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Abstract: In recent years, convolutional neural network (CNN)-based algorithms have been widely
used in remote sensing image processing and show tremendous performance in a variety of applica-
tion fields. However, large amounts of data and intensive computations make the deployment of
CNN-based algorithms a challenging problem, especially for the spaceborne scenario where resources
and power consumption are limited. To tackle this problem, this paper proposes an automatic CNN
deployment solution on resource-limited field-programmable gate arrays (FPGAs) for spaceborne
remote sensing applications. Firstly, a series of hardware-oriented optimization methods are proposed
to reduce the complexity of the CNNs. Secondly, a hardware accelerator is designed. In this accelera-
tor, a reconfigurable processing engine array with efficient convolutional computation architecture
is used to accelerate CNN-based algorithms. Thirdly, to bridge the optimized CNNs and hardware
accelerator, a compilation toolchain is introduced into the deployment solution. Through the auto-
matic conversion from CNN models to hardware instructions, various networks can be deployed
on hardware in real-time. Finally, we deployed an improved VGG16 network and an improved
YOLOv2 network on Xilinx AC701 to evaluate the effectiveness of the proposed deployment solution.
The experiments show that with only 3.407 W power consumption and 94 DSP consumption, our
solution achieves 23.06 giga operations per second (GOPS) throughput in the improved VGG16 and
22.17 GOPS throughput in the improved YOLOv2. Compared to the related works, the DSP efficiency
of our solution is improved by 1.3–2.7×.

Keywords: remote sensing; convolutional neural networks (CNNs); optimization; field-programmable
gate array (FPGA); compilation toolchain

1. Introduction

Spaceborne remote sensing is a key component of remote sensing technology. Com-
pared with ground remote sensing and airborne remote sensing, spaceborne remote sensing
has the advantages of a large coverage area, a low cost per unit area of coverage, and fre-
quent coverage of areas of interest [1]. Such advantages enable spaceborne remote sensing
to obtain images with large coverage areas and high information density. Meanwhile,
benefiting from the tremendous development in deep learning and computer vision, many
convolutional neural network (CNN)-based methods have been proposed for remote sens-
ing image processing and greatly improve the efficiency of extracting useful information
from remote sensing images, thereby promoting the rapid development of scene classifi-
cation and object detection based on spaceborne remote sensing images [2–4]. Therefore,
spaceborne remote sensing is increasingly used in ship detection [5,6], cloud detection [7,8],
land-cover classification [9,10], and other applications.

Traditional spaceborne remote-sensing processing systems process images on ground
stations [11], which means the images have to be downloaded from the spacecraft. With
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the continuous growth of remote-sensing image data, such systems suffer from the low
bandwidth and high latency of space–ground transmission links [12]. However, if CNN-
based image processing is performed on the spacecraft, and only the extracted effective
information is transmitted to the ground station, the processing latency of the system
would be greatly reduced. Thus, many researchers focus on deploying the CNN-based
methods on spaceborne platforms [13,14].

To achieve great performance and accuracy, many CNN models adopt deep and wide
structures, resulting in intensive computations and great memory overheads. To address
these issues, high-performance platforms such as graphics processing units (GPUs) are
used widely in CNN training and inference [15,16]. However, the huge power consumption
of GPUs limits their application in spaceborne scenarios [17]. To find a trade-off between
power consumption and performance, many researchers conduct studies based on field-
programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs).
ASICs achieve high power efficiency and high performance due to their specific structure;
however, their high costs and long development cycles are daunting issues [18]. FPGAs are
programmable devices that allow customers to configure them by themselves. Due to their
low-level power consumption and short iteration cycles, FPGAs are often used as efficient
platforms for spaceborne CNN implementations [13,19].

With the development of aerospace technology, the payloads of satellites are pursuing
low power consumption, small mass and small size, which impose power limitations and
resources limitations on spaceborne computation devices [20]. In particular, micro-satellites
(MicroSats) [21] and nano-satellites (NanoSats) [22] are strictly constrained in terms of cost,
power, and resources due to their extremely small sizes and light weights. Arnold et al. [23]
pointed out that for a CubeSat, which is often used as a small remote sensing satellite,
its power budget is only 2 to 8 Watts, and its weight is only a few kilograms. Therefore,
MicroSats and NanoSats cannot adopt expensive, large-scale FPGAs as computation de-
vices, which means DSPs and other hardware resources are precious to them. Meanwhile,
spaceborne remote sensing platforms not only perform CNN-based image processing, but
also perform image preprocessing, such as radiation correction and image dehazing, to
improve the performance of CNN-based image processing [24]. Some FPGA-based studies
showed that image preprocessing requires a lot of hardware resources to implement [25,26].
For example, Qi et al. [25] implemented onboard image preprocessing for optical images
on FPGAs. The experimental results show that implementing the preprocessing algorithm
consumed more than 340 DSPs. Therefore, in the case that both image preprocessing
and CNN-based image processing are required, the computational resources allocated to
CNN-based image processing will be inevitably limited.

However, existing FPGA-based CNN accelerators mostly tend to increase array scale
to improve throughput performance, and few works optimize resource consumption, even
for designs oriented towards remote sensing image processing. Li et al. [27] proposed
an object detection framework on FPGAs for remote sensing images and achieved high
throughput. However, their method consumed 1152 DPSs and reached 19.52 W power
consumption. Liu et al. [28] proposed a high-performance accelerator for a deep neural
network and achieved real-time remote sensing image segmentation; 250 k LUTs and
1588 DSPs were consumed in their implementation. Therefore, it is necessary to design
resource-efficient CNN optimizations and hardware acceleration architectures for space-
borne CNN deployment.

Moreover, different spaceborne remote sensing applications use different networks to
complete intelligent image processing. If various networks can be deployed on one single
spaceborne remote sensing platform, various potential applications could be exploited for
this platform. which could significantly improve the efficiency–cost ratio of spaceborne
remote sensing missions. However, most FPGA-based CNN acceleration solutions are
specially designed for one specific model [29,30]. They have poor flexibility and cannot
process various applications. Therefore, automatic mapping schemes of CNNs on FPGA
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are significant in enhancing the flexibility of spaceborne platforms and achieving real-time
deployment of various networks.

Based on the discussion above, we propose an automatic CNN deployment solution,
including network optimization methods, a hardware accelerator architecture, and a com-
pilation toolchain capable of mapping CNN models in real-time. CNN-based spaceborne
remote sensing applications, when deployed on low-cost, power-limited, and resource-
limited MicroSats or NanoSats, can benefit from our solution. The contributions of this
paper are summarized as follows:

• We propose a set of optimization methods for CNNs. These methods include operation
unification and integration, convolution dataflow rearrangement, and dynamic slicing.
Due to these methods, the computation of the network is simplified and the resource
overhead is greatly reduced.

• A flexible hardware accelerator was designed based on the optimization methods.
An efficient convolutional computation architecture is proposed to accelerate con-
volutional operation, and a reconfigurable processing engine is proposed to process
diverse CNNs.

• A compilation toolchain was designed for real-time CNN deployment. Compilation
tools such as a functional channel, memory allocator, and instruction generator were
developed to automate the deployment process. In addition, a hardware instruction set
is proposed to implement the mapping from optimized CNN models in the proposed
hardware accelerator.

• On an Xilinx AC701 evaluation board, we deployed different networks with our
deployment solution for remote sensing applications. The experimental results show
that the proposed accelerator can achieve 23.06 giga operations per second (GOPS) and
22.17 GOPS throughput for two different networks with only 94 DSP consumption. A
comparison with the related works shows that our work has better DSP efficiency.

The rest of this paper is organized as follows: Section 2 introduces the related works,
Section 3 introduces the basic structure of CNN, the used network quantization method, an
improved VGG16 network, and an improved YOLOv2 network. In Section 4, we propose
network optimization methods and analyze their benefits for hardware deployment. The
architecture of the hardware accelerator is presented in Section 5, and the design ideas
and details of the proposed compilation toolchain are illustrated in Section 6. Section 7
presents the experimental results and performance evaluation. Finally, Section 8 concludes
this paper.

2. Related Works

Related works of CNN hardware acceleration and CNN mapping schemes are intro-
duced in this section.

