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Abstract: The mainstream algorithms used for ship classification and detection can be improved based
on convolutional neural networks (CNNs). By analyzing the characteristics of ship images, we found
that the difficulty in ship image classification lies in distinguishing ships with similar hull structures
but different equipment and superstructures. To extract features such as ship superstructures, this
paper introduces transformer architecture with self-attention into ship classification and detection,
and a CNN and Swin transformer model (CNN-Swin model) is proposed for ship image classification
and detection. The main contributions of this study are as follows: (1) The proposed approach
pays attention to different scale features in ship image classification and detection, introduces a
transformer architecture with self-attention into ship classification and detection for the first time,
and uses a parallel network of a CNN and a transformer to extract features of images. (2) To exploit
the CNN’s performance and avoid overfitting as much as possible, a multi-branch CNN-Block is
designed and used to construct a CNN backbone with simplicity and accessibility to extract features.
(3) The performance of the CNN-Swin model is validated on the open FGSC-23 dataset and a dataset
containing typical military ship categories based on open-source images. The results show that the
model achieved accuracies of 90.9% and 91.9% for the FGSC-23 dataset and the military ship dataset,
respectively, outperforming the existing nine state-of-the-art approaches. (4) The good extraction
effect on the ship features of the CNN-Swin model is validated as the backbone of the three state-of-
the-art detection methods on the open datasets HRSC2016 and FAIR1M. The results show the great
potential of the CNN-Swin backbone with self-attention in ship detection.

Keywords: image classification; ship detection; remote sensing images; self-attention; transformer; CNN

1. Introduction

Ship target classification and detection are of great significance to a country’s maritime
rights, interests, and security. In the civilian field, ship target classification and detection
have broad application prospects in monitoring maritime traffic, safeguarding maritime
rights and interests, and improving the early warning capabilities of maritime defense. They
can be used for monitoring and managing activities such as managing water transportation
traffic, rescuing ships in distress, and monitoring illegal fishing, illegal smuggling, and
illegal dumping of oil in specific maritime areas, bays, and ports. In the military field,
ships are key targets for maritime monitoring and wartime strikes, so the ability to identify
the intent of naval battlefield ship targets at a tactical level quickly and accurately and
to provide support for commanders’ decisions is greatly related to the success of a war.
Therefore, whether in the military or civilian field, accurate ship classification and detection
have a very wide range of application scenarios and technical requirements.
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Image recognition technology is essentially a kind of mathematical mapping from
pattern space to class space. Early image recognition technology was based on image
segmentation and other methods that can deeply analyze and accurately model the charac-
teristics of images. For visible images, traditional image recognition and classification use
techniques including pixel-level edge detection, genetic algorithms, and support vector ma-
chine (SVM) classification. Considering significant changes in image properties often reflect
significant events and changes in properties, the purpose of edge detection is to identify
points in a digital image with significant changes in brightness. Genetic algorithms are used
to combine and optimize the discretized image templates, thus, transforming the image
recognition problem into a series of discrete-point combinatorial optimization problems.
SVM converts the pixel values of all pixels of the image into vectors to implicitly map its
input to a high-dimensional feature space. However, this approach is highly dependent on
a predefined distribution or artificially designed features, which results in low robustness
and poor generalization of the algorithm. Use of convolutional neural networks (CNNs)
has gradually become the mainstream approach in computer vision after the development
of AlexNet [1]. Since then, with deeper and wider networks, CNNs have been performing
better than before. To increase the depth of the network, the Visual Geometry Group
(VGG) [2] was proposed, and it made 3 × 3 convolutional kernels mainstream. To widen
CNNs, the Google Inception Network (GoogLeNet) series [3–6] proposed an inception
block to increase the widths of convolutional neural networks, and it achieved good results.
However, with the increase in depth and width, CNNs inevitably face a series of problems,
such as vanishing gradients. To alleviate this problem, the Residual Networks (Resnet) [7]
model included a residual connection module. For the Dense Convolutional Network
(Densenet) [8], a dense connectivity was proposed to effectively alleviate the vanishing
gradient problem, strengthening feature propagation and encouraging feature reuse using
dense connections. To further reduce the parameters, lightweight deep neural networks
were built in the efficient models for mobile and embedded vision applications, which are
called the Mobilenet series [9–11], by depth-wise separable convolutions. Efficientnet [12]
amplifies the network through the depth, width, and resolution. The optimal set of com-
posite coefficients can be obtained by the neural structure search technique, and, thus, good
feature extraction performances have been achieved.

