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Abstract: Accurate and reliable land cover information is vital for ecosystem management and
regional sustainable development, especially for ecologically vulnerable areas. The South China
Karst, one of the largest and most concentrated karst distribution areas globally, has been undergoing
large-scale afforestation projects to combat accelerating land degradation since the turn of the new
millennium. Here, we assess five recent and widely used global land cover datasets (i.e., CCI-LC,
MCD12Q1, GlobeLand30, GlobCover, and CGLS-LC) for their comparative performances in land
dynamics monitoring in the South China Karst during 2000–2020 based on the reference China
Land Use/Cover Database. The assessment proceeded from three aspects: areal comparison, spatial
agreement, and accuracy metrics. Moreover, divergent responses of overall accuracy with regard
to varying terrain and geomorphic conditions have also been quantified. The results reveal that
obvious discrepancies exist amongst land cover maps in both area and spatial patterns. The spatial
agreement remains low in the Yunnan–Guizhou Plateau and heterogeneous mountainous karst areas.
Furthermore, the overall accuracy of the five datasets ranges from 40.3% to 52.0%. The CGLS-LC
dataset, with the highest accuracy, is the most accurate dataset for mountainous southern China,
followed by GlobeLand30 (51.4%), CCI-LC (50.0%), MCD12Q1 (41.4%), and GlobCover (40.3%).
Despite the low overall accuracy, MCD12Q1 has the best accuracy in areas with an elevation above
1200 m or a slope greater than 25◦. With regard to geomorphic types, accuracy in non-karst areas is
evidently higher than in karst areas. Additionally, dataset accuracy declines significantly (p < 0.05)
with an increase in landscape heterogeneity in the region. These findings provide useful guidelines
for future land cover mapping and dataset fusion.

Keywords: karst; land cover; spatial agreement; accuracy assessment

1. Introduction

The information on global land cover (LC) change is an important proxy for under-
standing the complex interaction between human activities and global change [1]. It is
also the basic input parameter for land surface simulations, atmosphere coupling models,
and ecosystem models [2,3]. Global land cover is of great significance for the study of the
ecological environment, climate change, and sustainable development [4–6]. Therefore, an
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accurate LC dataset is an important basis for scientific research in the fields of ecological
environment monitoring and sustainable development.

Over the past few decades, much effort has been dedicated to developing global LC
maps at various temporal and spatial resolutions. Currently, relatively new and widely used
global land cover datasets include (1) the Moderate Resolution Imaging Spectroradiometer
(MODIS) LC dataset (MCD12Q1 and MOD12Q1) at 500/1000 m resolution, updated yearly
since 2001 [7,8]; (2) the Climate Change Initiative LC dataset (CCI-LC) from the European
Space Agency (ESA) at 300 m resolution, also annually updated but from 1992 [9]; (3) the
Global Land Cover Map (GlobCover) from the ESA at 300 m resolution for 2005 and
2009 [10]; (4) GlobeLand30 from the National Geomatics Center of China at 30 m resolution
for 2000, 2010, and 2020 [11]; and (5) Copernicus Global Land Service land cover maps
(CGLS-LC) at 100m resolution, covering 2015–2019 [12].

Because these datasets are produced by different countries and organizations, they
exist as independent datasets and cannot be directly compared because of different classifi-
cation schemes and methods used. Moreover, the different datasets have varying degrees
of uncertainty, which may not be fully applicable to all types of research. Users do not
know which land cover dataset (including accuracy and thematic content) is the optimal
choice before applying the dataset [13–16]. Therefore, it is particularly important to assess
the accuracy and regional applicability of different global LC datasets.

The South China Karst is one of the largest contiguous exposed carbonate rock areas
globally, which covers eight provinces of China, with a total area of 1.93 million km2

and carbonate rocks area of 540,000 km2 [17]. The population density is 207 people/km2,
which is 1.5 times the national average population density in China and more than twice
the theoretical maximum population density in the karst region (100 people/km2) [18].
Intense pressure from human activity (such as deforestation and reclamation, steeply sloped
cultivation, commercial logging, overgrazing, firewood harvesting, etc.) has resulted in
serious vegetation loss and soil erosion, leading to severe rocky desertification [19,20].
Rocky desertification refers to the process of land degradation in karst areas originally
covered with vegetation and soil transformed into desert-like landscapes with large areas
of exposed rock [21]. According to the latest monitoring results of China’s Third National
Bulletin on Rocky Desertification, the area of rocky desertification took up to 100,700 km2,
or 22.3%, of the karst area in southern China as of 2016 [18]. Meanwhile, since 2000, to curb
the further degradation of rocky desertification land in karst areas and to promote regional
ecological restoration, the Chinese government has invested up to 19 billion US dollars and
successively set up a series of ecological engineering projects in karst areas. These projects
include the National Natural Forest Protection Program, the Grain for Green Project, and
the Rocky Desertification Comprehensive Treatment, aimed at transforming steeply sloped
croplands and rocky desertification areas into forests and grasslands [22]. Official statistics
show that from 2002 to 2015, an average of 19,183 km2 of trees were planted in southern
China every year (which also includes replanting on harvested plantations), especially on
sloped croplands with topographic slopes of more than 25◦ [23]. During the implementation
of the second largest program, namely the Rocky Desertification Comprehensive Treatment,
the artificial afforestation area reached 5300 km2, and 15,700 km2 were naturally restored
by the mountain closure for reforestation between 2008 and 2015 [24].

In the context of large-scale ecological restoration and afforestation projects, the karst
rocky desertification area in southern China shows a declining trend, and the region is
faced with the transformation from traditional, high-intensity human disturbances to large-
scale natural restoration and artificial afforestation [25]. As a consequence, complex land
cover changes with different change directions have taken place in the region over the
last 20 years. Nevertheless, the spatial extent of these anthropogenic land cover changes
remains largely unclear. Despite the fact that an increasing number of global LC products
have emerged over the past few decades, these global datasets may, however, disagree on
local and regional scales. Their accuracy and applicability in quantifying regional land
cover dynamics need further assessment since the methods and algorithms for generating
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these products vary [8,11,26–28]. Considering the characteristics of large topographic re-
lief, complex geomorphological types, and the high degree of landscape heterogeneity in
the karst area of southern China, the demand for accurate land cover data in this area is
increasingly urgent. Therefore, it is necessary to systematically assess the accuracy and
applicability of global land cover products in this region in order to support regional scien-
tific research, such as land degradation, ecosystem services assessment, biodiversity, and
conservation and climate modeling. In addition, this would empower researchers to select
more targeted and appropriate LC data products according to their specific application
needs, such as biodiversity research for a specific elevational gradient, if they were well
informed of the characteristics of each LC dataset.