2.1. Hardware Acceleration for CNNs

In recent years, with the success of CNNs, a lot of researchers have focused on how to
deploy CNNs on hardware acceleration platforms. On the one hand, CNNs are computa-
tionally intensive and have large amounts of data. How to optimize network algorithms
for hardware deployment has become a research hotspot [31–34]. Some researchers op-
timize the computational dataflow of the CNN to exploit the algorithm’s parallelism.
Bai et al. [31] optimized the convolution loop by using loop unrolling, loop tiling, and loop
interchange. However, their optimization requires a lot of on-chip memory to store partial
sums. Adiono et al. [32] used the general matrix multiplication (GEMM) principle to com-
pute the convolution process and achieved great performance. However, the generation of
a matrix requires extra resource consumption. Some researchers adopt model compression
to reduce the memory overheads and computational volumes of CNNs. Xu et al. [33]
proposed a binary quantization method to quantize CNNs and improved hardware perfor-
mance to the tera operations per second (TOPS) level, whereas the accuracy loss was more
than 3%. Wei et al. [34] proposed a neural architecture search (NAS)-based quantization
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bit-width search method, which can automatically select a bit width for each quantized
layer to strike a satisfying trade-off between accuracy and model size. However, hardware
implementation for a mixed-precision model is difficult and inefficient.

On the other hand, studies on CNN hardware acceleration architecture designs are
increasing vigorously [29,35–37]. Parallel processing engine (PE) and pipelined archi-
tecture are widely used in CNN accelerators to improve bandwidth and reduce latency.
Hareth et al. [35] proposed a 2D PE array to accelerate convolutional operations in AlexNet.
Each PE is used to process 1D convolution, and multiple PEs are aggregated to provide a
satisfying acceleration effect. However, the PE array is not fully utilized during acceleration
because of an inappropriate 12 × 14 array size. Kyriakos et al. [36] used a highly pipelined
structure in their architecture with each computation operation as a stage. This structure
reduces the access to off-chip DRAM, thereby achieving low latency and low power con-
sumption. However, additional logic and memory are needed for the implementation
of a fully connected layer. Nguyen et al. [29] implemented YOLO on Xilinx VC707. All
convolutional layers of YOLO are fully pipelined, and a throughput of 1.877 TOPS was
achieved. However, each layer of YOLO has a custom implementation on the FPGA, which
means the architecture is completely YOLO-specific and cannot accept any changes to the
network. In contrast, Pidanic et al. [37] proposed a scalable CNN accelerator, which can
process networks of different sizes. However, the proposed accelerator can only deal with
convolution, pooling, and fully connected situations, which limits the types of network it
can adapt to.

Moreover, commercial off-the-shelf (COTS) CNN hardware accelerators are also often
adopted as CNN hardware acceleration solutions due to their easy availability and high
performance. For example, the Intel Myriad 2 VPU is used on the European Space Agency’s
PhiSat-1 satellite for spaceborne remote sensing AI applications, including cloud detec-
tion [8] and volcanic eruption detection [38]. Intel Myriad X and Qualcomm Snapdragon
are used by Dunkel et al. [39] on the International Space Station to demonstrate fast and
low-power deep learning in space. However, considering the short development cycle,
customizability, and reconfiguration of FPGAs, we focus on FPGA-based CNN hardware
acceleration solutions.

2.2. Mapping Schemes of CNNs

The traditional used method of mapping CNN on FPGA-based hardware accelerator
is manual optimization and programming, which is time-consuming, laborious, and inflex-
ible. To alleviate this problem, various mapping schemes that adapt to diverse CNNs have
been proposed [40–42] in recent years. Mouselinos et al. [40] proposed a TensorFlow-to-
VHDL framework to map CNNs on FPGAs, and developed a generic HDL layer library
to model different operations at each layer. However, only on-chip memory is considered
in their framework, which means networks with large numbers of parameters cannot
be mapped. Wai et al. [41] implemented Tiny YOLOv2 on an FPGA based on OpenCL.
High-level synthesis (HLS) tools are used to transfer OpenCL code into hardware design
concepts, such as Verilog and VHDL. However, OpenCL code still needs to be written
manually. Sledevivc et al. [43] used Python script to convert a MATLAB-based CNN model
into instructions, which includes the type of operation and memory information to com-
plete the mapping of CNNs on FPGAs. However, their mapping scheme only supports
3 × 3 convolution with 1 × 1 stride. Up to now, mapping various CNN-based algorithms
to spaceborne platforms in real-time has remained a challenge.

3. Background

In this section, a basic introduction for CNNs is presented, and a hybrid network
quantization method used in our solution is illustrated. In addition, an improved VGG16
network used for classification and an improved YOLOv2 network used for detection are
also introduced.



Remote Sens. 2022, 14, 3130 5 of 30

3.1. Overview of Convolutional Neural Network

The CNN is a kind of hierarchical network model [44] whose multiple layers are
combined to form a neural network with feature-extraction functions.

The convolutional operation is the most computationally intensive operation in a
CNN [44], which is used to extract features from a given image by using a set of kernels. A
standard convolutional operation is shown in Figure 1. The NH × NW × Ni f input feature
map is convolved with a Nkh × Nkw × Ni f kernel to obtain a NH × NW output feature
map, and No f kernels could be involved to obtain No f channels output feature maps. The
equation of convolutional operation is as follows:

Ox,y =

Ni f−1

∑
ni=0

Nkh−1

∑
ky=0

Nkw−1

∑
kx=0

Ini,x+kx,y+ky × wni,kx,ky + b, (1)

where Ox,y represents the output feature map pixel at position (x, y), I represents the input
feature map pixel at position (ni, x, y), w represents the kernel weight at position (ni, kx, ky),
and b represents the channel-wise distributed bias.

Figure 1. Standard convolutional operation.

BatchNormalization (BN) is widely used in CNN models to normalize features and
improve the generalization performance of networks [45]. On the one hand, BN helps to
stabilize and speed up the training process of deep neural networks by alleviating internal
covariate shift [46]. On the other hand, BN helps to improve the accuracy of various
networks [47,48].

For hardware implementation, the forward process of BN is not complicated. The
calculation of BN is divided into two steps. The first step is to normalize input data, as
shown in Equation (2):

Ôx,y =
Ox,y − µB√

σ2
B + ε

, (2)

where Ox,y represents the pixel from the feature map; Ôx,y represents the normalized pixel;
µB and σ2

B represent the mean and variance of the feature map, respectively; and ε is a small
value added to the variance to prevent zero division. The second step is to scale and shift
the normalized pixel, as shown in Equation (3):

Yx,y = γÔx,y + β, (3)

where γ is a trainable channels-wise scale, β is a trainable channels-wise bias, and Yx,y is
the output of a BN operation.

The activation operation is used for enhancing the expressive ability of the CNN [49].
The calculation of activation is usually achieved using a nonlinear function, including
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sigmoid, tanh, ReLU, and LeakyReLU. The most commonly used activation function is
ReLU [50]. The equation of ReLU is as follows:

f (x) = max(0, x). (4)

However, the usage of ReLU comes with the problem of non-differentiability near
the zero point and the easy death of some nodes [51]. Therefore, some networks use
LeakyReLU to replace ReLU. LeakyReLU can be expressed as follows:

y =

{
x x ≥ 0

αx x < 0
. (5)

The pooling layer completes the operation of down-sampling in CNN, which can
effectively reduce the number of parameters and speed up the network computation [52].
Commonly used pooling operations include average pooling and max pooling. The equa-
tion of the max pooling operation is as follows:

Yout
x,y = max

i,j∈[0,n−1]
(Yin

x+i,y+j), (6)

where an n× n window is used to slide on the input feature map. Average pooling can be
expressed with the following equation:

Yout
x,y =

n−1
∑

i=0

n−1
∑

j=0
(Yin

x+i,y+j)

n2 . (7)

A fully connected (FC) operation is generally used in the last few layers of classification
networks, and maps the features obtained by the convolutional layers to the sample label
space [53]. For FC calculation, each node in the input layer is weighted and connected to
all nodes in the output layer. The equation is as follows:

Ono =

Ni f−1

∑
ni=0

xni × wno,ni, (8)

where Ni f is the number of input nodes, wno,ni is the weight at the (no, ni) position in the
weight matrix, and Ono is the output node at no position.