CNNs are widely adopted in ship target classification and detection. Lin et al. [13]
integrated a CNN and the k-nearest neighbors (KNN) method to classify ships from dual-
polarized data. Jeon et al. [14] combined traditional methods of image processing and target
recognition methods based on CNNs, supporting the development of AI-based ship vision
systems. Li et al. [15] summarized traditional algorithms that combined image processing
and machine learning with target recognition algorithms based on convolutional neural
networks. Julianto et al. [16] proposed a method that combined a generative adversarial
network and convolutional neural networks for recognizing small ships, significantly
improving the correctness and robustness. Chen et al. [17] improved AlexNet for deep
feature extraction of ship images. Zhao et al. [18] combined the detection of visual salience
and CNNs and proposed a fusion model that effectively improved the detection accuracy
of ships. Xu et al. [19] combined image pre-processing, image smoothing, and anti-cloud
interference algorithms based on the fusion of visible and infrared dual-spectrum images to
achieve the detection of ship targets in complex land and sea backgrounds. Gao et al. [20]
proposed a CNN framework with fewer layers and parameters that had good classification
results when applied to a ship dataset. Ren et al. [21] proposed to learn discriminative
features by self-supervised learning and constructed two small optical ship image datasets
to validate the effectiveness. Li et al. [22] proposed an optical remote sensing image ship
detection method based on a visual attention enhancement network. Bi et al. [23] combined
the CNN-ZFNet architecture and random forests to improve ship target detection accuracy.

In recent years, self-attention has been widely applied in natural language processing
(NLP). The transformer proposed by Google [24] makes the most of attention and has
achieved better results in NLP. In 2020, the transformer structure was applied to computer
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vision (CV) for the first time. Vision Transformer (ViT) [25], the first transformer structure
applied to CV, demonstrated the feasibility of transformer applications in CV. The good
application of self-attention allowed ViT to have a better global reception than CNNs.
After ViT was developed, there were many follow-ups [26–30] that further analyzed and
developed ViT structures. The Pooling-Based Vision Transformer (PiT) [31] introduced
pooling operations into ViT structures to enrich the criteria for transformer structure design
which performed well in image classification and a series of downstream tasks. Class-
Attention in Image Transformers (CaiT) [32] proposed a deeper ViT structure devoted to
image classification and discussed optimization techniques for improving the performance.
The Swin transformer [33] showed the disadvantages of ViT, i.e., large video memory usage
and difficulty in applying it to downstream tasks, and solved them by limiting the scope of
the attention computation to solve the problem of varying scales of objects in images.

Recently, attention mechanisms have been applied in remote sensing yield. The Local
Perception Swin transformer (LPSW) [34] backbone was designed to enhance the local
perception of the network and to improve the detection accuracy of small-scale objects in
remote sensing images. The Pyramid Information Distillation Attention Block (PIDAB) [35]
was proposed to extract the complex spatial distributions and rich details of remote sensing
images with a pyramid information distillation (PID) module and a hybrid attention
mechanism (HAM) module.

However, there is no model that takes advantage of a transformer for ship image
classification and detection. To further enhance the feature extraction capability of CNNs,
this paper introduces a transformer structure with self-attention into ship classification
and detection for the first time and proposes a combined model named the CNN-Swin
model. At the same time, to avoid overfitting due to the model fusion, a multi-branch
CNN structure was redesigned and then a Resnet-like CNN backbone was constructed.
For the distinct characteristics of ship image features, a CNN-Swin model was proposed
for ship image classification and detection. The features of the model are as follows: (1) The
design of the CNN backbone combines the simplicity of models, such as VGG, and the
accessibility to the training of multi-branch models, such as Resnet. This gives full play
to the advantages of the CNN structure on a local receptive field, avoiding overfitting
and improving the effectiveness. (2) The transformer structure with self-attention was
applied to ship target recognition and classification for the first time, and a structure that
parallelized the CNN and transformer for extracting features of images was designed.

To validate the performance of the CNN-Swin model, the model was validated using
the open FGSC-23 [36] dataset. In addition, a total of 2973 typical military ship images
from seven categories were collected from the internet as extra experimental data to make
up for the lack of data in the FGSC-23 dataset. All the results were compared with nine
state-of-the-art approaches to demonstrate the superiority of the CNN-Swin model. The
CNN-Swin model demonstrated the great potential of transformer structures in ship
image classification.

Furthermore, the CNN-Swin model we proposed was adopted as the backbone to
extract features with different state-of-the-art ship detection methods on the open ship
detection dataset HRSC2016 [37] and part of the FAIR1M dataset [38]. Experiments verified
that the CNN-Swin exhibits an excellent extraction effect for the features of ship images
compared to different state-of-the-art ship detection methods due to the fusion of a CNN
and a transformer.

