooftop photovoltaic retrofittable
area. The retrofittable area is mainly affected by three aspects: roof occupancy, photovoltaic
panel installation, and pitched roof orientation. In reality, there are skylights or chimneys
on the rooftops, which directly limit the usable area of the roofs. According to statistics
from the Housing and Construction Commission [67], the prevalence of equipment on
building rooftops is about 30%, so this study assumed that 70% of the rooftops are suitable
for photovoltaic installation, i.e., the correction coefficient of the roof occupancy situation Bc
was set as 0.7. Considering the installation of photovoltaic panels, the correction coefficient
of photovoltaic equipment Bq was set to 0.9. Considering the influence of the direction of
the pitched roof, the correction coefficient of the roof direction Bt was 0.5.
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Therefore, the retrofittable area of terrace and pitched rooftops in the best case can be
summarized as:

Sbtu = Sbt ∗ Bc ∗ Bq (2)

Sbpu = Sbp ∗ Bc ∗ Bq ∗ Bt (3)

where Sbtu is the usable area of the best-case terrace rooftop, and Sbt is the best-case terrace
rooftop area; Sbpu is the usable area of the best-case pitched rooftop, and Sbp is the best-case
pitched rooftop area.

The retrofittable area of terrace and pitched rooftops in the general case can be sum-
marized as:

Sgtu = Sgt ∗ Bc ∗ Bq (4)

Sgpu = Sgp ∗ Bc ∗ Bq ∗ Bt (5)

where Sgtu is the usable area of the general-case terrace rooftop, and Sgt is the general-case
terrace rooftop area; Sgpu is the usable area of the general-case pitched rooftop, and Sgp is
the general-case pitched rooftop area.

The retrofittable area of terrace and pitched rooftops in the worst case can be summa-
rized as:

Swtu = Swt ∗ Bc ∗ Bq (6)

Swpu = Swp ∗ Bc ∗ Bq ∗ Bt (7)

where Swtu is the usable area of the worst-case terrace rooftop, and Swt is the worst-case
terrace rooftop area; Swpu is the usable area of the worst-case pitched rooftop, and Swp is
the worst-case pitched rooftop area.
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3.3. Long-Term Carbon Reduction Estimation with Meteorological Data

To estimate long-term carbon emission reduction in the study area, the use of GF-2
remote sensing images throughout the year would have caused serious financial and
data burdens. A more feasible way was to mine the intrinsic relationship between daily
meteorological data parameters (such as weather, season, lighting hours, etc.) and the
daily average solar radiation, to obtain a long series (annual level) of the annual average
daily solar radiation. This was the starting point for introducing meteorological data into
long-term carbon emission reduction calculations.

Based on the calculation of the usable area for rooftop solar PV described in Section 3.2.3,
above, the relationships between climate factors such as light hours, weather conditions,
seasons, and solar radiation were constructed via a MLP model. Figure 7 shows the whole
process of carbon reduction calculation.
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3.3.1. PV Installation Capacity Estimation

As shown in Figure 7, this study estimated carbon emission reductions due to PV
electricity generation according to three scenarios. To estimate the PV electricity generation
ability L of a PV system, this study considers the following influencing factors according to
field research:

L = W × H × η, H = Q/l0 (8)

where W is the PV installation capacity, H is the peak hours, η is the total efficiency of the
PV system, Q is the total annual solar radiation on the inclined surface, l0 is the solar PV
electricity generation performance constant. Here l0 was set to 1000 W/m2 according to
actual PV installation model [68].