3.2. Network Quantization

For CNN deployment, network quantization allows hardware to perform compu-
tation at low bit widths. From the perspective of hardware synthesis, the usage of low
bit widths greatly reduces the number of signals in the circuit, thereby reducing the con-
sumption of logic resources and on-chip memory. Meanwhile, the usage of low bit widths
helps to reduce the switching activity [54], which correspondingly reduces the dynamic
power consumption.

In our previous work [55], a hybrid quantization method was proposed. In this method,
quantization is applied on the convolutional operation, and inverse quantization is applied
before the subsequent BN operation and activation operation to maintain their floating-
point calculations. Compared to the pure floating-point scheme, the hybrid quantization
scheme can effectively reduce the amount of parameters in a CNN. Compared to a pure
fixed-point scheme, the hybrid quantization method prevents the network from a significant
drop in accuracy. The hybrid quantization method can achieve a great trade-off between
network compression ratio and network accuracy. Therefore, this method is used in this
paper to facilitate CNN deployment.
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Considering the case of quantization in arbitrary N bits, the same quantization al-
gorithm can be used for the input feature maps and weights. The algorithm is shown in
Equation (9):

q = clamp(Int(
r
S
), (−2N−1 + 1), (2N−1 − 1)), (9)

where q represents the fixed-point matrix after quantization and r represents the floating-
point matrix before quantization. The quantization scaling factor S is used to determine the
quantization mapping relationship between the floating-point and fixed-point, which can
be calculated from the floating-point matrix with the following equation:

S =
max(|max(r)|, |min(r)|)

2N−1 − 1
. (10)

Inspired by our previous work [55], the quantization bits for weights and input feature
maps are set to eight to achieve the best trade-off between resources and accuracy. For
convolutional bias, since the multiplication and addition of fixed-point numbers increase
the bit widths, the quantization bits are set to 32.

After the convolutional operation is quantized, the inverse quantization is applied to
convert the quantized matrix back to a floating-point matrix. The floating-point matrix q′

is obtained by the following equation:

q′ = S f Sw × q, (11)

where S f represents the scaling factor of the input feature map in the previous quantized
convolutional operation. Sw represents the scaling factor of the weight in the previous
quantized convolutional operation.

3.3. Improved VGG16

VGGNet is a classic convolutional neural network architecture. It was proposed in
2014 to demonstrate that a convolutional neural network with sufficient depth can have
good performance [56]. VGG16 is a commonly used classification network, consisting
of 13 convolutional layers and three FC layers. Dropout, as a common regularization
operation, is used in VGG16 to alleviate network overfitting. However, dropout works
by dropping neurons randomly, which is hard to be implemented on hardware. In this
paper, based on the VGG16 network structure, an improved VGG16 network is designed to
solve this problem. The structure of the improved VGG16 is shown in Figure 2. A global
max pooling layer is used to replace two large-scale FC layers and the following dropout
operations. Only the last FC layer remains as the classifier. Global max pooling is easy to be
implemented on hardware and also has the function of alleviating overfitting. In addition,
the removal of large-scale FC layers helps to reduce the number of parameters. Compared
to original VGG16, the improved VGG16 is more hardware-friendly, and the parameters of
improved VGG16 are greatly reduced from 553.6 to 59.0 MB.

Figure 2. Structural overview of the improved VGG16 network.
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3.4. Improved YOLOv2

For remote-sensing object detection tasks, various algorithms, such as SSD [57], YOLO [58],
and Faster-RCNN [59], can be applied. Among them, YOLO achieves superb detection
speed while maintaining high accuracy [60]. Thus, YOLO is favored by researchers and
keeps developing. In reference [61], an improved network based on YOLOv2 was proposed
for multiclass object detection in optical remote sensing images. Compared with YOLOv2,
the improved YOLOv2 achieves better detection accuracy, and the mAP is increased by
4.7% [61]. The structure of the improved YOLOv2 is shown in Figure 3.

Figure 3. Structural overview of the improved YOLOv2 network.

The improved YOLOv2 inherits the main backbone of YOLOv2, including convolution,
LeakyReLU, max pooling, BN, and other computation layers. In addition, it also retains the
route structure of YOLOv2. The difference is that the improved YOLOv2 is modified near
the route layer by introducing dilated convolution and transposed convolution. Dilated
convolution and transpose convolution impose high requirements on the flexibility of CNN
hardware accelerator. Since the improved YOLOv2 achieves excellent performance on
remote-sensing object detection tasks, it is quite representative to use improved YOLOv2 to
evaluate our solution.

4. Hardware-Oriented Optimization

In this section, CNN optimization methods, including operation unification and
integration, convolution dataflow rearrangement and dynamic slicing are introduced. In
addition, the benefits of these proposed optimization methods are also analyzed.

4.1. Operation Unification and Integration

As mentioned in Section 2, various kinds of operations are used in CNNs. Since
the hardware resources of spaceborne platforms are limited, unifying different types of
operations is considered to save resources for CNN hardware implementations.

According to Equations (1) and (8), convolutional operations and FC operations
are both multiply–accumulate operations. Convolutional operations are the multiply–
accumulate operations of three-dimensional input feature maps and four-dimensional
weight tensors, whereas FC operations are the inner products of the input vector and weight
matrix. The dimensions of these two operations are different. Therefore, by reconstructing
low-dimensional vectors and matrixes into high-dimensional tensors, we can replace the
FC operation with a convolutional operation. Equation (8) can be rewritten as follows:

Ono =

Nnew_i f−1

∑
ni=0

Nkh−1

∑
ky=0

Nkw−1

∑
kx=0

Ini,kx,ky × wni,kx,ky, (12)
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where Nkh and Nkw are customized kernel size, Ini,kx,ky is the reconstructed input tensor,
and Wni,kx,ky is the reconstructed kernel tensor. Nnew_i f is the number of newly constructed
input channel, which can be calculated from the following equation:

Nnew_i f = ceil(Ni f /(Nkh × Nkw)), (13)

where the ceil function is used to prevent an indivisible situation. The shape of the
reconstructed tensor should be cuboid. Therefore, when Nnew_i f is not an integer value, we
round Nnew_i f up to the next integer. In this case, zero-paddings for both input tensor and
weight tensor are necessary in hardware.

The process of the unification is shown in Figure 4. The original input vector of FC
operation is reconstructed into an Nnew_i f × Nkh × Nkw tensor, and the original weight
matrix of FC is reconstructed into No f kernels. To ensure that the result of the convolutional
operation is exactly the same as the result of the original FC operation, the shapes of the
input tensor and the kernel are set to be identical. Finally, the 1× 1× No f result is obtained.
Thus, the FC operation and convolutional operation are unified.

Figure 4. The process of FC operation unification.

Except for the FC operation and convolutional operation, the LeakyReLU function
and ReLU function are also highly similar in the commonly used operations. The analysis
in Section 2 illustrated that compared to ReLU, LeakyReLU only adds a negative slope
coefficient. Thus, the implementation of LeakyReLU contains the case of ReLU. By modify-
ing α in Equation (5) to 0, the implementation of ReLU is obtained. In this paper, we use
LeakyReLU as the specific implementation of the activation operation.

After the operation unification, an ordered structure of convolution–BN–LeakyReLU
is used in a CNN. Inspired by our previous work [62], the quantization operation and
inverse quantization operation can be integrated into the ordered computational layers.
Notably, if CNN does not include BN operation, the BN operation is implemented with
γ = 1 and β = 0 in Equation (3) to achieve the convolution–BN–LeakyReLU structure.

The inverse quantization operation is integrated into BN operation. As shown in
Equation (14), the inverse quantization factors S f and Sw are integrated into the mul-
tiplication factor of BN operation, thereby reducing one floating-point multiplication
for hardware.

Yx,y =
γS f Sw√

σ2
B + ε

Ox,y + (β− γ× µB√
σ2

B + ε
). (14)

The quantization operation for convolution is integrated with LeakyReLU. As shown
in Equation (15), the quantization factor S f fetched from the latter quantized convolutional
layer is integrated into the former LeakyReLU layer.

y =

{
x/S f x ≥ 0

αx/S f x < 0
. (15)

Finally, the flow chart of the operation integration is shown in Figure 5.
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Figure 5. The flow chart of operation integration.