This paper is structured as follows: Section 1 briefly introduces the research back-
ground, the state of the art, the problems faced, and the main innovative aspects of this
paper. Section 2 provides a detailed description of the proposed CNN-Swin model. First,
the CNN-Swin model is introduced in general for the fusion of CNNs and transformers
and then the novel CNN-backbone, the adopted transformer structure, and the multi-layer
perceptron neural network employed are introduced. Section 3 presents the experiments
on the CNN-Swin model on different datasets. First, the four datasets used by CNN-Swin
are introduced. After presenting the model details, a series of comparison experiments
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with other state-of-the-art approaches as references for classification and detection tasks are
discussed, respectively. In addition, to demonstrate the necessity of designing a two-branch
parallel structure to fuse the CNN and the transformer, we designed single-branch ablation
experiments and used CAM to demonstrate the feature extraction capability of each branch.
In Section 4, we conclude the work of this paper.

2. Models
2.1. Overview

The analysis of the ship image dataset revealed that the differences between the ship
images were in the superstructures and various types of ship equipment. Therefore, the
ship images had distinct features. A CNN has a good extraction effect on features due
to the inductive bias of local perception, and the self-attention of a transformer structure
also has a good feature extraction ability for specific features. Therefore, we designed a
CNN-Swin model that integrates a CNN and a transformer. The model network structure
is shown in Figure 1.
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Figure 1. Network architecture of the proposed model.

The model consists of three parts: a transformer backbone, a CNN backbone, and a
classification module based on multi-layer perceptron (MLP) neural networks. To exploit
the advantages of a CNN structure in extracting features, the model has a CNN backbone
to extract features of the image accurately and efficiently. The CNN backbone enhances
the semantic information in the bottom layer of the feature map by continuously stacking
CNN-Blocks, and, finally, a feature vector is output with abundant information. In the
CNN backbone, a CNN-Block is first used to reduce the resolution of the feature map,
then, four layers are used to extract information. The numbers of CNN-Blocks in each
layer were {2, 2, 6, 2}, where the first CNN-Block in each layer uses a convolutional kernel
with a stride of two pixels to reduce the resolution. Springenberg et al. [39] pointed out
that the classification accuracy does not decrease and even slightly improves when using
convolutional layers with a stride greater than one pixel instead of pooling layers. Therefore,
a stride of two pixels is used to compress the size of the feature map to ensure not only that
the spatial dimensions of the network are reduced and redundancy is removed but also
that the accuracy is improved.

The transformer backbone based on the Swin transformer [33] first divides the image
in each channel into 4 × 4 patches, with a total number of 3 × 4 × 4 = 48. Each non-
overlapping patch that forms the full image is referred to as a “token” [25], which means
the smallest processing unit in the model. After dividing and rearranging, the transformer
backbone embeds every patch, then stacks encoders to further extract image features, and,
finally, outputs a feature vector with local information. Moreover, to further extract features
and produce feature maps with high-level semantic information, the transformer backbone
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uses patch merging before every encoder to reduce the number of tokens. Each patch
merging performs a twofold downsampling of tokens, which means that the features of the
neighboring 2× 2 tokens are concatenated with each other.

The MLP neural network contains three fully connected layers: a 1024-dimensional
input layer, a 128-dimensional hidden layer, and an output layer, the size of which depends
on the number of classes after summation. The CNN-Swin model uses an MLP neural
network to map the fused feature vectors into ship classification.

2.2. Convolutional Neural Network (CNN) Backbone

To avoid overfitting as much as possible and achieve better results, the CNN backbone
of the model should use a concise CNN structure with a minimum number of parameters,
such as the VGG model [2]. However, the Top-1 accuracy of VGG-19 on ImageNet is 72%,
and it was 84.5% on the military ship dataset used in this paper. Both are lower than the
current complex CNN models in terms of classification accuracy. The CNN backbone
proposed in this paper is inspired by Resnet [7] and subsequently developed models
based on Resnet [40–42]. The multi-branch CNN-Block module is designed based on CNN
structures with fewer parameters (such as the VGG model), and it achieves better results.

2.2.1. Layers

The CNN backbone uses cascaded CNN-Blocks to extract the features of the image,
and it consists of two parts. The first part consists of separate CNN-Blocks to reduce the
image resolution, a 3× 3 convolutional layer, a BN (batch normalization) layer, the parallel
structure of a 1× 1 convolutional layer and a BN layer, and, finally, a rectified linear (ReLU)
activation function by which the feature map is output. The second part consists of a
cascade of four layers, each containing a different number of Resnet blocks and a global
pooling layer, after which the final result is output.