PV installation capacity W is affected by different rooftop types, as shown in (9), where
W1 stands for the installation capacity of terrace rooftop, and W2 is the installation capacity
of pitched rooftop:

W = W1 + W2 (9)

The key to calculating PV installation capacity is to determine the number of PV
module arrays that can be installed. Considering actual installation types in the study
area, the detailed parameters of PV arrays were as follows: the photovoltaic panel size
was 1640 mm × 992 mm × 35 mm, the installation array was in 2 × 8 form, and power
generation efficiency was 240 W/m2. The installation of PV modules on terrace rooftops
requires consideration of mutual shading between PV module arrays, and the spacing
between PV module arrays needs to be calculated by combining module parameters, local
longitude and latitude, PV installation inclination, solar azimuth, solar altitude angle, etc.
Based on previous experience in Chinese provinces and cities [69], the best installation
inclination in the study area was set as ϕ = 35◦. The minimum spacing between the arrays
was calculated with the parameters for 3:00 pm on the winter solstice, and the details are
shown in Figure 8.
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The distance between the front and rear arrays can be calculated as follows:

d = L ∗ cosϕ + L ∗ sinϕ/ tan(α + h) (10)

where α is the solar azimuth angle, h is the solar altitude angle, ϕ is the optimal installation
inclination of the PV, and L is the length of the PV arrays.

So the installation capacity of terrace rooftop in different cases is
W1 = N1 ∗ 240 ∗ 2 ∗ 8

N1 =
S{b,g,w}tu

S1

S1 = d ∗ b

(11)
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where N1 is the number of PV module arrays that can be installed, S{b,g,w}tu is the usable
area of the terrace rooftop in different cases, S1 is the footprint of a PV module array, d is
the distance between the front and rear arrays, and b is the PV array width.

Pitched rooftops can be directly fitted with PV module arrays, so the installation
capacity of solar PV on pitched rooftops in different cases is

W2 = N2 ∗ 240 ∗ 2 ∗ 8

N2 =
S{b,g,w}pu

S2

S2 = l ∗ b

(12)

where N2 is the number of PV module arrays that can be installed, S{b,g,w}pu is the usable
area of the pitched rooftop in different cases, S2 is the footprint of a PV module array, l is
the PV array length, and b is the PV array width.

3.3.2. MLP Modeling for Annual Solar Radiation Inversion

Total solar radiation on the inclined plane (Q) is expressed as:

Q = Qh / cosϕ (13)

where Qh is the amount of solar radiation on the horizontal plane and ϕ is the optimal
installation tilt angle of PV.

For the calculation of Qh, as we only had access to weather data from 2019 for the
study area, this study employed MLP regression based on day-by-day weather conditions,
hours of light and the relationship between quarterly and solar radiation in the study area,
to obtain the robust solar radiation estimation for the whole year of 2021. It should be
noted that weather conditions in 2019 and 2021 were similar, according to weather bureau
statistics [70].

Figure 9 shows the topology of the MLP. The topology of MLP includes an input layer,
two hidden layers and an output layer. Input neurons in the input layer contain day-by-day
weather conditions, light hours, and quarterly data for the study area in 2019. The first
hidden layer utilizes 20 neural units, and the second holds 10 neurons. The output layer is
the day-by-day solar radiation. The training set and test set are randomly divided by the
ratio of 8:2. K-fold cross-validation is adopted with the average as the final output.
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The day-by-day values of horizontal solar radiation in 2021 were subsequently derived
from the MLP model, and then added up as Qh for the whole year 2021.

3.3.3. CO2 Emission Reduction Estimation

With the results of W in Section 3.3.1 and Q in Section 3.3.2, the installation capacity L
of PV system in Formula (8) was then obtained. Standard coal savings Qtr (in kgce) can
then be summarized as follows:

Qtr = gama ∗ L (14)

where gama is the national standard coal consumption for electricity supply according to
the National Energy Administration [71]. Here the value of gama is 305.5 g/kWh.

Finally, CO2 emission reduction from solar PV systems can be obtained as follows:

QrCO2 = Qtr ×VCO2 (15)

where VCO2 is the CO2 emission factor of standard coal with the value of 2.47 kg/kgce
according to state regulations [72].