However, at present, accuracy assessments of land cover datasets are primarily con-
ducted at the global, continental, or national level [29–32], or targeted for a specific land
cover type [33–35]. There are few reports of comprehensive and detailed fine-scale accu-
racy assessments for different land types, especially in the karst area, which greatly limits
scientific research with land cover utilized as an important input parameter in this region.
Additionally, most studies only focus on land cover products in a given year. Considering
the dynamic update of the datasets, an accuracy assessment based on a single year is not
comprehensive enough, and it is thus difficult to meet the needs of practical application.

The purpose of this paper is to assess the accuracy of the existing common global
LC datasets in the karst areas of southern China, including the Climate Change Initiative
LC dataset (CCI-LC), the MODIS LC dataset (MCD12Q1), GlobeLand30, the Global Land
Cover Map (GlobCover), and Copernicus Global Land Service land cover maps (CGLS-LC).
The specific research objectives include three aspects: (1) investigating the differences
in the area and spatial patterns of each land type for the five global LC datasets during
the period of 2000–2020; (2) elucidating the spatial agreement among the different LC
maps and its changes over time; and (3) evaluating the accuracy of the LC datasets from
different dimensions, such as landform type, elevation, and slope, and quantitatively assess
the impact of spatial heterogeneity on the accuracy. Through these three aspects, the
applicability of these datasets in karst areas is comprehensively assessed, and suitable
datasets are recommended for different application scenarios.

2. Materials and Methods
2.1. Study Area

The South China Karst is one of the largest contiguous areas of exposed carbon-
ate rocks in the world, including the eight provinces of Guangxi, Guangdong, Sichuan,
Chongqing, Yunnan, Hunan, Hubei, and Guizhou, with a total area of 1.93 million km2, of
which the karst area is about 540,000 km2 (Figure 1). The region traverses the three-tiered
scale of Chinese relief, with high terrain in the west and low in the east. This region
includes many first-class geomorphological units, such as the western Sichuan Plateau,
the Yunnan–Guizhou Plateau, the Hengduan Mountains, the Sichuan Basin, the Dongting
Lake Plain, the Liangguang Hills, etc. The types of karst landforms are diverse; the terrain
is rugged and has a high degree of landscape heterogeneity. Furthermore, the types of
ecosystems are diverse, mainly comprising mixed coniferous and deciduous forests, ever-
green deciduous forests, shrubs, grasslands, agricultural lands, and alpine meadows. Most
of the regions have a subtropical monsoon climate, with an average annual temperature of
over 15 ◦C and average annual precipitation of over 1100 mm. Restrained by the special
geological environment of the karst, the ecosystem in the South China Karst is very fragile.
Under the interference of unreasonable human activities for decades, the serious problems
of rocky desertification and land degradation in the region have emerged.
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Figure 1. The location of the study area in China. (a) Provincial boundaries and Google Earth image
of the study area; (b) distribution map of karst and non-karst areas; (c) elevation; (d) terrain slope
distribution within the study area.

2.2. Datasets
2.2.1. Global Land Cover Datasets

This study focuses on evaluating five recent global land cover datasets regarding their
performances in the South China Karst, with information in the datasets explained in detail
below and summarized in Table 1.

Table 1. Summary of the five global land cover datasets assessed in this study.

CCI-LC CCI LC 2020 MCD12Q1 GlobeLand30 GlobCover CGLS-LC

Organization ESA ESA NASA NGCC ESA VITO

Spatial Range Global Global Global Global Global Global

Sensors MERIS FR/SPOT
VGT

PROBA-V
S3-OLCI MODIS

Landsat
TM/ETM+/OLI,

HJ-1/GF-1
MERIS FR PROBA-V

Period of Data
Acquisition 2000, 2010, 2015 2020 2001, 2010, 2015 2000, 2010, 2020 2009 2015, 2019

Spatial Resolution 300 m 300 m 500 m 30 m 300 m 100 m

Classification
Method

Supervised and
Unsupervised

Change Detection

Supervised and
Unsupervised

Change Detection

Supervised
Classification POK-Based

Supervised and
Unsupervised
Classification

Supervised
Classification

Classification
Scheme

LCCS
22 classes

LCCS
22 classes

IGBP
17 classes 10 classes LCCS

22 classes
LCCS

22 classes

Overall Accuracy 70–75% 70.5% 70–80% 80–85% 60–70% 80–85%
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The MODIS Collection 6 land cover type product (MCD12Q1) is produced by NASA
and obtained by supervised classification of MODIS Terra and Aqua reflectance data. Based
on the International Geosphere Biosphere Program (IGBP) classification system, MCD12Q1
has a resolution of 500 m, and its overall accuracy is 70–80% on a global scale [36]. The
dataset covers the period from 2001 to 2018.

GlobeLand30 is the product developed based on the pixel–object–knowledge (POK)-
based classification approach using a classification scheme consisting of 10 first-level
classes led by the National Geomatics Centre of China (NGCC). The dataset has a spatial
resolution of 30 m and global coverage for 2000, 2010, and 2020, with an overall accuracy of
80–85% [11,37].

GlobCover is generated by the ESA and adopts a hierarchical legend based on the
Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification
System (UN FAO LCCS). The spatial resolution is 300 m, and the overall accuracy is 60% to
70% [10,38]. The dataset is produced for epochs 2005 and 2009. In this study, we only used
the 2009 LC map for assessment.

CCI-LC is also produced by the ESA. The classification combines the supervised and
unsupervised classification of images from the Medium Resolution Imaging Spectrometer
(MERIS). It was built based on the experiences of the GlobCover project. Different from
the GlobCover dataset, CCI-LC spans from 1992 to 2020 at an annual scale. The UN-LCCS
classification system is used, with a spatial resolution of 300 m and an overall accuracy of
70–75% [9].

CGLS-LC is produced using the supervised classification method based on the UN LCCS
classification system. CGLS LC maps are provided for the period 2015–2019 over the entire
globe. The spatial resolution is 100 m and the overall accuracy is 80% to 85% [12,39,40].

Taking into account the proximity of dataset phases, the LC maps assessed in this
study can be divided into four epochs: 2000 (CCI-LC 2000, MCD12Q1 2001, GlobeLand30
2000), 2010 (CCI-LC 2010, GlobCover 2009, MCD12Q1 2010, GlobeLand30 2010), 2015
(CCI-LC 2015, MCD12Q1 2015, CGLS-LC 2015), and 2020 (CGLS-LC 2019, CCI-LC 2020,
GlobeLand30 2020).