The architecture of Layer is showed in Figure 2. The designs of Layer2, Layer3, and
Layer4 are similar to that of Layer1; the difference is that the numbers of convolution
channels are 64, 128, 256, and 512. Furthermore, Layer3 is three times the size of Layer1.
Multiple CNN-Blocks are concatenated within each layer with similar structures. The
difference is that, in the first CNN-Block, the strides of the 1× 1 convolutional layer and
the 3× 3 convolution layer are two pixels. Therefore, compared to the input X, the output
feature map F(X) of the resolution decreases, and the number of channels changes. In
the rest of the CNN-Blocks, the strides of the 1 × 1 convolutional layer and the 3 × 3
convolutional layer are one pixel, so the size and the number of channels of the feature
map do not change.

1 
 

 

Figure 2. Network architecture of Layer1.

2.2.2. CNN-Block

The design of the CNN-Block is inspired by Resnet. Resnet learns feature information
by residual connections with a basic residual module of Y = ReLU(F(X) + X). F(X) is the
residual mapping to be learned by the network , X is the input, and Y is the output. When
the size of the feature map F(X) decreases, it is necessary to adjust the size of X through
a 1× 1 convolutional layer to match F(X). In this case, Y = ReLU(F(X) + G(X)). G(X)
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is the convolutional shortcut implemented in the 1× 1 convolutional layer. The Resnet
structure has the advantage that the multi-branch architecture makes the model an implicit
ensemble of numerous shallower models [43]. In general, each block in Resnet has two
roads of information flow, and, thus, for a Resnet model with n blocks, it can be represented
as a collection of 2n models.

A multi-branched structure facilitates the training of the model [43], so we use a
parallel, two-branch structure based on a CNN model with fewer parameters. To control
the number of parameters in the CNN backbone, we use a 1× 1 convolutional layer as the
second branch to construct the new block. The CNN-block of the model is:

Y = ReLU(F(X) + G(X)), (1)

where X and Y are the input and output feature maps of the CNN-Block module, F(X) is
the residual mapping to be learned by the network, and G(X) is the 1× 1 convolutional
shortcut implemented in the convolutional layer. As shown in Figure 1, the Resnet block
module contains two branches. After entering the CNN-Block, X is input to the 3× 3
convolutional layer and the 1× 1 convolutional layer for data processing. In the 3× 3
convolutional layer, the input feature map X goes through the convolutional layer and a
BN layer and becomes the output F(X). In the 1× 1 convolutional layer, the input feature
map X goes through the convolutional layer and the BN layer successively and becomes
the output G(X). When the size of F(X) decreases, the CNN-Block adds up the outputs of
the two branches in terms of the pixels at corresponding positions, and, finally, the result is
output after the ReLU activation function. The activated feature map Y is the output of this
CNN-Block.

If the size of the feature map decreases, the 3× 3 convolution kernel in the CNN-Block
has a stride of two pixels and a padding of one pixel. When the size does not decrease, the
3× 3 convolution kernel has a stride of one pixel and a padding of one pixel. The stride
and channels of the 1× 1 convolution kernel keep pace with the 3× 3 convolution kernel
in the same CNN-Block module.

We construct the CNN backbone model by stacking CNN-Blocks. From the same
perspective as reported previously [43], for n CNN-Blocks, the CNN backbone can also
be represented as a collection of 2n models. In the CNN backbone, n = 13. Compared
with Resnet, the CNN backbone implements a multi-branch architecture based on fewer
convolutional layers, which enhances the extraction of the features of images. Finally, the
output of Layer4 is subjected to a global average pooling operation by average pooling,
then, the pooled feature map is flattened to a 512-dimensional feature vector.

2.3. Transformer Backbone

The CNN-Swin model borrows from the Swin transformer [32] model for image
feature extraction. The CNN structure has a specific induction bias that makes it locally
perceptive and capable of weight sharing, but the strict induction bias also limits its ability
to extract image features to some extent. In comparison, the transformer structure has
less induction bias, which makes it more similar to the attention of human vision when
recognizing images. Therefore, it has better feature extraction capabilities. The Resnet-like
hierarchical transformer structure can better extract the features of ship images.

The transformer model used in this work contains two parts: patch embedding and
an encoder. After patch embedding, the input ship image passes through a multi-layer
cascaded encoder module which extracts the features of the image. The encoder contains a
norm operation, shifted, window-based, multi-head, self-attention (SW-MSA), and an MLP,
as shown in Figure 1.

2.3.1. Patch Embedding

Assuming that H and W are the height and width of the image and C is the number
of channels, the input ship image can be written as x ∈ RH × W × C. For the input x, its
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channel features are recombined to obtain a sequence of patches (xp) and xp ∈ RN ×(P2× C).
The image x is divided into a total of N = H × W

P2 patches, contained in xp, where the size
of xp is P × P. Then, xp is flattened and mapped to a dimension of size D to finally obtain
x′p ∈ RN × D.