4.2. Parallel Convolutional Computation Dataflow

In CNN models, convolutional operation is computationally expensive. Many studies
show that during the CNN inference phase, convolutional operations always take up the
most resources most of the time [63–65]. A proper convolutional computation dataflow can
effectively reduce the resource and time overhead. Therefore, we focus on the design of
an efficient convolutional computation dataflow, which requires us to unroll and tile the
convolution loop and find a suitable optimization method.

Based on Equation (1), which presents a standard convolutional operation, an unrolled
computation loop of convolution is illustrated in Algorithm 1. Loop6, Loop5, and Loop4
are used to index the pixels of the output feature map; they do not participate in the
multiply–accumulate process. Loop3, Loop2, and Loop1 are the core calculation loops and
implement the multiply–accumulate calculation of one Ni f × Nkh × Nkw kernel.

Algorithm 1 Standard convolution loop algorithm.

1: for no = 0; no < No f ; no ++ do . Loop6
2: for y = 0; y < NH ; y ++ do . Loop5
3: for x = 0; x < NW ; x ++ do . Loop4
4: for ni = 0; ni < Ni f ; ni ++ do . Loop3
5: for ky = 0; ky < Nkh; ky ++ do . Loop2
6: for kx = 0; kx < Nkw; kx ++ do . Loop1
7: pixel(no; x, y) += pixel(ni; x + kx, y + ky) ∗ weight(no, ni; kx, ky)
8: end for
9: end for

10: end for
11: end for
12: end for
13: end for

The convolution loop shown in Algorithm 1 is intuitive. However, it repeatedly
calls the Ni f × Nkh × Nkw kernel under Loop4, which brings repeated memory access.
Furthermore, since the calculation of Loop1 to Loop3 only generates one output feature
map pixel per cycle, it is difficult to design a pipeline computation structure for Algorithm 1.
Therefore, we rearranged the convolution loop in a hardware-friendly way, as shown in
Algorithm 2.

In Algorithm 2, Loop1 and the Loop2 from Algorithm 1 are still applied. However, in
the following Loop3, we no longer traverse the input channel Ni f . Instead, the multiply–
accumulate calculation is achieved through the sliding of the Nkh × Nkw weight matrix
on the row of input feature map. Then, one row intermediate result of length NW can be
obtained. In Loop4, benefiting from the parallelism of convolutional calculation on the
output channel, No f numbers of Nkh × Nkw weight matrixes participate in the calculation
simultaneously. However, the hardware resources limit the numbers of the matrixes that
can be calculated at the same time. Thus, we divide No f matrixes into several groups. The
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number of groups is related to the parallelism of the hardware. If the number of parallel
calculation modules is n, the number of groups G is obtained by the following equation:

G = No f /n. (16)

After the calculations of Loop1 to Loop3 for n matrixes are finished, n rows of inter-
mediate results with NW length for one input channel are obtained.

Algorithm 2 Rearranged convolution loop algorithm.

1: for y = 0; y < NH ; y ++ do . Loop6
2: for ni = 0; ni < Ni f ; ni ++ do . Loop5
3: for no = 0; no < No f ; no ++ do //Parallel// . Loop4
4: for x = 0; x < NW ; x ++ do . Loop3
5: for ky = 0; ky < Nkh; ky ++ do . Loop2
6: for kx = 0; kx < Nkw; kx ++ do . Loop1
7: pixel(no; x, y) += pixel(ni; x + kx, y + ky) ∗ weight(no, ni; kx, ky)
8: end for
9: end for

10: end for
11: end for
12: end for
13: end for

The next step is to perform Loop5. The calculations of Loop1 to Loop4 are repeated for
each input channel, and the newly obtained intermediate results are added to the previous
results each time. After completing the accumulation for Ni f input channels, a n× NW
output feature block is obtained. In Loop6, we traverse the column of the input feature map,
repeat the calculations of Loop1 to Loop5 for each column, and obtain the n× NW × NH
output feature map. After calculations for G groups are finished, the No f × NW × NH
output feature map is finally obtained. The new convolutional computation dataflow
corresponding to the rearranged convolution loop is shown in Figure 6.

Figure 6. Computational dataflow of the rearranged convolution loop.

4.3. Dynamic Slicing Strategy

During CNN deployment, the hardware accelerator tends to store feature maps on
chip by using on-chip memory. The usage of on-chip memory can reduce the access to off-
chip DRAM and thus reduce system power consumption. However, the on-chip memory
is one of the most precious resources of FPGA. Its capacity is often only few Mbytes or
even hundreds of Kbytes, which limits the amount of data it can store. Unfortunately, large-
scale remote-sensing images generate large numbers of feature maps in CNNs, causing
difficulties for CNN deployment on resource-limited hardware.

One traditional method to solve this problem is slicing the input image before begin-
ning inference [66]. The scale of feature maps decreases with the slicing, and the network
can be deployed with limited memory. However, this method is inefficient because it
ignores the differences in the storage requirements of each layer. Based on the rearranged
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convolution loop we proposed, an input buffer and intermediate buffer are required to store
the input feature maps and intermediate results, respectively. The storage requirement Sin
of the input feature maps is proportional to the numbers of rows and input channels, which
can be defined by the following equation:

Sin = row× Ni f . (17)

The storage requirement Sout of the intermediate result is proportional to the number
of rows and number of output channels, which can be defined by the following equation:

Sout = row× No f . (18)

We count the Sin and Sout values of each layer of the improved YOLOv2 and the
improved VGG16, as shown in Figure 7a,b, respectively. Obviously, the distributions of Sin
and Sout among layers is fluctuant. The storage requirements of the first few layers and the
last few layers are quite different. Since the size of the on-chip buffer needs to be set based
on the maximum Sin and Sout values, the protruding maximum value causes a large part of
on-chip buffer to be in a idle state during the inference phase.

(a)

(b)
Figure 7. The statistical chart of storage requirements for each layer: (a) improved YOLOv2 network;
(b) improved VGG16 network.

This phenomenon is widespread in CNNs. With increasing depth, most networks
focus on the information between channels. The scale of the feature maps decreases as the
channels of the feature maps multiply, leading to the inconsistent storage requirements in
each layer. When ordinary image slicing is applied, although the maximum feature map
size can be reduced to the acceptable range of the on-chip memory, the size of each layer’s
feature map is reduced in equal proportion, and the problem of memory idleness is present.
With this, the performance of hardware would be dragged down.
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In order to solve the above problem, we proposed a dynamic slicing strategy in which
we use layer-dependent feature map slicing instead of simple input image slicing. Before
CNN deployment, the storage requirement of each layer is analyzed, and a threshold is set
to help determine in which layers the feature map slicing is needed, and how the slicing
should be executed. Notably, in the dynamic slicing strategy, the size of the on-chip buffer
is proportional to the threshold. Therefore, the threshold should be selected moderately to
find a balance between memory overhead and processing performance.

After the threshold is determined, the slicing of the feature map of each layer is
analyzed. The input buffer has a corresponding threshold THRin, and the intermediate
buffer has a corresponding threshold THRout. Based on these two thresholds, two slicing
reference values are calculated for the input buffer and the intermediate buffer, respectively.
Finally, the number of slicing blocks N is defined as the maximum value of the two reference
values, as shown in Equation (19):

N = max[ceil(Sin/THRin), ceil(Sout/THRout)]. (19)

We applied the dynamic slicing strategy on the improved YOLOv2. The result is
shown in Figure 8. The thresholds of the input buffer and intermediate buffer were both
set to 32,768, and the slicing block number of each layer was calculated based on the
Equation (19). It can be observed that the feature maps of most layers do not need to be
sliced; they participate in the computation with their shape intact. Only feature maps of
layer 20, 22, and 23 are sliced to accommodate the smaller buffer. After the dynamic slicing
strategy is applied, the storage requirement of the on-chip buffer drops by 67%, and the idle
state of the on-chip buffer is reduced from more than 62% to about 17%. Compared to the
traditional slicing strategy, when the proposed strategy is used, the processing efficiency of
the hardware can be greatly improved.

Figure 8. The dynamic slicing strategy for the improved YOLOv2.