2.2.2. Reference Land Cover Datasets

This study used the China Land Use/Cover Database (CLUD) as a reference to validate
the five global land cover datasets over the South China Karst. The first version of the
CLUD dataset for 1995 was established by the Chinese Academy of Sciences (CAS) in
1998, which pooled the decadal efforts of eight research institutes of the CAS and about
100 scientists [41]. Since then, this dataset has been continuously updated at an interval of
five years, including 2000, 2005, 2010, 2015, 2020, and was also expanded backward to the
late 1970s and 1980s, making it the longest timeseries dataset available for land use and land
cover changes at the national scale over China [42]. This dataset utilized Landsat MSS, TM,
ETM+, and OLI imagery as the main data sources, and the China Brazil Earth Resources
Satellite (CBERS) and Environment Satellite 1 (HJ-1) as alternatives to fill gaps where
Landsat data were unavailable or of poor quality. The visual interpretation was applied
to satellite images to derive the 1:100,000-scale high-resolution national land use/cover
database (i.e., CLUD) based on professional knowledge and established interpretation
symbols. Specifically, technically supported by geographical information system (GIS)
software, remote sensing experts manually interpreted the LC types based on the texture,
structure, color, and spectral reflectance, combined with auxiliary information such as
terrain, soil types, and climate. A hierarchical classification system was adopted during the
interpretation process, which contains six first-level classes (cropland; woodland; grassland;
waterbodies; build-up land; unused land) and 25 subclasses. Repeated interpretation
by different professionals and intensive field verification were conducted to ensure the
interpretation quality. The accuracy of the six first-level classes of land cover for CLUD
exceeds 94.3%, and the overall accuracy of the 25 subclasses is above 91.2% [41,43,44],
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which is the highest accuracy among the national-scale LC data products over China. It has
been the main authoritative data source for land cover change studies in China [5,45].

2.2.3. Auxiliary Data

To quantify differences in the performances of various global LC datasets in relation
to terrain and landforms, this study also used the digital elevation model (DEM), topo-
graphic slope, and geomorphological data to aid in the accuracy analysis in dimensions
of elevation, slope gradients, and landform types. Specifically, DEM data were derived
from Shuttle Radar Topography Mission (SRTM) DEM with a spatial resolution of 90 m,
freely downloaded from the Geospatial Data Cloud (https://www.gscloud.cn/ (accessed
on 16 January 2021)). The topographic slope was calculated based on the DEM using
ArcGIS 10.2 software. A vector-based map of karst and non-karst landform distribution
areas, produced through the integrated use of geological maps, intensive field surveys,
and high-resolution satellite images, was obtained from the Institute of Karst Geology,
Chinese Academy of Geological Sciences (http://www.karst.cgs.gov.cn/ (accessed on
18 January 2021)). Moreover, vector data on city and provincial boundaries in South China
were derived from the National Geomatics Centre of China (http://www.ngcc.cn/ngcc/
(accessed on 19 January 2021)).

2.3. Methods

In this study, the assessment proceeded from three aspects: areal comparison, spatial
agreement, and accuracy. In addition to the overall accuracy evaluation for the entire South
China Karst region and individual provinces, the accuracy assessment was also carried out
in three other aspects: elevation gradients-based, topographic slope gradients-based, and
geomorphic type-based.

2.3.1. Legend Harmonization

A unified LC classification scheme is the basis for assessing the accuracy of different
datasets. Given that the classification systems of each LC dataset vary, it is impossible
to compare them directly. Hence, this study referred to the classification scheme of the
referenced CLUD dataset and aggregated all classification systems into nine LC types,
namely, woodland, shrubland, grassland, cropland, wetlands, urban, permanent snow and
ice, bare areas, and waterbodies. The new classification scheme minimized the impact of
classification details and differences in land cover types as much as possible to better assess
LC datasets. The specific classification scheme is shown in Table 2.

2.3.2. Areal Comparison

The first step of our dataset comparison was to compare the global LC datasets with
each other in terms of the area discrepancy of different land types. To accurately calculate
the area, all LC datasets were reprojected on the Asia North Albers Equivalent Conical
Projection with the first standard parallel, 25◦N, the second standard parallel, 47◦N, and
the central meridian, 105◦E [46]. The datasets were sliced from the boundary data of eight
provinces in southern China (Chongqing, Guangdong, Guangxi, Guizhou, Hubei, Hunan,
Sichuan, and Yunnan). Area statistics for the nine cover types of all six LC datasets were
conducted in the Esri ArcGIS 10.2 software (Redlands, CA, USA) environment.

https://www.gscloud.cn/
http://www.karst.cgs.gov.cn/
http://www.ngcc.cn/ngcc/
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Table 2. Reclassification schemes employed in the six LC datasets.

CLUD CCI-LC MCD12Q1 GlobeLand30 GlobCover CGLS-LC

Woodland Woodland, sparse
woodland, other woodland

Tree or shrub cover, tree
cover, broadleaved,

evergreen, deciduous,
flooded, mixed leaf type,

mosaic tree, shrub

Evergreen needleleaf forests,
evergreen broadleaf forests,

deciduous needleleaf
forests, deciduous broadleaf

forests, mixed forests,
woody savannas

Forest

Broadleaved evergreen and/or
semideciduous forest, broadleaved

deciduous forest, needle leaved
deciduous or evergreen forest,
mixed broadleaved and needle

leaved forest, broadleaved forest
regularly flooded

Closed forest, evergreen needle
leaf/broad leaf, deciduous

needle leaf/broad leaf, mixed,
open forest, evergreen needle

leaf/broad leaf, deciduous
needle leaf/broad leaf, mixed

Shrubland Shrubland

Shrubland, evergreen
shrubland, deciduous

shrubland, sparse
vegetation, sparse shrub,
mosaic herbaceous cover,
mosaic natural vegetation

Closed shrublands,
open shrublands Shrubland

Mosaic vegetation, mosaic
forest–shrubland, closed to open

(>15%) shrubland, sparse
(>15%) vegetation

Shrubs

Grassland

High-coverage grassland,
medium-coverage

grassland, low-coverage
grassland

Herbaceous cover,
grassland, sparse
herbaceous cover

Savannas, grasslands Grassland Mosaic grassland, closed to open
(>15%) grassland Herbaceous vegetation

Cropland Paddy, dryland
Rainfed croplands, irrigated

or post-flooding,
mosaic cropland

Croplands Cropland Post-flooding or irrigated croplands,
rainfed croplands, mosaic cropland

Cultivated and managed
vegetation/agriculture

Wetlands Tidal flats, beaches, marshes fresh/saline/brackish water Permanent wetlands Wetlands
Closed to open (>15%) vegetation

on regularly flooded or waterlogged
soil—fresh, brackish, or saline water

Herbaceous wetland

Urban Urban land, other
construction land Urban areas Urban and built-up lands Artificial surface Artificial surfaces and

associated areas Urban/built-up

Permanent
snow and ice Permanent snow and ice Permanent snow and ice Permanent snow and ice Glaciers and

permanent snow Permanent snow and ice Snow and ice

Bare areas
Sandy land, Gobi, saline
land, bare land, bare rock
land, other unused land

Bare areas, unconsolidated
bare areas, lichens

and mosses
Barren Tundra, bare areas Bare areas Bare/sparse vegetation

Waterbodies Canals, lakes, reservoirs,
ponds, oceans Waterbodies Waterbodies Waterbodies Waterbodies Permanent waterbodies
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2.3.3. Spatial Agreement Analysis

Owing to the inconsistent spatial resolution of different global LC datasets, it was
necessary to resample the datasets to the same spatial unit. Considering that spatial
resolution difference among LC datasets is large (ranging from 30 m to 500 m), the nearest
neighbor resampling method may lead to errors. Some studies have shown that the
maximum area resampling method is more applicable to discrete LC data [30,47]. Therefore,
this study resampled five global LC datasets to 1 km resolution under the majority rule.