2.3.2. Encoder

The transformer encoder consists of two parts. Each part has two parallel branches,
and the feature maps output from the two branches are added up linearly on a pixel-by-
pixel basis. In the first part, the first branch has a linearly varying norm in series and shifted,
window-based, multi-head, self-attention (SW-MSA). The second branch has a residual
connection with the input. In the second part, the difference is that the first branch is a new,
linearly varying norm and an MLP neural network.

The core operation of the transformer encoder is the SW-MSA. The SW-MSA is based
on multi-head self-attention and builds shifted windows to further reduce the computa-
tional effort. In the multi-head self-attention, first, an inner product of the feature vector
(x), encoded by patches with the matrix, is performed to obtain query (q) and key (k), i.e.,
q = x × WQ, k = x × WK, where WQ and WK are defined as learnable parameters in the
encoder. Self-attention is actually a calculation of similarity between the query (q) and the
key (k). Each query and key are obtained by the matrix inner product operation to obtain
the similarity value, which is further normalized by the softmax function. The normalized
similarity values represent the particular query and its corresponding key weights.

Meanwhile, an inner product operation of the feature vector (x) encoded by patches with
the number of learnable parameter matrices WV is performed, and the value (v) is obtained, i.e.,
v = x × WV. The similarity value output after the similarity calculation for each query and its
corresponding key is used as the weighted value of its corresponding value.

Furthermore, multi-head self-attention performs the self-attention multiple times on the
feature vector (x) encoded by patches, and each self-attention has its own WQ, WK, and WV. The
outputs are obtained after multiple different self-attention operations are linearly concatenated
together, then, the results are obtained by a linear transformation of compressing scales.

Global self-attention has a high computational complexity [32]. To reduce the com-
plexity, the SW-MSA restricts the self-attention to be computed only within the divided
windows. The window divides the whole image in a non-overlapping manner, and each
window contains M×M blocks. Additionally, to solve the problem of information non-flow
between windows, the SW-MSA shifts the windows and proposes a batch computation
approach by cyclic shifting.

When shifting the window partition, a portion of the window no longer has the
size M ×M. Therefore, the batch computation approach splices the unappropriated sub-
window partitions into a single M ×M-sized window. Then, the spliced and unspliced
windows with sizes of M ×M are subjected to the in-window self-attention computation.
In computing the self-attention, the model uses the relative position encoding to compute
the similarity [44–47]. The formula for calculating self-attention with the addition of a
relative position encoding is as follows:

Attention(Q, K, V) = Softmax

(
Q × KT
√

dk
+ B

)
V, (2)

where B is the relative position code B ∈ RM2× M2
. M2 denotes the number of patches in

the window. Q, K, V ∈ RM2× d is where d is the matrix dimension.
√

dk is the scaling factor
used to avoid the effect of variance from the dot product, and k is the number of queries.

The overall encoder formulas are as follows:

Z′` = SW−MSA(LN(Z`−1)) + Z`−1, ` = 1, 2, · · ·L, (3)

Z` = MLP
(
LN
(
Z′`
))

+ Z′`, ` = 1, 2, · · ·L, (4)
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where Z′` and Z` denote the output of the `th encoder from the SW-MSA and MLP,
respectively. Z′` and Z` together form a transformer encoder with a total of L layers.

2.4. Multi-Layer Perceptron (MLP) Neural Network

The two feature vectors with good local features extracted by the CNN backbone and
transformer backbone are f eature vector1 and f eature vector2, respectively. To further fuse
the feature information, we perform a pixel-by-pixel summation operation on the feature
vectors of both. To accomplish this operation, we use a fully connected layer to make
the dimension of f eature vector1 extracted by the CNN backbone consistent with that of
f eature vector2, obtaining f eature vector1x. The information fusion operation is as follows:

Fused( f eature vector)1×q= f eature vector1x1×q + f eature vector21×q, (5)

where q represents the dimension of the feature vectors, and q is 1024. The fused feature
vectors are processed using an MLP neural network.