In addition, we analyzed the impact of dynamic slicing on inference time. First,
traditional input image slicing is used to deploy the improved YOLOv2. Experimental
results show that compared to no-slicing deployment, the inference time of the improved
YOLOv2 is increased by 40.96%, which is hardly acceptable. However, when dynamic
slicing is used to deploy the improved YOLOv2, experimental results show that compared
to the no-slicing deployment, the inference time of the improved YOLOv2 is increased by
only 9.40%. This is because dynamic slicing minimizes the impact of slicing on inference
time by decreasing the idle state percentage of on-chip buffer. Therefore, compared to
traditional input image slicing, dynamic slicing can better reduce the impact of slicing on
inference time.
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5. Hardware Accelerator

Based on the optimization methods we proposed, an efficient hardware accelerator is
presented in this section for CNN deployment. A convolutional computation architecture
was designed to accelerate convolutional operation, and a reconfigurable processing engine
is proposed to process diverse CNNs’ flexibly.

5.1. Convolutional Computation Architecture

Based on the proposed convolutional computation dataflow, an efficient computation
architecture for convolutional operation was designed. As shown in Figure 9, the core part
of the convolutional computation architecture is several parallel convolutional computation
modules. Each module contains nine multipliers and subsequent addition trees, and one
module can perform the multiply–accumulate operation of a 3× 3 matrix in one cycle. After
obtaining one row intermediate result of NW length, the resulting data will be stored in
the intermediate buffer. In next computation cycle, the intermediate results are transferred
back to the module through the bias additional pass to complete the accumulation, thereby
obtaining the final output feature map.

Figure 9. Convolutional computation architecture.

The input feature maps of the convolutional computation modules come from the
input buffer. Considering that the buffer must provide three rows of feature map data
in parallel, we divide the buffer into three blocks. Each buffer block stores an Ni f × NW
input feature map matrix. During each computation cycle, the next Ni f × NW input feature
map matrix is written into one buffer block while the other two buffer blocks keep their
data unchanged. In this way, the input feature map data required by the convolutional
computation modules is output in sequence.

The input weights of the convolutional computation modules come from the weight
first in first out (FIFO) memory. Considering that the weights of CNN are too large to be
stored in on-chip memory, we designed a FIFO-based weight transfer scheme. A small
FIFO memory is used to buffer the incoming weights. As shown in Figure 10, weights are
linearly input to the FIFO in the dimension order of column, row, output channel, and
input channel. Once the weight data in FIFO are enough for a window sliding process,
a programmable full signal from FIFO drives the convolutional computation modules to
start the computation. In convolutional computation modules, the linear weight data are
reconstructed into 3 × 3 weight matrixes. Notably, the 3 × 3 reconstruction is actually
a serial-to-parallel conversion of weight data. The 3 × 3 weight matrixes could stay in
the convolution calculation module and be fully reused until the window sliding process
is finished. The weight transfer scheme not only achieves the reuse of weights, but also
reduces the waste of data transfer bandwidth.
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Figure 10. The processing flow of the weight transfer scheme.

A Double Data Rate Three (DDR3) off-chip memory is used to transfer the input feature
maps and weights. In order to utilize the bandwidth of DDR3 as much as possible, a time-
sharing data transfer scheme is designed. In one transfer cycle, the DDR3 first transfers
feature map data to input buffer. After the transfer of feature map data is completed,
DDR3 starts the transfer of weights. During this stage, the computation of convolution is
simultaneously performed. After one cycle of computation is finished, DDR3 can start the
transfer of new feature map data immediately. Such a tight transfer cycle ensures efficient
utilization of the DDR3 bandwidth.

5.2. Reconfigurable Processing Engine

The processing engine (PE) is responsible for processing various operations in a
CNN. Hardware acceleration modules for common operations, such as convolution, BN,
activation, and pooling, should be built in PE. In addition, the PE should process diverse
CNNs, which means a configuration system that works in PE is needed. Based on the
requirements above, we designed a reconfigurable pipelined PE, as shown in Figure 11.

The proposed PE contains five core modules, namely, convolutional, BN, LeakyReLU,
max pooling (MaxPool), and global pooling (GlobalPool) modules. The convolutional
module has been described in the previous subsection. The BN module and the LeakyReLU
module are sequentially connected after the convolutional module to process BN operation
and LeakyReLU operation in floating-point domain. The MaxPool module is built to
perform 2× 2 max pooling, while GlobalPool module is implemented to process global max
pooling and global average pooling at any size. Finally, parallel data are transferred to the
output buffer and then converted to serial stream data, which is sent to off-chip memory.

Figure 11. Reconfigurable processing engine architecture.

In order to improve the flexibility of our PE, the differences between CNNs are first
studied. The differences between diverse CNNs are reflected in two aspects: one is oper-
ation attributes and the other is the sequence of layers. Operation attributes refer to the
parameters that describe the types and the sizes of computational operations, including
dilation, kernel size, channel numbers, strides, etc. In our configuration system, the config-
uration of operation attributes is defined as fine-grained configuration. The sequence of
layers corresponds to the computation sequence of CNN. The configuration of computation
sequence schedules the acceleration modules in PE, but does not affect the computation
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details inside modules. In our configuration system, the configuration of computation
sequence is defined as the coarse-grained configuration.

As Figure 11 depicts, the configuration information of PE comes from a number of
control signals. Control signals transfer configuration information to different hardware
configuration units in the PE. The content of the control signals is derived from hardware
instructions, which will be detailed in the next section. In this section, we mainly focus on
the hardware structure of the configuration system in PE.

For the fine-grained configuration, the convolution-type configuration requires control
of the input data of the convolutional operation, and the convolution size configuration
requires the control of the number of convolution loops. For type configuration, a data
control module is designed to modify the enable signals of the input feature map data
and weight data. With the modified enable signals, the input data are reordered for the
calculation of different types of convolutions. For size configuration, a finite state machine
(FSM) is designed to monitor and control the state of the convolution loop. The behavior
of the FSM is affected by configuration signals. Thus, convolutions of different sizes can
be implemented.

For the coarse-grained configuration, several data routers are implemented between
modules. The router after the BN module is usually used in the last layer of network to
send the floating-point result to the output buffer. The router after the LeakyReLU module
is used to skip the max pooling operation and global pooling operation. The router after the
MaxPool module can send the max pooling result directly to the output buffer. Additionally,
the selection of global max pooling or global average pooling is also controlled by the
router after the MaxPool module. By enabling different routers of PE, CNNs with various
computation sequences can be implemented.

6. CNN Compilation Toolchain

In order to automatically deploy CNN-based algorithms on spaceborne platforms in
real-time, we designed a compilation toolchain based on the proposed CNN optimization
methods and the proposed hardware accelerator architecture.

As shown in Figure 12. The compilation toolchain is a C++-language-based full-stack
software, which is mainly composed of a frontend parser, a functional channel, a memory
allocator, and an instruction generator.

Figure 12. The overview of the compilation toolchain framework.



Remote Sens. 2022, 14, 3130 17 of 30

The inputs of the compilation toolchain are diverse CNN models under the Pytorch
framework. With the help of a prepared self-built operator definition set, the frontend
parser converts input models into a formatted data structure. A functional channel is
used to perform specific compilation functions: unification, fusion, quantization, and
slicing. A memory allocator is used to allocate memory space for data in the CNN. The
instruction generator achieves the mapping from compilation results to instructions. In
addition, a hardware-specific instruction set is integrated to describe the configuration and
computation flow of each layer in the CNN.

6.1. Compute Graph Representation

In order to compile CNN models in the software environment, we used a data structure
called compute graph to represent diverse networks. Compute graph is composed of
compute nodes and data tensors. The compute nodes represent different operations in
CNN and store operation attributes. Data tensors are divided into running tensors that
represent the forward dataflow during the inference phase, and para tensors that store the
static parameters of the network. The structure of CNN could be represented through the
combination of compute nodes and data tensors.

From a mathematical point of view, the compute graph is a directed acyclic graph
(DAG), where each edge has its start and end nodes. When CNN models are directly parsed,
we find that the computational layers of CNN and tensors between computational layers
fit the connection characteristics of the DAG perfectly. However, the CNN input tensor,
CNN output tensor, and para tensors lack nodes that can be connected with. Therefore, we
create virtual nodes for the CNN input tensor, CNN output tensor, and para tensors. These
nodes do not contain information, but ensure the correctness of the topological structure of
the compute graph. Figure 13 shows the compute graph of the improved VGG16.

Figure 13. The compute graph representation of the improved VGG16 model.