4. Experiments
4.1. Study Area and GF-2 Images

The study area was located in Daxing District, Beijing, China, between latitude
39◦26′–39◦50′N and longitude 116◦13′–116◦43′E, as shown in Figure 10. The average
elevation of the Daxing District is 42 m, and its area is 1036.33 km2. The study area has
different rooftop types, including terrace rooftops, pitched rooftops, etc. Different building
occupancies, such as residential buildings, industrial buildings, commercial buildings,
public buildings, etc., coexist in this study area.

The study area has a warm temperate semi-humid continental monsoon climate with
four distinct seasons. The average temperature of the hottest month in summer is 25.9 ◦C,
and the maximum temperature is 40.6 ◦C; The average temperature of the coldest month in
winter is −5 ◦C, and the minimum temperature is −27.4 ◦C. The average annual sunshine
hours are 2764 h, and the annual sunshine percentage is 63%. According to the distribution
of solar energy resources in China [73], the study area belongs to the Class III area, which is
a medium-type area in terms of solar energy resources. The total amount of solar radiation
received annually per square meter area is 5016~5852 MJ. This amount of solar radiation is
sufficient to utilize for rooftop solar photovoltaic retrofits.

The GF-2 satellite, a sun-synchronous orbit satellite launched on 19 August 2014,
belongs to the national high-resolution earth observation system. The GF-2 images with a
resolution of 1 m were acquired on 1 June 2021. The original data were true-color images,
and the original images were first exported to TIF format using ArcGIS [74], which is
convenient for pre-processing work.

4.2. Building Dataset Construction

A large building dataset for building roof recognition was constructed as follows. First,
the building vector map of the study area was downloaded from QuickOSM in QGIS, and
then transformed to a raster map. Then, the spatial coordinates in the raster map were
written into GF-2 remote sensing images with ArcGIS to fulfill geographical alignment and
semantic annotation. Finally, the aligned GF-2 remote sensing images and building vector
map were cropped and manually sifted, and 822 tiles of 500 × 500 pixels were derived
without overlap.

To further increase diversity in the training dataset, a dataset of typical urban build-
ings in China [75] was also added. The final building dataset contained 6807 tiles of
500 × 500 pixels, which was convenient for the subsequent experiments. Figure 11 shows
a sample of the building dataset.
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4.3. Building Rooftop Identification with improved DeepLabv3+

Accuracy (Acc) and F1-score were selected for evaluation of building rooftop identifica-
tion. Building rooftop recognition via improved DeepLabv3+ involved the random division
of data in the building dataset into a training set and a test set, with the ratio of 8:2. Table 3
shows the results of the improved DeepLabv3+ and the traditional DeepLabv3+ model.

Table 3. Comparison of building rooftop recognition.

Acc (%) F1-Score (%)

improved DeepLabv3+ 95.56 82.55
traditional DeepLabv3+ 94.51 81.61

From Table 3, it can be seen that the accuracy of building rooftop recognition by
the improved DeepLabv3+ reached 95.56%, which was 1.05% higher than the traditional
DeepLabv3+. The F1-score reached 82.55%, which was 0.94% higher than the traditional
DeepLabv3+.

Next, all building rooftops in the study area were identified with the improved
DeepLabv3, and the results are shown in Figure 12. In total, we identified 19,749 buildings
using improved DeepLabv3+ in the study area.
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4.4. Calculation of Usable Area of Rooftop PV
4.4.1. Building Rooftop and Occupancy Classification

Due to the crowding of the buildings in the rooftop recognition images from Section 4.3,
above, it was not convenient to directly classify building rooftops and building occupancies.
The original image from Section 4.3 was divided into 5000× 5000 images, and then classified
separately with Hough transform and Canny edge detection as described in Section 3.2.1.
Finally, building occupancy categories were identified using a simple ray method with the
help of POIs. Three major categories including public buildings, commercial buildings,
and residential buildings were identified, as shown in Figure 13.
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In total, 16,794 terrace rooftops and 2955 pitched rooftops were identified in the study
area. In terms of building occupancies, 993 public buildings, 5256 commercial buildings
including shopping malls, companies and parks, and 6017 residential buildings were
extracted from the GF-2 images.