The MLP neural network consists of three layers: an input layer, hidden layer, and
output layer. The fused feature vectors containing a large amount of information are
mapped into seven categories of ship image in the ship dataset by the MLP neural network.
Assuming that the lth layer has ml neurons, the input vector can be represented as:

xl−1 =
[
xl−1

1 , xl−1
2 , . . . , xl−1

ml

]T
, (6)

where xl−1 denotes the output of the feature vector from the (l− 1)th layer. The connection
weight matrix between the (l− 1)th layer neuron and the layer l layer neuron is as follows:

Wl =


wl

11
wl

21

wl
12 · · · wl

1ml−1

wl
22 · · · wl

2ml−1

...
wl

ml1

...
wl

ml2

. . .
· · ·

...
wl

mlml−1

, (7)

where wl
jk denotes the connected weights between the kth neuron in the (l− 1)th layer and

the jth neuron in the lth layer.
The bias vector of the neuron in the lth layer has the following bias vector:

bl =
[
bl

1, bl
2, . . . , bl

ml

]T
. (8)

Then, forward propagation of the three-layer MLP neural network is performed
as follows:

x1 = ReLU
(

W(1)•x0 + b(1)
)

, (9)

xl−1 =
[
xl−1

1 , xl−1
2 , . . . , xl−1

ml

]T
(10)

where ReLU is the activation function used for the neuron in each layer. The MLP neural
networks use softmax functions to normalize the output of the three-layer MLP and obtain
the final output value z, where z denotes the prediction probability of each class. The
value z satisfies the properties of a probability distribution. For i categories, zi ∈ (0, 1)
and ∑

i
zi = 1, by selecting the node with the highest prediction probability, the model can

obtain the final category of the classification.

3. Experiment
3.1. Datasets

To evaluate our proposed model, we conducted extensive experiments from two
perspectives. First, we used an open, high-resolution ship dataset named FGSC-23 [36]
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and a military ship dataset for image classification. To further explore the ability of the
CNN-Swin model, we conducted extensive experiments on the two most widely used,
oriented ship detection datasets, namely, HRSC2016 [37] and FAIR1M [38]. The results
showed that the CNN-Swin model has great potential as a backbone network in ship image
classification and detection.

3.1.1. FGSC-23 Dataset

FGSC-23 is a high-resolution, optical, remote sensing, ship target, fine-identification
image dataset. It contains 23 categories of ship sub-targets and 4052 ship sample slices.
Each target is given a category label, an aspect ratio label, and a distribution direction
label. We only used the category label for image classification. In contrast to the existing
optical, remote sensing, ship-target-recognition image datasets, the FGSC-23 dataset has
diverse image scenes, fine category differentiation, and complete labeling. The images of
the FGSC-23 dataset are mainly derived from publicly available Google Earth data and
Gaofen-2 (GF-2) satellite panchromatic remote sensing images, and some ship image slices
were derived from the publicly available HRSC2016 [37] ship target detection dataset with
0.4 to 2 m image resolution.

3.1.2. Military Ship Dataset

The FGSC-23 dataset is not comprehensive and does not contain the military class
of ships for image classification. Currently, there is no large-scale, standard, open-source
ship dataset that contains military-class ships because internet ship images are limited
in quantity, and most of them are low in quality. We collected open-source images and
compiled a dataset containing seven categories of military ship image. Some samples from
the military ship dataset are shown in Figure 3. The specific categories of the ship images
are shown in Table 1.
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destroyer, (c) Type-055 destroyer, (d) Surveillance boat, (e) Arleigh Burke class destroyer, (f) landing
vessel, and (g) missile boat.

Table 1. Number of categories in military ship dataset.

Category of Ships Number of Images

Type-054 frigate 404
Type-055 destroyer 409

Sovremenny class destroyer 420
Surveillance boat 397

Arleigh Burke class destroyer 445
Landing vessel 495

Missile boat 403
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As shown in Figure 3, the ship images in the military dataset we collected contained
different views, including bird’s-eye views, side views, and satellite panchromatic remote
sensing images of the ships. By further analyzing the samples of the seven categories used
for ship image classification, it was discovered that, regardless of the orientation of the
ship relative to the camera, the differences between the seven categories were not the hull
structures but the ship equipment and superstructures.

Taking the Arleigh Burke class destroyer and Sovremenny class destroyer as examples:
the Sovremenny class destroyer has a large, enclosed mainmast at the aft edge of the
tall forward superstructure with a unique, large top plate with features such as an air
search radar antenna mounted on top. Furthermore, a large single smokestack, square
in appearance, is located aft of the middle of the ship. A framed mizzen mast is located
behind the smokestack, and a helicopter hangar is located below it. The small flight deck is
positioned slightly higher, in front of the stern anti-aircraft missile launchers. In comparison,
in the Arleigh Burke class destroyer, the two longitudinal chimneys, the rear irradiating
radar, and the MK-15 close-in defense system are mounted in a stepped sequence along an
axis running down the center of the ship. The destroyer is also equipped with an aft hangar,
with the end of the second stack structure attached to the hangar structure. Although the
two are highly similar in hull architecture, there are still differences in the superstructures
and equipment. Therefore, the classification of the ship image should focus on fine-grained
features, such as superstructures.