6.2. Functional Channel

The functional channel is a critical part of the compilation toolchain which is used
to compile the compute graph. Compilation functions for CNN are implemented in the
functional channel. The effects of all compilation functions are reflected in the compiled
compute graph.

The functional channel consists of a series of independent sub-modules, and each sub-
module implements one compilation function. Considering that the compilation toolchain
bridges the CNN models and hardware accelerator, the sub-modules in the functional chan-
nel are responsible not only for implementing the proposed CNN optimization methods,
but also for making sure the compute graph corresponds to the proposed hardware acceler-
ator architecture. As shown in Figure 14, sub-modules of unification, fusion, quantization,
and slicing are built in the functional channel.
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Figure 14. The flow chart of functional channel.

After the compute graph is constructed, the functional channel takes the compute
graph as input and processes it with all sub-modules. The unification module implements
the compilation function by building new convolution nodes to replace FC nodes and
building LeakyReLU nodes to replace Relu nodes. In addition, the operation attributes are
generated by unification module and stored in the new nodes. The fusion module is used to
fuse compute nodes. In the compute graph, the running tensor represents the access to the
off-chip memory. However, our PE continuously processes convolution, BN, LeakyReLU,
and pooling in the pipeline. Therefore, node fusion is adopted to remove redundant running
tensors and ensure that the compute graph corresponds to the hardware architecture.

The quantization module implements compilation function by processing the tensors
in the compute graph. Before the inference phase, running tensors are simply placeholders
without data. Therefore, the quantization module only modifies the data type and data
volume of running tensors. For para tensors, since the parameters of CNN are stored
within it, the quantization module quantizes the parameters according to the quantization
equation, thereby implementing the hybrid quantization method. The slicing module picks
out layers in which the feature map slicing needs to be performed based on the dynamic
slicing strategy. After the sliced layers are determined, the nodes and tensors of the sliced
layers are copied and modified based on the number of sliced blocks, and the output tensors
are concatenated to be the input of the next node.

6.3. Memory Allocator

In computer science, memory allocation is the process by which computer programs
are assigned with memory space. A classical register allocation algorithm is the linear
scan algorithm [67]. The linear scan algorithm uses live intervals to indicate the time
ranges where the variables in the program are active. By comparing the overlap of the live
intervals, the interfered variables are identified and appropriate memory space for each
variable is allocated. In our memory allocator, we apply the linear scan algorithm to the
compute graph and allocate the off-chip memory space for each tensor in CNN.

In the process of memory allocation, we traverse all tensors in the compute graph
and calculate the size of memory space required by each tensor based on the dimension
information. After that, the live interval list of compute graph is established and the
overlaps between live intervals are analyzed. Tensors that interfere with each other cannot
be allocated to the same space, and the space of non-interfered tensors can overlap to
reduce the memory overhead. Notably, considering that the accelerator often needs to
process multiple input images, parameter tensors are stored in off-chip memory fixedly
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until the deployed CNN is changed. In contrast, the spaces of the running tensors are
released immediately after the computations in which the tensors participate are finished.
Figure 15 shows the processing flow of the memory allocator. After memory allocation is
completed, each tensor is filled with the information on its allocated address and size.

Figure 15. The processing flow of the memory allocator.

6.4. Instruction Generator

The instruction generator is responsible for converting the compiled compute graph
into a parameter file and hardware instructions. Parameters are extracted from parame-
ter tensors and organized into a parameter file which can be stored in off-chip memory
directly. Hardware instructions are machine codes used to control the hardware accelerator.
To meet the control requirements of the hardware accelerator, especially the PE configu-
ration system, a hardware instruction set is designed to map the compute graph to the
hardware accelerator.

The hardware instruction set is a set of binary codes with a length of 32 bits. The first
eight bits of the 32-bit code are used as the identification header. Instructions can be divided
into three categories, namely, configuration instructions, data movement instructions, and
handshake instructions. Configuration instructions contain all information required by PE
configuration units. The configuration information is decoded by hardware and converted
into different control signals transferred to PE. The data movement instruction is responsible
for the interaction with off-chip memory, including reading data from and writing data to
the specific address. Notably, since the address and data length are often large numbers, the
data movement instructions are designed as multi-level instructions, which means several
instructions are combined to implement one function. Handshake instructions are used to
indicate the start and end of a configuration process or a calculation stage. Examples of the
three types of instructions are shown in Figure 16.

Figure 16. Instruction examples from the hardware instruction set.

With the help of the customized hardware instruction set, the instruction generator
implements the mapping from the compute graph to hardware. As shown in Figure 17, for
each type of fused compute node, a corresponding pre-written instruction block is built. An
instruction generator can traverse the compute graph and extract network information from
the compute graph. After that, the instruction generator transfers the network information
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to the pre-written instruction blocks, and use the information to assign instructions. In this
way, the conversion from the compute graph to hardware instructions is achieved. The
instruction block starts and ends with a handshake instruction. In the instruction block, the
configuration instructions are processed first, and then the data movement instructions are
executed. Configuration instructions and data movement instructions are also separated
by handshake instructions. In hardware, the configuration of the PE is completed first, and
then the calculation process of the hardware accelerator is triggered by data movement
instruction. After one cycle, the pipeline calculation of the accelerator is finished, and the
data movement instructions write the resulting data back to the off-chip memory. Multiple
instruction blocks are concatenated together to form an instruction file that can map the
compiled CNN model to hardware.

Figure 17. Diagram of the processing of mapping from compute graph to instructions.

7. Experiments and Performance Evaluation

In this section, network deployment experiments based on the proposed solution
are introduced. Details of the experiments are illustrated, results of the experiments
are demonstrated, and comparisons among different works are made to evaluate the
performance of our work.

7.1. Experimental Settings

Experimental environments and methods are introduced in this subsection.

7.1.1. Experimental Methods and Dataset

To evaluate the effectiveness of the proposed deployment solution, a scene classifica-
tion experiment based on the improved VGG16 network and an object detection experiment
based on the improved YOLOv2 network were designed.

For scene classification, the NWPU-RESISC45 dataset [68] was used for evaluation.
NWPU-RESISC45 contains 31,500 images and covers 45 scene classes with 700 images in
each class, and the size of each image is fixed to 256 × 256. In our experiment, 20% images
were used for training and 80% images were used for testing. Several sample images from
the testing set of NWPU-RESISC45 are shown in Figure 18a.
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For object detection, the large-scale DOTA-v1.0 dataset [69] was used for evaluation.
This dataset contains 15 common categories, 2806 aerial images, and 188,282 instances;
and the resolution range of images is from 800 × 800 to 6000 × 6000. The proportions
of the training set, validation set, and testing set are 1/2, 1/6, and 1/3, respectively. The
validation set is used for testing in our experiments. Notably, in the training process, all
images are cropped to 1024 × 1024 patches by the DOTA development kit. Thus, in the
testing process, all images are cropped to the same size with the stride of 512. Several
sample images from the validation set of DOTA are shown in Figure 18b.

(a)

(b)

Figure 18. (a) Sample images from NWPU-RESISC45; (b) Sample images from DOTA.

For scene classification, only one number is required to indicate the category of
each image. Therefore, the classification overall accuracy (OA) can be directly calculated
from the number of correct results n and the number of total test images N, as shown in
Equation (20):

OA =
n
N
× 100%. (20)

For object detection, the detection results involve not only the category of targets, but
also the position and size of the bounding boxes, which are more complicated to evaluate.
We use a metric called mean average precision (mAP) to evaluate the detection performance.
The mAP computes precision and recall to obtain average precision (AP) and counts the
mean AP over all categories [70]. Therefore, it can reflect the overall detection accuracy.

7.1.2. Experimental Procedure

To evaluate the performance of the hardware accelerator, the proposed accelerator was
implemented on a Xilinx AC701 evaluation board, which was equipped with an xc7a200t
FPGA chip and a 1GB DDR3 SDRAM. DDR3 was used to store the images, parameters,
and intermediate result of each layer during the inference phase. Eight parallel PEs were
implemented to obtain a trade-off between resources and performance. A MicroBlaze (MB)
soft processor core from Xilinx, San Jose, CA, USA was implemented on FPGA to control
the hardware system. The project was built with VHDL. Vivado Design Suite 2019.2 from
Xilinx, San Jose, CA, USA was used for synthesis and implementation.
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To build the deployment system, a host PC was connected to the evaluation board.
As shown in Figure 19, the host PC carried the images to be processed, the compilation
toolchain, and the CNN models. After the compilation, the toolchain generated an instruc-
tion file and a parameter file for each CNN model. These two files and the images to be
processed were transmitted to the evaluation board through 1000 M Ethernet.