As shown in Table 4, there were 993 public buildings, including 868 terrace rooftops
and 125 pitched rooftops, 5256 commercial buildings such as shopping malls, companies
and parks that included 4735 terrace rooftops and 520 pitched rooftops, and 6017 residential
buildings including 5288 terrace rooftops and 727 pitched rooftops.

Table 4. Numbers of terrace and pitched rooftops with different building occupancies.

Rooftop Numbers Public Commercial Residential

Number of terrace rooftops 868 4735 5288

Number of pitched rooftops 125 520 727

Total 993 5256 6017

4.4.2. Calculations under Different Scenarios of Usable Area of Rooftop Solar PV

Applying the results of building rooftop and occupancy classification, the usable areas
of building rooftops in the study area were calculated under three scenarios, viz., the best,
the general and the worst, respectively. (1) the best case: all buildings can be retrofitted with
PV; (2) the general case: all public buildings and commercial buildings such as shopping
malls, companies and parks, and 50% of individual buildings can be retrofitted; (3) the
worst case: only public buildings can be retrofitted.
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Table 5 shows different results for the usable areas for rooftop solar PV in the three
scenarios. From Table 5 it is clear that apart from rooftop type, the most influential factor
for the estimation of usable areas for rooftop solar PV is the subsidy policies that determine
the willingness or otherwise of individual building owners to retrofit PV.

Table 5. The usable areas of rooftop solar PV (in km2).

Usable Area of Rooftop The Best The General The Worst

Usable area of terrace rooftop 48.67 38.19 4.02

Usable area of pitched rooftop 3.64 2.78 0.28

Total 52.31 40.97 4.30

4.5. Carbon Reduction of Rooftop Solar PV
4.5.1. Calculation Results of PV Installation Capacity

The PV installation capacity was modeled based on the usable area of rooftop solar PV,
PV modules, PV mounting arrays, and the parameters given in Section 3.3.1, above. For a
terrace rooftop, the distance d between PV mounting arrays is 3997 mm, and the footprint
S1 of one PV module array is 31.72 m2. For a pitched rooftop, the footprint S2 of one PV
module array is 26.03 m2. The number of PV module arrays that can be installed in each
of the three secnarios, and the capacity for installation of solar PV on terrace rooftops and
pitched rooftops, are shown in Table 6.

Table 6. PV installation capacity (in 104 kW).

Capacity The Best The General The Worst

Terrace rooftops 589.20 462.33 48.67

Pitched rooftops 53.79 41.01 4.13

Total 642.99 503.34 52.80

4.5.2. Solar Radiation Estimation in 2021

Solar radiation in 2021 is estimated using the MLP model according to weather condi-
tions, sunshine hours, and seasons of the study area in 2019. All the parameters of MLP
after repeated experiments are listed in Table 7.

Table 7. MLP parameter setting.

Parameter Hidden_Layer_Sizes Activation Solver Alpha

Setting (20, 10) relu lbfgs 0.0001

R2, Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) were selected
as the performance metrics for MLP regression. In addition, Support Vector Machine
(SVM) [76] and Long Short-Term Memory (LSTM) networks [77] were included for com-
parison. Tables 8 and 9 summarize the parameters in these two models.

Table 8. SVM parameter setting.

Kernel C Gama

rbf 1.0 0.5
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Table 9. LSTM parameter setting.

Hidden_Size Activation Input_Shape

50.0 relu (2, 1)

All the models were executed with 5-fold cross validation separately. The averaged
results were taken as the final outputs. Performances are summarized in Table 10.

Table 10. Performance evaluation of different models.