Spatial agreement analysis aims to reveal spatial discrepancies and similarities among
different datasets, which was performed by generating an agreement map using all LC
datasets [13]. This can help to illuminate areas of uncertainty in global LC maps and
elucidate patterns of spatial correspondence [48]. Specifically, agreement maps were
produced with Boolean comparison using spatial overlay analysis on a pixel-by-pixel basis
for the periods of 2000, 2010, 2015, and 2020. Pixels with the same land cover type were
labeled as agreement, and pixels with different types were labeled as disagreement. In this
way, the number of different datasets matching land cover types was determined at the
pixel scale.

In addition, with regard to the division of degree of consistency, there were four lev-
els in the 2000, 2015, and 2020 epochs, since only three global LC datasets and a ref-
erence CLUD dataset were assessed during these periods, which included full agree-
ment (four datasets were consistent), high agreement (three datasets were consistent),
low agreement (two datasets were consistent) and no agreement (no datasets were consis-
tent). Contrastingly, there were five datasets in epoch 2010, and consistency was divided
into five levels, including full agreement (five datasets were consistent), high agreement
(four datasets were consistent), medium agreement (three datasets were consistent), low
agreement (two datasets were consistent), and no agreement (no datasets were consistent).

2.3.4. Accuracy Evaluation

To comprehensively analyze the temporal and spatial distribution and accuracy change
characteristics of global LC datasets in southern China, this study assessed the accuracy
of datasets in four epochs from the following dimensions, that is, regional and provincial-
scale accuracy assessment, accuracy assessment with rising elevational gradients and
topographic slope gradients, and accuracy variations between different geomorphological
types (karst and non-karst areas). In detail, the elevation was stratified into five levels,
including less than 250 m, 250–500 m, 500–800 m, 800–1200 m, and higher than 1200 m.
Meanwhile, the topographic slope was stratified into flat (<6◦), gently sloping (6–15◦),
sloping (15–25◦), and steeply sloping (>25◦). As described above, all LC datasets were
resampled to 1 km resolution and accuracy was assessed based on the confusion matrix.
The confusion matrix is a commonly used accuracy assessment method to validate the
accuracy of LC data [49–51]. The confusion matrix can calculate the overall accuracy, user’s
accuracy, and producer’s accuracy. The calculation formulas are as follows:

Overall accuracy =
∑9

i=1 Kii

S
× 100% (1)

Producer accuracy =
Kii
K+i

× 100% (2)

User accuracy =
Kii
Ki+

× 100% (3)

where S is the total number of pixels, Kii represents the number of class i pixels correctly
classified, K+i is the sum of class i pixels in the reference data, and Ki+ is the sum of
class i pixels in the data to be verified.
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2.3.5. Weighted Complexity of Land Cover

In this study, we used the indicator of weighted complexity of land cover to quantify
the impacts of landscape heterogeneity on the accuracy of global land cover datasets [31].
The number of different LC types in the 10 × 10-pixel window around each pixel is defined
as the LC type complexity of the central pixel. The complexity of land cover types in
a region is termed weighted LC complexity. Nine land cover types were obtained by
reclassification in this study, so the complexity range of LC types spans from one to nine.
The formula for calculating the weighted complexity of LC in a specific region is as follows:

X =
∑9

c c × Sc

∑9
c Sc

(4)

where X is the weighted LC complexity, c is the LC type complexity, and Sc is the area with
the complexity of land cover type, c.

3. Results
3.1. Areal Comparison

Figure 2 shows the spatial patterns of land cover classes among the six land cover
maps during the four periods. Overall, the general spatial patterns for each class show
both similarities and discrepancies among different datasets based on visual compari-
son. Figure 3 illustrates the area ratios for each land cover type for different global land
cover datasets at the original spatial resolution in different years. The specific results are
depicted below.

Figure 2. Spatial patterns of the five global LC products and the CLUD dataset in a unified, nine-class
scheme in southern China over 2000–2020.
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Figure 3. Area ratio of each class type in the six land cover products for epochs (a) 2000, (b) 2010,
(c) 2015, and (d) 2020.

Woodland: In the South China Karst, the woodland cover type is widely distributed.
The woodland area of the CCI-LC and MCD12Q1 datasets is similar but higher than the
CLUD and GlobCover datasets, and it is lower than that of GlobeLand30 and CGLS-LC
datasets. According to the analysis of Table A1, the area of woodland counted by the
reference CLUD dataset is lower than that of other datasets except GlobCover, which is
possibly attributable to the inconsistent classification schemes. The CGLS-LC dataset has
the largest area of woodland (1,269,967 km2 in 2015 and 1,241,843 km2 in 2019). Due to
the comprehensive and detailed classification of woodland in its classification system,
12 subclasses are related to woodland. Compared to other datasets, the area of woodland
may be overestimated in the CGLS-LC dataset. According to the trend of woodland area
from 2000 to 2020, the woodland area in most datasets continues to grow and reaches the
maximum in 2020, which is likely related to the national afforestation projects starting in
2000 in China.

Shrubland: According to the statistical results of the dataset (Table A1), the area of
shrubland in the karst of southern China is stable and shows a general downward trend
from 2000 to 2020. The area of shrubland in the CLUD dataset is similar to the CCI-LC
dataset, higher than the MCD12Q1 dataset, and far larger than the GlobeLand30 and
CGLS-LC datasets. Although the classification scheme of the GlobCover dataset is similar
to that of the CCI-LC dataset, the area of shrubland is more than twice the amount of the
CCI-LC dataset.

Grassland: The northwest plateau area of southern China is the main distribution area
of grassland. The change in grassland area is small from 2000 to 2020. However, the area of
grassland varies considerably among different datasets. For instance, the area of grassland
in the MCD12Q1 LC dataset is two to twelve times the amount of the counterpart in other
datasets in the same epoch. Due to differences in classification schemes or the influence of
mosaic pixels, some sparse woodland or cropland may be mixed with grassland types.

Cropland: In the spatial domain, cropland is mainly distributed in the Sichuan Basin
and the Plain of Hubei and Hunan. Generally speaking, the area of cropland remains
relatively stable except for MCD12Q1 and CGLS-LC datasets. The area of cropland counted
in the MCD12Q1 dataset is much lower than other datasets, which seriously underestimates



Remote Sens. 2022, 14, 3090 11 of 24

the area of cropland. It is demonstrated in Figure 3 that the proportion of cropland in the
four datasets in epoch 2020 is close, and the cropland area of CCI-LC is slightly higher.