3.1.3. HRSC2016

HRSC2016 was extracted from Google Earth, published by NWI in 2016, and annotated
using the oriented bounding box (OBB) annotation format. The dataset contains a total of
1061 images. It is divided into groups of 436, 181, and 444 images for the training, validation,
and test sets, respectively. There are three major categories and 27 minor categories, with a
total of 2976 target annotations in the dataset. The image resolution is in the range of 300 × 300
to 1500 × 900.

3.1.4. FAIR1M

The FAIR1M dataset contains more than one million instances and more than 40,000 high-
resolution, remote sensing images for fine-grained object recognition. The remote sensing
images in the dataset have a resolution of between 0.3 and 0.8 m from different platforms
and were obtained from many countries and regions. All objects in the FAIR1M dataset are
annotated with respect to five categories and 37 subcategories by oriented bounding boxes.

Compared with existing detection datasets that are dedicated to ship detection, the
FAIR1M dataset has four particular characteristics: (1) It is much larger than other existing
ship detection datasets, both in terms of the number of instances and the number of images.
(2) It provides richer, fine-grained category information for objects in remote sensing images.
(3) It contains geographic information, such as latitude, longitude, and resolution attributes.
(4) It provides better image quality due to the use of a careful data cleaning procedure.

The dataset subdivides the targets into categories, including 37 fine-grained cate-
gories. Of these, ships are subdivided into nine categories: liquid cargo ships, dry cargo
ships, fishing ships, cruise ships, tugboats, engineering ships, motorboats, warships, and
other categories. We only used the ship data in the FASIR1M dataset to verify the model
we proposed.

3.2. Experiments and Results
3.2.1. Experiment Details and Basic Results of CNN-Swin Model

Table 2 shows the details of the architecture under the ship image dataset with a
resolution of 224 × 224. The input images were processed in parallel by the CNN backbone
and the transformer backbone to output two feature vectors containing large amounts of
information. The model then took the two output feature vectors through a pixel-by-pixel
summation process and output them. The output feature vectors were sequentially input
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into the three layers of the MLP neural network, i.e., the input layer, the hidden layer
with 128 neurons, and then the output layer, where the softmax function finally output
the results.

Table 2. Architectural details of model.

Output Size CNN Backbone Transformer Backbone

128× 128 CNN-Block
(

3× 3, 64, stride = 2, padding = 1
1× 1, 64, stride = 2

)
×1 LN Patch embeddings

56× 56 Layer1
(

3× 3, 64, stride = 2(or 1), padding = 1
1× 1, 64, stride = 2(or 1)

)
×2

concat 4 × 4, 128-d, LN

Stage1(
window size = 7× 7

dim = 1286, head = 4

)
×2

28× 28 Layer2
(

3× 3, 128, stride = 2(or 1), padding = 1
1× 1, 128, stride = 2(or 1)

)
×2

concat 2 × 2, 256-d, LN

Stage2(
window size = 7× 7
dim = 256, head = 8

)
×2

14× 14 Layer3
(

3× 3, 256, stride = 2(or 1), padding = 1
1× 1, 256, stride = 2(or 1)

)
×8

concat 2 × 2, 512-d, LN

Stage3(
window size = 7× 7

dim = 512, head = 16

)
× 8

7× 7 Layer4
(

3× 3, 512, stride = 2(or 1), padding = 1
1× 1, 512, stride = 2(or 1)

)
×2

concat 2 × 2, 1024-d, LN

Stage4(
window size = 7× 7

dim = 1024, head = 32

)
×2

1× 1 Average Pooling

Fully connected layers (1024,128), (128, num_class)

Of the parameters (m × n, d) × k in the convolution layer, d denotes the depth of
the convolution layer, m × n denotes the convolution kernel size, and k denotes that the
(m × n, d) cascade is stacked k times. Stride = 2 (or 1) denotes that the stride was 2 (or 1) in
the first CNN-Block of the layer, and stride = 1 in the other CNN-Blocks of the layer.

Concat n × n denotes a concatenation of n × n neighboring features in a patch. This
operation results in the downsampling of the feature map by a rate of n. A window size of
7 × 7 denotes a multi-head self-attention module with window size of 7 × 7.

To verify the feature extraction ability, we performed experiments with the CNN-Swin
model on the military ship dataset, the number of categories of which is smaller than that of
the FGSC-23 dataset. The use of fewer categories provided an intuitive and clear confusion
matrix and t-distributed, stochastic-neighbor-embedding (t-sne) clusters [48] for verifying
the CNN-Swin model’s performance.