A memory scheduling system was built on the evaluation board. A Memory Interface
Generator (MIG) which supported the AXI4 interface was connected to DDR3 to provide
a memory interface. An Ethernet Direct Memory Access (DMA) and PE DMA were
implemented to interact with the MIG through the AXI4 bus system. After the Ethernet port
of the evaluation board received the data the from host PC, parameters and images were
transferred to DDR3 through Ethernet DMA, and the instruction file was directly handed
to the processor core to be parsed. The processor core passed the configuration instructions
to a decoder to perform PE configuration. Then, the calculation of PEs was initiated
by handshake instructions and data movement instructions. Handshake instructions
controlled the handshake between PE DMA and PEs, and data movement instructions
implemented data transfer between DDR3 and PEs. Once the calculation of PEs was
finished, the results were transmitted back to the host PC through the Ethernet to complete
the detection or classification.

Figure 19. Experimental environment.

7.2. Experimental Result

Firstly, the resource utilization of the hardware implementation is analyzed, and the
result is shown in Table 1. We present the resource utilization of the full hardware system
and the core accelerator. The full hardware system was the full implementation on FPGA,
which not only contained the CNN accelerator but also contained the Microblaze, Ethernet
port, Ethernet DMA, and MIG.

Table 1. Resource utilization of the hardware implementation.

Resource LUT FF BRAM DSP

Available 133,800 267,600 365 740
Utilization (full system) 49,817 59,622 129 94

Utilization (full system %) 37.23 22.28 35.34 12.70
Utilization (accelerator) 29,391 38,573 106 94

Utilization (accelerator %) 21.97 14.41 29.04 12.70

As shown in Table 1, for the full system, the utilization of LUT, Flip-Flop, BRAM, and
DSP was 49,817, 59,622, 129, and 94, respectively. For the core accelerator, the utilization of
LUT, Flip-Flop, BRAM, and DSP was 29,391, 38,573, 106, and 94, respectively. Most BRAMs
are used for the construction of the input buffer and intermediate buffer. DSPs are con-
sumed by the acceleration modules in PE. The available hardware resources of xc7a200t are
strictly limited. Nonetheless, the resource utilization percent of the implemented hardware
system is below 40%. This result demonstrated that our solution has great potential to
adapt to spaceborne remote sensing platforms with extremely limited hardware resources.
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Secondly, inference time, throughput, and power consumption of the hardware accel-
erator are evaluated. For throughput, the GOPs (giga operations) were used to measure
how many operations a network had, and the GOPS (giga operations per second) was
used as the criterion of throughput. We count that improved VGG16 had 40.96 GOPs, and
improved YOLOv2 had 379.55 GOPs. For power consumption, the Xilinx power estimator
was used to obtain the on-chip power information. The result shows that under 200 M clock
frequency, the inference time for improved VGG16 was 1.78 s, and the inference time for
improved YOLOv2 was 17.12 s. Therefore, for improved VGG16 and improved YOLOv2,
the throughput of the accelerator was 23.06 or 22.17 GOPS, respectively. Relatively, the
total on-chip power of the hardware accelerator was 3.407 W, and the power consumption
of the core PEs was only 0.919 W. Therefore, the throughput per watt of the accelerator was
6.77 GOPS for improved VGG16 and and 6.51 GOPS for improved YOLOv2. Additionally,
the throughput per watt of the core PEs reached 25.09 GOPS for improved VGG16 and
24.12 GOPS for improved YOLOv2. The results show that the proposed hardware accel-
erator is suitable for spaceborne scenarios where the power consumption is limited. In
addition, the energy cost per inference of the accelerator was 6.1 for improved VGG16 and
and 58.1 J for improved YOLOv2. The energy cost per inference of the core PEs was 1.6 for
improved VGG16 and 15.7 J for improved YOLOv2.

Thirdly, we evaluate the experimental results of scene classification and object de-
tection. The improved VGG16 network was deployed with our solution successfully, the
model size was reduced from 59.0 to 14.8 MB after compilation, and the time spent on
compilation was only 0.36 s. The classification was processed on the NWPU-RESISC45
testing set, and an overall accuracy of 88.08% was obtained. Some results of classifica-
tion are shown in Figure 20a. The improved YOLOv2 network was deployed with our
solution successfully, the model size was reduced from 197.5 to 49.4 MB after compilation,
and the time spent on compilation was only 1.08 s. The detection was performed on the
DOTA validation set, and the mAP reached 67.30%. Some detection results are shown in
Figure 20b.

(a) (b)

Figure 20. (a) Samples of the results of classification; (b) samples of the results of detection.

On the one hand, the experimental results show that our solution achieves network
model compilation, and the very small compilation time consumption proves that our
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solution can perform real-time mapping of network models to hardware accelerators. On
the other hand, the experimental results show that our solution achieves high accuracy
when performing remote-sensing scene classification tasks and remote-sensing object
detection tasks.

7.3. Performance Comparison

To show the effectiveness of the proposed deployment solution, a series of comparative
experiments were conducted. Firstly, we implemented the remote-sensing scene classifica-
tion algorithm and remote-sensing object detection algorithm on central processing unit
(CPU) and graphic processing unit (GPU) platforms. The networks used by the algorithms
were exactly the same as the networks run on the proposed hardware accelerator; thus, the
performances on the CPU, GPU, and the proposed hardware accelerator can be compared.
The used CPU was Intel Xeon Gold 5120T with 128 GB DDR4 DRAM, and the used GPU
was NVIDIA Titan Xp with 12 GB GDDR5X memory. Table 2 shows the performance
comparison among the CPU, GPU, and proposed accelerator.

As shown in Table 2, the thermal design powers of the CPU and GPU are 105 and
250 W, which are 31× and 73× higher than the 3.407 W power consumption of the proposed
hardware accelerator, respectively. Obviously, our accelerator is more suitable for power-
limited spaceborne remote sensing applications. The throughputs of the CPU and GPU
were better than that of the proposed accelerator, regardless of which network was deployed.
However, the CPU was at a disadvantage when comparing power efficiency. For the
improved VGG16 network, the power efficiency of CPU was only 1.99 GOPS/W, and
the power efficiency of our accelerator was 6.77 GOPS/W. For the improved YOLOv2
network, the power efficiency of CPU was only 0.56 GOPS/W, and the power efficiency of
our accelerator was 6.51 GOPS/W. Compared to CPU, the proposed hardware accelerator
achieved about 3.4–11.6× better power efficiency. The power efficiency of GPU was greater
the power efficiency of our accelerator. However, the main frequency of the GPU was 8×
higher than the main frequency of our FPGA-based accelerator, and the power efficiency of
the GPU was only about 3× better than that of our accelerator.

Table 2. Evaluation results on the central processing unit (CPU), graphic processing unit (GPU), and
proposed accelerator.

CPU GPU FPGA

Device Intel Xeon Gold 5120T Nvidia Titan Xp Xilinx AC701
Technology (nm) 14 16 28
Frequency (MHz) 2200 1582 200

Power(w) 105 250 3.407
Network Improved VGG16 Improved YOLOv2 Improved VGG16 Improved YOLOv2 Improved VGG16 Improved YOLOv2
Accuracy

(OA|mAP) 88.13 67.50 88.13 67.50 88.08 67.30

Throughput (GOPS) 208.8 58.9 5543.4 5279.4 23.06 22.17
Power Efficiency

(GOPS/W) 1.99 0.56 22.17 21.12 6.77 (25.09) 1 6.51 (24.12) 1

1 The numbers in () represent the results of the core PEs.

Additionally, as mentioned in the previous subsection, the core PEs achieved
25.09 GOPS/W power efficiency for the improved VGG16 network and 24.12 GOPS/W
power efficiency for the improved YOLOv2 network, both of which are better than the
power efficiency of the GPU. In hardware implementation, we only implemented eight
parallel PEs for evaluation. Therefore, the power efficiency of our accelerator can be
improved by increasing the number of PEs, which is easy to implement in hardware. Fur-
thermore, we can reduce the power consumption and resource consumption by reducing
the number of PEs. Although system performance will be degraded, the accelerator can
thus adapt to the extremely resource-limited spaceborne scenario. Hardware accelerators
with dynamic adjustment characteristics can play an important role in spaceborne remote
sensing applications.
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Table 2 also shows the comparison of classification and detection accuracy between
different platforms. For scene classification tasks, the OA result obtained from our hardware
dropped by only 0.05% compared to the results from the CPU and GPU. For object detection
tasks, the mAP result obtained from our hardware dropped by only 0.2% compared to
the results from the CPU and GPU. The reason for the loss of accuracy is considered to
be the limitation in floating-point precision. When the compilation toolchain performs
quantization calculations, the number of significant figures for floating-point data is limited
to six, which results in slight errors. This accuracy loss is acceptable in practical applications.