Urban: From 2000 to 2020, due to rapid urban development, urban area continued
to increase in all LC datasets except CGLS-LC. The urban area in the CLUD, MCD12Q1,
and GlobeLand30 datasets is similar, the urban area in the CCI-LC dataset is small, and the
CGLS-LC had the largest urban area (59,542 km2) in 2015. By contrast, the lowest urban
area was found in GlobCover 2009 compared to other datasets in epoch 2010.

Permanent snow and ice: Permanent snow and ice are rarely covered in southern
China, with no more than 6000 km2 (or 0.3% of total area) spreading across the western
Sichuan Plateau. The area of permanent snow and ice in the CLUD, CCI-LC, and CGLS-LC
datasets is similar, the MCD12Q1 dataset is significantly lower, and in the GlobeLand30
and GlobCover datasets, it is higher than the other datasets.

Bare areas: From 2000 to 2020, the area of bare land gradually decreased. In all LC
datasets, the bare land area in the CLUD dataset is over 14,000 km2, which is far greater
than other datasets. The average area of bare land in the CCI-LC dataset is only 268 km2,
which may be seriously underestimated. The proportion of bare land in other datasets
is similar.

Wetlands: Overall, the area of wetlands in southern China is small, less than 1%
of the total area. Furthermore, the area difference among the various datasets is small.
Among them, the largest area of wetlands was found in CGLS-LC, achieving 10,154 km2 in
2019, followed by CLUD 2020 (9263 km2) and MCD12Q1 2015 (8301 km2). By comparison,
GlobCover 2009 had the lowest area of wetlands, attaining only 100 km2, which is likely
seriously underestimated.

Waterbodies: Likewise, the area of waterbodies in southern China is small, accounting
for less than 2% of the total area, mainly located in the plain area of the middle reaches of
the Yangtze River. The area of waterbodies in CLUD and GlobeLand30 is close, while the
water area in MCD12Q1, CGLS-LC, and GlobCover is relatively low.

3.2. Spatial Agreement Analysis

Figure 4 shows the spatial consistency of different LC datasets in southern China
in four epochs. Additionally, Figure A1 shows the spatial consistency of LC datasets in
the karst area of southern China. In general, the spatial consistency of LC datasets in the
karst area is lower than that of the non-karst area. In 2000, 2010, and 2015, areas of full
agreement and high agreement accounted for approximately 70% of the total area, rising to
78% in 2020. Areas with consistent land cover types are mainly located in homogeneous
areas, e.g., regions covered by large areas of grasslands and croplands, such as the western
Sichuan Plateau and the Plain of Hubei and Hunan. In contrast, areas with low spatial
consistency in the datasets are mostly distributed in heterogeneous regions, e.g., the regions
covered by cropland/natural vegetation mosaics, such as the Yunnan–Guizhou Plateau,
and hilly and mountainous areas in the Guangxi and Guangdong provinces. The former
is also the mostly concentrated area of karst landforms in southern China, with large
topographic fluctuations, rugged surfaces, and complex LC types.

3.3. Accuracy Analysis
3.3.1. Overall Accuracy Analysis

In general, the overall accuracy of different global LC datasets ranges from 40.3%
to 52.0% in southern China, and presents a distinctive pattern as follows: CGLS-LC >
GlobeLand30 > CCI-LC > MCD12Q1 > GlobCover (Figure 5). Specifically, CGLS-LC 2015
achieved the highest accuracy (52.0%) among all five global LC datasets, followed by
CGLS-LC 2019 (51.8%) and GlobeLand30 2000 (51.4%). Surprisingly, the accuracy of the
CGLS-LC dataset, with a spatial resolution of 100 m, is even higher than GlobeLand30 at
30 m resolution, although the gap is rather small. In addition, the CCI-LC dataset attained
an overall accuracy of 48.0–50.0% during 2000–2020. Among all global LC maps, GlobCover
2009 gained the lowest accuracy (40.3%) in southern China. Except for the GlobCover
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dataset, the MCD12Q1 2001 has the lowest accuracy (41.2%). On the whole, fine-scale global
LC datasets achieved higher overall accuracy in the region of southern China in comparison
to LC datasets in coarse resolutions. Furthermore, from the perspective of temporal trends,
GlobeLand30 and CCI-LC presented a decreasing trend in overall accuracy from 2000 to
2020, while the accuracy of MCD12Q1 remains relatively stable over time.

Figure 4. Spatial agreement among different LC maps. Consistency is defined by the number of the
LC dataset with the same cover type in each pixel for epochs (a) 2000, (b) 2010, (c) 2015, and (d) 2020.

Figure 5. Overall accuracy for the five studied global LC datasets over 2000–2020.
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3.3.2. Accuracy Evaluation by Province

Provincial-scale accuracy maps were generated to indicate regional differences in the
overall accuracy of various global LC datasets (Figure 6), ranging from 19.3% to 64.5%. In
epoch 2010, the provinces with high accuracy are Hubei, Hunan, and Guangdong, where
plains are widely distributed. The accuracy of the GlobeLand30 and CGLS-LC datasets
in Hunan province is more than 60%, and the accuracy of CCI-LC, GlobeLand30, and
CGLS-LC in Hubei province is also close to 60% (Table A2). In contrast, the Guizhou and
Yunnan provinces are dominated by plateaus and karst landforms and feature varied land
cover types; hence, the overall accuracy is among the lowest, with the average of all 13 LC
maps in four epochs reaching 33.2% and 39.9%, respectively.

Figure 6. Distribution maps of the overall accuracy of global LC datasets at the provincial scale in
southern China in epoch 2010.

3.3.3. Producer’s and User’s Accuracy

Producer’s accuracy indicates the probability of a particular land cover type on the
ground being correctly classified in the map and measures errors of omission (Figure 7).
Meanwhile, user’s accuracy is indicative of the likelihood that a class on the map actually
matches the category of its corresponding real-world location and measures errors of
commission (Figure 8).

In southern China, producer’s accuracy varies greatly. The producer’s accuracy of
woodland, cropland, and grassland is significantly higher than that of bare areas and
shrubland. In particular, the producer’s accuracy of woodland in GlobeLand30 and CGLS-
LC is 70% and more than 80% respectively, which is better than other datasets. This is due
to the high spatial resolution of Globeland30 and the proximity of the classification system
to the reference CLUD. However, the CGLS-LC dataset overestimates the area of woodland,
resulting in high producer’s accuracy.