Models R2 RMSE MAE

MLP 0.94 0.08 0.06
SVM 0.91 0.13 0.10

LSTM 0.62 1.13 0.89

In Table 10, it can be seen that MLP generally scored higher than the other two models.
Figure 14 further illustrates the regression performance of MLP. The black curve indicates
the day-by-day solar radiation in 2019, and the green curve indicates the day-by-day solar
radiation in 2021 obtained from MLP regression.
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The final regression via MLP yielded a total horizontal solar radiation of 1627.93 kWh/m2

in 2021. According to Formula (13), where ϕ is 35◦, the total solar radiation in 2021 is
1985.28 kWh/m2.

4.5.3. Calculation of PV Electricity Generation Capacity and Carbon Emission Reduction

According to Formula (8), where l0 is 1000 W/m2, the results of electricity generation
capability of rooftop solar PV are shown in Table 11.

Table 11. Electricity generation of rooftop solar PV (in 108 kWh).

Electricity Generation The Best The General The Worst

Terrace rooftops 93.57 73.42 7.72

Pitched rooftops 8.54 6.51 0.66

Total 102.11 79.93 8.38
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According to Formulas (14) and (15), where gama is 305.5 g/kWh, and VCO2 is
2.47 kg/kgce, the results of the carbon emission reduction are shown in Table 12.

Table 12. Rooftop Solar PV Carbon Reduction (in 104 t).

Carbon Reduction The Best The General The Worst

PV Carbon Reduction 770.51 603.14 63.23

5. Discussion
5.1. The Difference between Existing Works and Our Approach

Literature describing PV potential assessment based on remote sensing images has
previously been published. Joshi et al. [78] presented a high-resolution global assessment
of rooftop solar photovoltaics potential using big data, machine learning and geospatial
analysis; Huang et al. [79] proposed a GIS-based approach for the assessment of large-scale
PV potential in China; Hou et al. [80] proposed a deep learning framework named SolarNet,
designed to perform semantic segmentation on large-scale satellite imagery data for the
development of solar farms; Plakman et al. [81] developed an object-based random forest
(RF) classification approach using public satellite images to develop large-scale solar parks.
However, all of the above studies were quantitative assessments for low-resolution and
large-scale areas, and do not reflect the actual PV carbon reduction potential of a specific
region in any detailed manner.

Therefore, in order to achieve accurate assessment of carbon emission reduction after
building rooftop PV retrofitting, this study employed high-resolution remote sensing
images (GF-2 images) and the improved DeepLabv3+ network to accurately identify
building rooftops in the study area. Unlike the studies mentioned above, this study
incorporates multiple data sources including POI data and weather conditions. This study
conducted experiments for a specific region, taking into account the effects of rooftop types,
building occupancy, PV subsidy policies, and weather conditions in the study area. The
method solved the problems described above, and the estimation is accurate and reliable.

For the government and for business, improved carbon reduction potential is more
attractive and practical, and can be applied directly to guide policy formulation, conduct
carbon trading, and assess carbon emissions.

5.2. Building Rooftop Identification

An improved DeepLabv3+ network is proposed to extract building rooftops from
GF-2 remote sensing images in the study area, which provides a basis for estimation of
carbon reduction due to building rooftop PV. The improved DeepLabv3+ network utilizes
multi-scale features and increases feature fusion, to better extract context information from
remote sensing images.

The improved DeepLabv3+ network achieved better results in building rooftop iden-
tification. The improved DeepLabv3+ network includes a fusion of shallow features and
deep abstract features in the encoder, which can make full use of the features generated by
ResNet-101 backbone network. We believe that this design can better integrate contextual
information contained in shallow and deep feature maps. Therefore, according to the re-
sults of building rooftop recognition, the improved DeepLabv3+ with the fusion of different
hierarchical scale features improved the Acc value by 1.05% compared with DeepLabv3+.
Our experiments show that using multi-scale features can improve the accuracy of building
rooftop recognition. The results show consistency with previous studies for multi-scale
feature fusion. For example, Fu et al. [82] proposed a feature fusion architecture to generate
a multi-scale feature hierarchy for arbitrary direction and multi-scale target detection from
remote sensing images, which improved the accuracy of recognition. Deng et al. [83]
designed a feature extraction procedure to increase the diversity of perceptual field sizes
and improve the accuracy of multi-scale target detection by two detection sub-networks.
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Overall, multi-scale features from high-resolution images should be paid more attention in
order to obtain promising results in building rooftop recognition.