Table 3 shows the performance comparison between the proposed deployment solu-
tion and previous works [71–76]. It should be noted that in Table 3, the resource utilization
of our full hardware system and the resource utilization of our core accelerator are both
listed. Our hardware platform AC701 is a pure FPGA platform, and the platforms in [72–76]
all adopt ZYNQ System on Chip (SoC) architecture equipped with an ARM processor.
Therefore, it is fairer to use the resource utilization of core accelerator as the reference
value of our work in performance comparison. Compared to the works in [72–76], our
hardware system spends additional resources on the parts of Microblaze softcore, Ethernet
DMA, Ethernet port, and MIG. Table 3 shows that the resource consumption of our core
accelerator is almost the least among all works, which indicates that our work has great
potential to be applied on resource-limited spaceborne platforms.

Table 3. Performance comparison of our work with previous accelerators.

[71] [72] [73] Our Work [74] [75] [76] Our Work

Platform Intel Stratix
10 GX 2800

Xilinx Zynq
xc7z045

Xilinx Zynq
xc7z045 Xilinx AC701 Xilinx

PYNQ
Xilinx

ZCU102
Xilinx Zynq

xc7z020 Xilinx AC701

Technology
(nm) 14 28 28 28 28 16 28 28

Frequency
(MHz) 300 150 100 200 100 300 150 200

Network VGG16 VGG16 VGG16 Improved
VGG16 YOLOv2 YOLOv2 YOLOv2 Improved

YOLOv2
Quantization 8/16-bit 16-bit 16-bit 8-bit 16-bit 16-bit 16-bit 8-bit

LUTs 469,000 1 182,616 – 49,817 (29,391) 3 37,230 95,136 35,948 49,817 (29,391) 3

BRAMs 1345 2 486 – 129 (106) 3 87.5 246 87.5 129 (106) 3

DSPs 8216 780 64 94 (94) 3 151 609 149 94 (94) 3

Power (W) 100 9.63 – 3.407 2.32 11.8 2.39 3.407
Throughput

(GOPS) 1604.57 137 12.5 23.06 14.10 102 26.23 22.17

Power
Efficiency

(GOPS/W)
16.05 14.2 – 6.77 6.08 8.64 10.97 6.51

DSP Efficiency
(GOPS/DSP) 0.20 0.18 0.19 0.25 0.09 0.17 0.18 0.24

1 For Intel FPGA, the logic unit refers to ALM. 2 For Intel FPGA, the size of BRAM refers to 20 kb. We converted it
into 36 kb for comparison. 3 The numbers in () represent the resources utilization of core accelerator only.

The works introduced in references [71–73] are capable of accelerating the VGG16 net-
work. Ma et al. [71] designed a hardware accelerator based on a large multiply–accumulate
array structure and proposed an RTL-level compiler to map the network. Table 3 shows
that the accelerator in [71] achieved a TOPS-level throughput. However, the cost of such ex-
cellent performance is the high consumption of hardware resources. Moreover, the power
consumption of the accelerator in [71] reached 100W, which is unacceptable in power-
limited scenarios. Guo et al. [72] proposed a CNN deployment scheme, including a model
compiler and a hardware architecture with data control flow. Their hardware achieved
good power efficiency. However, the hardware implementation in [72] consumes 780 DSPs,
which is 8.3× more than the DSP consumption of our accelerator. In a resource-limited
scenario, the architecture in [72] is difficult to implement. Chen et al. [73] proposed a CNN
accelerator based on a channel-oriented convolutional computation strategy, which enables
the accelerator to adapt to convolution kernels of different sizes. The DSP consumption
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in [73] was the smallest among all works. However, the throughput of the accelerator
in [73] is only 12.5 GOPS.

The designs in [74–76] aim to accelerate YOLOv2 networks for object detection.
Peng et al. [74] built a low-power YOLOv2 accelerator based on the PYNQ platform. The
power consumption of the accelerator in [74] is 2.32 W, which is the lowest among all works.
However, this accelerator only achieves 14.10 GOPS throughput. Zhang et al. [75] proposed
a scheme to deploy the YOLOv2 network on the ZCU102 platform. The accelerator in [75]
achieves the great throughput of 102 GOPS. However, its power consumption reaches
11.8 W, which limits its application in power-sensitive scenarios. Xiao et al. [76] successfully
deployed the YOLOv2 network on the xc7z020 FPGA through a series of optimization
methods. The resource consumption of the hardware in [76] is kept at a low level, and the
power consumption of the hardware in [76] is only 2.39 W. However, DSP consumption of
the hardware in [76] was 1.59×more than that of our hardware system.

For FPGA-based designs, the resource consumption varies in different architectures.
The outstanding throughput performance of a hardware implementation may be mainly
due to the massive usage of hardware resources. DSP is the core resource for building a
processing engine array in a CNN accelerator; the utilization of DSP greatly determines the
scale of the processing engine. Therefore, in order to compare the performances of different
architectures fairly, we used DSP efficiency as the indicator. DSP efficiency is defined as
the number of GOPS that each DSP can perform throughout the entire processing of the
hardware. The usage of DSP efficiency can exclude the effect of differences in hardware
resources usage and help to compare performances among accelerators of different scales.
As shown in Table 3, the DSP efficiency of our hardware reached 0.25 GOPS/DSP and
0.24 GOPS/DSP for the improved VGG16 network and the improved YOLOv2 network,
respectively. Both values are the highest in the comparison with previous works, which
indicates that with the same scale processing engine, our accelerator would have better
throughput performance. The comparison with previous works on various indicators
illustrated that our accelerator achieved a great trade-off between power consumption,
resource consumption, and throughput.

8. Conclusions

This paper proposed an automatic CNN deployment solution for spaceborne remote
sensing applications, including algorithm optimization methods, a hardware acceleration
architecture, and a compilation toolchain. Firstly, a series of CNN optimization methods,
including operation unification and integration, convolution dataflow rearrangement, and
dynamic slicing strategy, are used to decrease the CNN scale and simplify the CNN com-
putation. Secondly, we proposed an efficient hardware architecture for CNN acceleration.
A weight-reused convolutional computation module was illustrated, and a reconfigurable
and scalable PE array was built to process diverse CNNs. Finally, a compilation toolchain
was designed to automatically convert the CNN models into hardware instructions. Real-
time mapping from the optimized CNN algorithms to the proposed hardware accelerator
was achieved. With the proposed CNN deployment solution, the improved VGG16 and
improved YOLOv2 were successfully deployed on Xilinx AC701 with low accuracy loss.
The experimental results show that the power consumption of the proposed solution was
only 3.407 W, and the DSP resource consumption of the proposed solution was only 94.
For the classification task, the throughput of the proposed solution was 23.06 GOPS, and
the DSP efficiency of the proposed solution was 0.25 GOPS/DSP. For the detection task,
the throughput of the proposed solution was 22.17 GOPS, and the DSP efficiency of the
proposed solution was 0.24 GOPS/DSP. The results show that the proposed CNN deploy-
ment solution features low power consumption, low resources consumption, and real-time
mapping of various networks. With these features, our solution has great potential for
CNN-based spaceborne remote sensing image processing.

In future, we plan to optimize the pipeline stages of the accelerator and implement
the optimized accelerator on radiation-hardened FPGA to evaluate the robustness and
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effectiveness of the proposed solution. Furthermore, we plan to build an ASIC-based
solution to explore extreme resource efficiency for spaceborne remote sensing applications.
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