Land cover classes with high user’s accuracy but low producer’s accuracy imply an
under-mapping. Specifically, cropland and waterbodies in the MCD12Q1 in 2000, 2010,
and 2015 have the highest user’s accuracy (>65%), but their producer’s accuracy is quite
low (<20%). Bare areas in the Globeland30 and CGLS-LC datasets have comparatively
high user’s accuracy (>30%) and low producer’s accuracy (<13%). Therefore, these classes
have undergone under-mapping. On the contrary, high producer’s accuracy and low
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user’s accuracy indicate that these classes are over-mapped in the dataset. For instance,
the producer’s accuracy of the woodland in CGLS-LC is more than 83%, but the user’s
accuracy is less than 50%. In addition, the class with low producer’s accuracy and low
user’s accuracy means that it is inaccurately mapped in the area. For example, the accuracy
of shrubland and wetlands in MCD12Q1 is poor in the south China.

Figure 7. Producer’s accuracy for various LC datasets in epochs (a) 2000, (b) 2010, (c) 2015, and
(d) 2020.

Figure 8. User’s accuracy for various LC datasets in epochs (a) 2000, (b) 2010, (c) 2015, and (d) 2020.

3.3.4. Overall Accuracy Evaluation under Different Elevations

To quantify the elevational patterns in the overall accuracy of different LC maps,
the study area is divided into five elevation gradients (<250 m, 250–500 m, 500–800 m,
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800–1200 m, and >1200 m). The results show that, except for MCD12Q1, the overall
accuracy of the other four global LC datasets generally decreases with increases in elevation
(Figure 9). In the study area, the overall accuracy is the highest (up to 65.5%) between
250 m and 500 m, that is, regions mainly covered by hills with low elevation. However,
the accuracy is rapidly reduced to nearly 40% when the elevation rises to above 800 m.
Moreover, it is found that the overall accuracy of CCI-LC, GlobeLand30, and CGLS-LC
below 800 m in elevation is greater than 50%. Under elevation gradients below 800 m,
GlobeLand30 has the highest accuracy in 2000 and 2010, while CGLS-LC gains the highest
accuracy in epochs 2015 and 2020. By comparison, the overall accuracy of MCD12Q1 shows
an upward trend with the increase in elevation. Furthermore, the accuracy of MCD12Q1 is
lower than other LC datasets below 800 m but slightly higher than other datasets above
1200 m.

Figure 9. Overall accuracy of land cover datasets with different elevation levels for epochs (a) 2000,
(b) 2010, (c) 2015, and (d) 2020.

3.3.5. Overall Accuracy Evaluation under Different Slopes

In order to investigate the change patterns of overall accuracy with varied topographic
slope gradients, the study area is divided into four slope grades (<6◦, 6–15◦, 15–25◦, and
>25◦). The overall accuracy results are shown in Figure 10, in which GlobeLand30 had the
best accuracy in 2000 and 2010 (58.5% and 58.0%, respectively) in a slope range below 25◦.
In epochs 2015 and 2020, CGLS-LC achieved the highest overall accuracy (56.1% and 54.2%,
respectively) when the topographic slope is less than 25◦. By comparison, MCD12Q1 has
the highest overall accuracy (around 48.8%) in a slope range greater than 25◦ from 2000 to
2015. Overall, except for MCD12Q1, all global LC datasets present a general declining trend
in overall accuracy with increases in topographic slope. Contrastingly, overall accuracy in
MCD12Q1 shows an evident upward trend with rising slopes. In particular, the overall
accuracy rose sharply from close to 31.0% in slopes below 6◦ to nearly 48.0% in slopes
with a 15–25◦ range. This indicates that MCD12Q1 is more suited for steeply sloping areas,
which are also the key areas of implementation of ecological restoration projects, e.g., the
Grain for Green Project.
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Figure 10. Overall accuracy of land cover datasets with different slope levels for epochs (a) 2000,
(b) 2010, (c) 2015, and (d) 2020.

3.3.6. Accuracy Evaluation of Karst and Non-Karst Areas

As shown in Figure 11, the overall accuracy in karst areas is lower than that in
non-karst areas. The average accuracy in non-karst areas is 51.2% and 36.9% in karst
areas. In non-karst areas, CGLS-LC has the highest overall accuracy (56.7%), followed by
GlobeLand30 (54.8%) and CCI-LC (53.2%). GlobCover and MCD12Q1 have the lowest
accuracies (42.5% and 44.0%, respectively). In the karst areas, the overall accuracy of
CCI-LC, GlobeLand30, and CGLS-LC is comparatively higher, with an average of about
38.3%, while the accuracy of MCD12Q1 and GlobCover is relatively low, with an average
of about 33.6%.

Figure 11. Overall accuracy of various LC datasets in karst and non-karst areas during the four epochs.
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4. Discussion
4.1. Comprehensive Evaluation of Five Recent Global Land Cover Datasets in the South
China Karst

Land degradation neutrality has been listed as an important target of the UN Sustain-
able Development Goals (SDG 15.3). The South China Karst, as a typical land degradation
area, has gained substantial attention. Accurate land cover datasets are the fundamental
basis of regional land change monitoring. However, the application of different global LC
datasets may lead to distinct results with regard to land use change when applied at the
regional and local scales. Analyzing the land cover type conversion of the CLUD, CCI-LC,
and GlobeLand30 LC datasets from 2000 to 2020 (Figure 12), it can be seen that the overall
transfer pattern of the LC types is similar among the different LC datasets, but there are
large differences in the specific transfer values. At present, widely used global LC datasets
show large differences and poor overall accuracy in the karst areas of southern China
(Figures 2 and 5). On the one hand, this may be due to different sensor types, periods,
classification methods, or classification schemes adopted by different datasets [52]. On the
other hand, it may also be due to the terrain complexity, broken surfaces, and high spatial
heterogeneity in the karst areas. This demonstrates that the application of global land cover
maps in the South China Karst needs to be treated with caution.

Figure 12. The proportion of type conversion in land cover datasets from 2000 to 2020: (a) CLUD;
(b) CCI-LC; (c) GlobeLand30.

Numerous studies have shown that there are large differences among different LC
datasets with regard to the karst areas of southern China, especially the Yunnan–Guizhou
Plateau [48,53–55]. For example, Zeng et al. [55] showed that the spectral features of the
grasslands and shrublands could easily be confused. Classes that were misclassified as
forests primarily consisted of croplands, shrublands, and grasslands distributed in south-
western China. In addition, due to the topographic relief and complex geomorphological
types in this area, accurate LC datasets are required to support scientific research. It is
convenient for scholars to select the most suitable LC products based on application, but
only if they are well informed of the advantages and limitations of these LC datasets.