Since there are few PV stations installed in the study area, the areas of installed PV
stations were neglected in our experiments. The identification of installed PV stations from
high-resolution images is listed as a future task, which should not be ignored in different
study areas.

5.3. Building Rooftops PV Carbon Reduction Estimation

We estimated the carbon reduction due to building rooftop PV in the study area, using
the method proposed in Sections 3.2 and 3.3, and obtained results for the best, the general
and the worst amounts of annual carbon emission reduction in the study area, which were
7,705,100 tons, 6,031,400 tons, and 632,300 tons, respectively (as described in Section 4.5).

In practice, rooftop PV carbon reduction estimation is influenced by the following
three aspects: factors affecting the rooftop area calculation, the retrofit ratio under different
subsidy policies, and the constants in solar radiation and carbon reduction.

The influencing factors in the rooftop area calculation, including the accuracy of
building rooftop classification, the availability of POI semantics, etc., determine the usable
rooftop areas for PV retrofitting. For building rooftop classification, we adopted the method
of Hough transformation and edge line segment analysis, combined with the main direction
of the building to judge the ridgeline. The reported accuracy was 85.50%, which still needs
to be refined in terms of the quality, color, and resolution of high-resolution remote sensing
images. POI data was derived from Baidu Map, and POIs from multiple sources may also
improve the identification performance.

The renovation ratios in diverse building occupancies serve as an important factor
for PV renovation scenarios according to local subsidy policies. In this study area, public
buildings, shopping malls, companies, parks and other large commercial buildings are
encouraged to adopt PV refitting. PV refitting for individual buildings is influenced by
subsidies to a great extent. Here we considered the general case to be that all public
buildings, shopping malls, companies, parks and other commercial buildings, and 50% of
residential buildings, were suitable for PV retrofitting, according to statistics from National
Energy Administration [84]. In addition, our method can serve as an evaluation tool to
identify the relationship between different subsidy policies and actual PV refitting.

Finally, the solar radiation and carbon reduction constants used in this study were
obtained from National Energy Administration, with no changes made for the local envi-
ronment. These two constants are the average values across the whole country. Further
research is required to obtain a more elaborate depiction of the study area, to further
improve the performance of our method.

6. Conclusions

This study proposes a framework to assess accurately the long-term carbon emis-
sion reductions from rooftop solar PV, via GF-2 remote sensing images, POI data, and
meteorological data. An improved DeepLabv3+ network with multi-scale features was
employed to develop rooftop recognition from high-resolution remote sensing images, and
the results show that the accuracy of the improved DeepLabv3+ is 1.05% better than the
traditional DeepLabv3+ network. A rooftop ridgeline detection algorithm for building
rooftop classification is put forward, based on Canny edge detection and Hough transform.
The occupancies of terrace rooftops and pitched rooftops were identified with the help
of POI semantic information. Different refit scenarios of PV systems were demonstrated
according to diverse subsidy policies. In order to evaluate the long-term carbon emission
reduction due to rooftop solar photovoltaic systems, annual solar radiation in 2021 was
regressed with meteorological data from 2019 via the MLP model, and the solar radiation
result was transformed under relevant provisions.

In the best case scenario, PV refitting can generate 10.21 billion kWh per year and
reduce carbon by 7,705,100 tons; in general, PV refitting can generate 7.99 billion kWh
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per year and reduce carbon by 6,031,400 tons; in the worst case, PV refitting can generate
0.84 billion kWh per year and reduce carbon by 632,300 tons. These findings provide
important references for government and for PV practitioners.

In the future, we intend to extend our methods for large-scale building rooftop
PV carbon reduction assessment with different remote sensing images collected from
different regions.
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