In this study, we systematically evaluated the accuracy of five commonly used global
LC datasets in the South China Karst region from the aspects of the area, spatial consistency,
accuracy in different terrains, and landforms. The study found that the spatial consistency
of various datasets fits well in the northwestern plateau region and the eastern plain region
of the Hunan and Hubei provinces (Figure 4). However, in areas with complex relief, such
as the Yunnan–Guizhou Plateau, the spatial consistency is poor. Spatial consistency can
provide users with an assessment of the accuracy of LC types. In addition, the inconsistency
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between different datasets indicates that the areas are easily misclassified and that data
producers should focus on these areas, such as the aforementioned Yunnan–Guizhou
Plateau and the mountainous areas of western Guangxi. Overall, the CGLS-LC dataset has
the highest accuracy in 2015 and 2020 (52.0% and 51.8%, respectively) (Figure 5). In 2000
and 2010, the GlobeLand30 has the highest overall accuracy (51.4% and 51.2%). GlobCover
has the worst accuracy in South China, only 40.3%. Ran et al. [54] used China’s 1:100,000 LC
map to verify other global datasets and found that the accuracy of the MODIS dataset in
China was 56.85%. In this study, the accuracy of MCD12Q1 in South China is only 41%.
However, MCD12Q1 has the best accuracy compared to the other LC datasets in areas
where the elevation is above 1200 m or the slope is above 25◦. In the low elevation karst
area of southern China, human activities are intense, and the surface is highly broken, so
the coarse resolution is not able to reflect the feature well. However, there is little human
activity in high elevation areas, so the LC type is relatively unique, and the accuracy is
therefore better.

Through this accuracy evaluation of provinces in South China, it was found that the
accuracy of the LC datasets is comparatively high in the Hubei, Hunan, and Guangdong
provinces in the eastern plains and hilly regions (Figure 6). The Chongqing and Sichuan
provinces, which are located in the Sichuan Basin and plateau areas, have significant topo-
graphic relief and poor accuracy in the LC datasets. The Yunnan and Guizhou provinces are
located on the Yunnan–Guizhou Plateau, with widely distributed karst landforms and the
lowest LC accuracy. This is consistent with previous research. Wu et al. [56] used China’s
1:100,000 LC dataset to verify global LC datasets. These datasets were found to exhibit
high spatial heterogeneity and low spatial accuracy in the hilly and highly fragmented
areas of southern China. Yang et al. [30] concluded that they have low accuracy in the hilly
areas of Southeast China and the Sichuan Basin by checking the accuracy of different global
LC datasets.

4.2. Impact of Landscape Heterogeneity on Dataset Accuracy

The local accuracy of LC datasets in mountainous or hilly areas is low. Due to the
heterogeneity of the landscape, the ground spectral information will become complex, and
the remote sensing images are not easy to distinguish, which affects the accuracy of LC
classification and mapping. Therefore, landscape heterogeneity is considered to be one of
the main factors affecting the mapping accuracy of LC datasets [57,58].

Using epoch 2020 as an example, this study examined the relationship between LC
complexity and LC accuracy at the city scale (Figure 13). It was found that the more complex
and heterogeneous, the poorer accuracy of the LC datasets. There is a significant negative
correlation between LC complexity and accuracy. Yang et al. [30] also revealed that there
is a clear correlation between local precision and the degree of landscape heterogeneity.
Likewise, Liang et al. [33] found that the higher the landscape heterogeneity, the worse
consistency among various LC datasets.

4.3. Suggestions for Future Global Land Cover Mapping

Inconsistency in classification schemes across LC datasets and differentiability between
categories is an important factor affecting the accuracy of LC datasets [59]. When the
classification scheme of each dataset is converted, the uncertainty of LC is generated. In
addition, the type of mixed feature lacks an exact threshold definition, which makes it
challenging to accurately distinguish the types of mixed objects. In addition, for some
global LC datasets, the classification scheme cannot accurately describe the land cover types
of all countries and regions considering the diversity of ecosystems. When evaluating the
accuracy of different datasets, the reclassification process will inevitably introduce errors
and lead to incorrect statistics. Therefore, it is possible to classify land cover according to a
uniform standard among various countries and institutions, and in this way, errors caused
by inconsistent definitions can be avoided. Furthermore, the classification accuracy can be
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improved by integrating multiple LC datasets and combining the advantages of different
datasets [60].

Figure 13. Correlation between the weighted complexity of land cover types and overall accuracy in
epoch 2020: (a) CCI-LC (b); CGLS-LC; (c) GlobeLand30. The asterisks * and ** denote the significance
level of 95% and 99%, respectively.

In this paper, it was found that the accuracy of high-resolution LC datasets is better than
low-resolution datasets. High-resolution image data can finely distinguish spectral features
among ground objects, and more fine-scale information can be obtained [61]. Accordingly,
high-resolution datasets are more advantageous than low-resolution datasets. Nonetheless,
the overall accuracy is not entirely determined by the spatial resolution of the dataset, but
also the classification strategy and method [30]. In our study, the overall accuracy of the
GlobeLand30 dataset, with 30 m resolution, and the CGLS-LC dataset, with 100 m resolution,
is higher than other low-resolution datasets, but in 2020, the accuracy of the CGLS-LC dataset
is even better than GlobeLand30. Due to the increasing resolution of remote sensing data,
recently produced LC datasets are moving toward higher resolution development. For
instance, Tsinghua University developed the global-scale FROM-GLC2017 land cover data at
10 m resolution [62], and the Esri company recently released the ESRI2020 Land Cover dataset
(resolution of 10 m) [63]. In addition, the ESA has also published the WorldCover 2020 land
cover dataset at 10 m resolution (https://esa-worldcover.org/en/data-access (accessed on
5 March 2022)). These global land cover datasets all use Sentinel satellite data and deep
learning algorithms for classification. Additionally, the ESA dataset uses data both from the
Sentinel-1 radar satellite and the Sentinel-2 optical satellite for fusion. Using radar satellite
data can reduce the influence of clouds and gather more feature information to improve
classification accuracy. In contrast, optical images are seriously affected by clouds and rain
in areas like the South China Karst [22], and the small amount of image data may possibly
lead to poor classification accuracy. Therefore, for cartographers, the fusion of radar and
optical data is a future direction to focus on.

Moreover, datasets from different countries and institutions generally have higher
accuracy in their regions due to the larger collection of training samples. However, con-
sidering the sampling cost and convenience, in some areas with large topographic relief
and high landscape heterogeneity, the sampling points are sparse, so it is more difficult to
accurately distinguish the land cover type in these areas [31]. In the future, researchers may
consider using crowdsourcing data in the global LC mapping process and develop data
collection software or websites with international cooperation so that global data volunteers
can share local data to enrich the database sample [64,65]. Currently, the Chinese Academy
of Sciences has adopted the “crowdsourcing-deep learning-expert knowledge” strategy to
update the vegetation type map of China, which can effectively increase the sample size
and greatly improve mapping accuracy [66]. Researchers may also consider applying deep
learning techniques to geotagged photos for validation and thus increase the number of
validation samples [67].

https://esa-worldcover.org/en/data-access
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5. Conclusions

In recent years, with the development of advanced classification methods such as
machine learning and deep learning, as well as the acquisition of high-quality remote
sensing data, numerous global-scale LC datasets have been produced, which has greatly
enriched users’ choices. The purpose of this paper was to investigate the applicability
of commonly used global LC products in the karst region of southern China in order to
make targeted dataset recommendations for potential users. To achieve this purpose, we
comprehensively evaluated the accuracy of CCI-LC, MCD12Q1, GlobCover, GlobeLand30,
and CGLS-LC datasets in the 2000, 2010, 2015, and 2020 epochs.

Our results demonstrate that the application of global land cover maps in the South
China Karst needs to be treated with caution considering low accuracy in the region.
Specifically, the CGLS-LC dataset has the highest overall accuracy (52.0% and 51.8%) in
epochs 2015 and 2020. The GlobeLand30 dataset has the highest overall accuracy (51.4%
and 51.2%) in 2000 and 2010. The least accurate dataset in 2000 and 2015 is MCD12Q1
(41.2% and 41.3%). GlobCover has the lowest accuracy, 40.3%, in epoch 2010, and CCI-LC
has the lowest accuracy, 48.0%, in 2020. Overall, the accuracy of the CGLS-LC dataset is the
best in the South China Karst, but the accuracy of MCD12Q1 and GlobCover is the worst.

This study further distinguishes the differences in the accuracy of global LC products
under varied geomorphic types and topographic conditions. For karst areas, the CGLS-LC
and CCI-LC datasets are recommended, while the CGLS-LC and GlobeLand30 datasets
with high accuracy are recommended for non-karst areas. Furthermore, MCD12Q1 has the
best accuracy compared to other datasets when the elevation is above 1200 m. In 2000 and
2010, GlobeLand30 has the best accuracy in the altitude range below 800 m. While in epochs
2015 and 2020, the overall accuracy of CGLS-LC is higher below 800 m. Furthermore, the
accuracy of the MCD12Q1 from 2000 to 2015 increases with increasing topographic slopes,
and the accuracy is best with a slope greater than 25◦. In areas with slopes less than 25◦,
the GlobeLand30 and CGLS-LC datasets have the highest accuracy.

The karst area in southern China has significant topographic relief and complex and
rugged terrain. For researchers studying this area, a more accurate LC dataset is the basis
for conducting various studies. Although existing LC datasets are valuable data sources,
their accuracy in the karst areas of southern China remains limited. With the development
of high-quality data sources and more advanced algorithms, more attention should be paid
to areas with complex landforms to improve the accuracy of LC datasets in the future.

Author Contributions: Conceptualization, J.P. and P.L.; methodology, P.L. and J.P.; software, P.L. and
H.G.; validation, P.L. and H.G.; formal analysis, P.L., J.P., H.G., H.T., H.F. and L.W.; investigation, P.L.;
resources, J.P. and L.W.; data curation, P.L. and J.P.; writing—original draft preparation, P.L. and J.P.;
writing—review and editing, J.P., P.L., H.G., H.T., H.F. and L.W.; visualization, P.L.; supervision, J.P.;
project administration, J.P.; funding acquisition, J.P. and L.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
(2021YFE0117900), the Guangdong Basic and Applied Basic Research Foundation (2021A1515110442),
the Foundation of President of the Zhongke-Ji’an Institute for Eco-Environmental Sciences (ZJIEES-
2022-02), and the Science and Technology Project of Jinggangshan Agricultural High-Tech Industrial
Demonstration Zone (No. 202151).

Acknowledgments: The authors would like to give the special gratitude to the contributors of the
five global land cover datasets assessed in this research.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 3090 21 of 24

Appendix A

Table A1. Area of each class type in each land cover dataset (unit: km2).

Year Woodland Shrubland Grassland Cropland Wetlands Urban Permanent
Snow and Ice

Bare
Areas Waterbodies

CLUD

2000 728,715 278,529 347,244 499,276 8768 25,409 897 16,190 31,200
2010 730,111 278,909 345,097 492,068 8861 31,623 896 16,255 32,436
2015 727,777 278,437 344,843 486,813 9081 39,047 896 16,261 33,099
2020 746,628 263,644 332,866 489,709 9263 46,412 988 14,525 34,519

CCI-LC

2000 801,173 217,686 216,016 659,080 5571 11,078 1095 341 24,380
2010 804,229 206,879 213,141 659,747 5891 21,407 1095 299 23,733
2015 804,551 205,416 213,042 656,971 5952 25,331 1095 298 23,764
2020 836,207 170,856 210,989 660,716 4138 29,348 1005 134 20,990

MCD12Q1
2001 877,823 141,215 745,231 124,007 6669 26,314 249 8037 11,225
2010 883,985 160,063 719,713 121,566 6689 30,172 207 7101 11,267
2015 903,530 172,551 701,537 104,934 8301 31,615 188 6736 11,375

GlobeLand30
2000 971,701 34,746 288,020 576,385 6163 20,670 2938 2836 32,497
2010 969,796 36,642 281,248 581,056 6272 24,115 2716 3749 30,430
2020 977,680 24,512 247,871 588,570 5616 51,384 2347 4989 33,871

GlobCover 2009 631,519 502,346 57,643 705,992 100 13,538 5721 4157 18,069

CGLS-LC 2015 1,269,967 24,200 177,423 380,114 8041 59,542 717 6051 16,063
2019 1,241,843 14,629 179,212 416,680 10,154 51,335 749 5342 18,203

Table A2. Overall accuracy of land cover datasets by province (unit: %).

Sichuan Hubei Chongqing Hunan Yunnan Guizhou Guangxi Guangdong

2000
CCI-LC 53.4 59.5 49.7 57.0 39.7 34.9 51.3 58.2

GlobeLand30 53.5 57.6 48.5 62.0 38.9 35.1 56.0 64.5
MCD12Q1 42.8 52.9 19.3 46.0 41.4 30.9 41.3 38.6

2010

CCI-LC 53.3 59.6 49.8 54.9 39.9 35.2 51.3 58.1
GlobCover 34.0 47.3 43.9 46.6 35.5 35.0 44.9 50.1

GlobeLand30 53.5 57.8 48.6 61.6 38.3 35.6 55.5 64.1
MCD12Q1 42.6 54.5 20.0 45.0 41.4 30.9 42.0 39.0

2015
CCI-LC 53.2 59.0 49.3 54.2 39.8 35.0 51.0 57.7

CGLS-LC 55.2 61.6 45.1 63.0 40.4 32.6 55.9 63.1
MCD12Q1 43.2 53.1 20.4 44.5 41.0 30.3 41.7 40.8

2020
CCI-LC 52.6 56.6 53.6 50.9 41.3 33.4 47.0 50.6

CGLS-LC 56.6 61.1 54.5 63.0 40.3 31.3 51.1 60.0
GlobeLand30 53.3 54.6 51.7 55.6 40.8 32.0 48.5 53.9

Figure A1. Spatial agreement among different LC maps in the karst region. Consistency is defined by
the number of the LC dataset with the same cover type in each pixel for epochs (a) 2000, (b) 2010,
(c) 2015, and (d) 2020.
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