The computational platform had an Inter@Core i7-10875H CPU, and the GPU was a
single NVIDIA GeForce RTX 2080. The programming language was Python, version 3.8,
and the deep learning framework was PyTorch 1.7.0. The training and validation sets
were divided with a ratio of 7:3. The number of epochs was 100, and the batch size was
16. To further reduce the computational cost and overfitting issues, the CNN-Swin model
used an early stop, and the number of epochs was reduced to 82. The model was trained
iteratively using Adam as the optimizer. The learning rate was 0.01, and the weight was set
to 0.001 using L2 regularization. After pre-processing, the resolution of the input images
was adjusted to 224 × 224 with the resize function in PyTorch, which was the size of the
natural scene images, after which they were input into the model for training.

The confusion matrix was mainly used to represent the classification accuracy and
visualize the classification performance of the algorithm. The horizontal axis is the pre-
diction result, and the vertical axis is the true result. The darkest colored areas of the
confusion matrix were concentrated along the diagonal line, which showed the success
of the classification. The confusion matrix of the CNN-Swin model on the military ship
dataset is shown in Figure 4.
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The confusion matrix of ship dataset showed two points:

1. The model was trained well overall. The Arleigh Burke class destroyers had the
highest accuracy of 100%. The missile boat, landing vessel, and surveillance boat had
accuracies higher than 90%. In general, the model had a high classification accuracy
for the seven categories of ship image, demonstrating the reliability and robustness of
the model with ship images as the objects;

2. Type-055 destroyers and Type-054 frigates had poor classification results, with ac-
curacy rates of 0.87% and 0.85%, respectively, where 9% of Type-054 frigates were
misclassified as Type-055 destroyers by the model, and 7% of Type-055 destroyers
were misclassified as Type-054 frigates by the model. The reason was that the two are
extremely similar in hull structure and overall superstructure, differing only partially
in the superstructures. Specifically, in addition to the main bridge, the Type-055 de-
stroyer has an integrated mast that is nearly the same height as the main bridge; the
Type-054 frigate has a lower mast arranged at the rear and a radar with a spherical
outer cover on top. In addition, the stern of the Type-054 frigate has a helicopter
hangar, while the Type-055 destroyer does not, which results in some subtle differ-
ences in the superstructures at the stern. Compared to the more evident, fine-grained
features, such as the superstructures in the other categories, the fine-grained feature
differences between Type-055 destroyers and Type-054 frigates are not significant
enough to give rise to a 7–9% classification error rate.

To further analyze the effectiveness of the model on the ship image dataset, the
model was used to perform a t-sne [48] clustering analysis on the valid set. The t-sne
clustering analysis chart in Figure 5 shows that the chart of the untrained sample set
presents a scattered and disorganized point distribution without a good clustering effect.
In comparison, the chart of the CNN-Swin model presents a good point distribution and
basically includes seven clusters. The superiority of the model in terms of its classification
effectiveness is visualized by Figures 4 and 5.

Specifically, the clustering effects of each category were as follows: The points of the
Arleigh Burke class destroyer, missile boat, and surveillance boat were clustered completely.
The points of the Type-054 frigate and Type-055 destroyer were mixed with each other,
showing an average classification effect. A small portion of the points of the Sovremenny
class destroyer was mixed with the points of the Type-054 frigate and the Type-055 destroyer.
The t-sne clustering and confusion matrix were generally consistent and demonstrated
the model’s effectiveness for the analysis of specific samples. The overall analysis of the
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classification effect of the model validated the effectiveness of the CNN-Swin model on the
ship image dataset.
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3.2.2. Performance Comparison for Image Classification

This section focuses on the performance comparison of the model with two kinds
of state-of-the-art approach. The first section compares the performance of the model
with CNN models, and the second section compares the performance of the model with
transformer models. All the approaches were compared for the FGSC-23 dataset and our
ship dataset. The results in Table 3 show that the proposed model achieved the best results
of all the algorithms.

For the state-of-the-art approaches using CNNs, we compared the classical models
from recent years to the newer-model Regnet. For the state-of-the-art approaches using
transformers, we compared the ViT structure, an improved model with the ViT structure
(CaiT), and the Swin transformer model borrowed by the CNN-Swin model.

The results shown in Table 3 show that the CNN-Swin model constructed for the
features of ship images achieved high effectiveness on the FGSC-23 dataset and our military
ship dataset. For the same resolution of 224 × 224, the Top-1 accuracy rates of the CNN-
Swin model were 3.8–8.5% and 2.4–4.2% higher than those of the Swin transformer model
for our ship dataset and the FGSC-32 dataset, respectively. Furthermore, the model yielded
5.5–15.2% and 4.8–6.9% improvements in the Top-1 accuracy compared to the approaches
using CNNs on our ship dataset and FGSC-23 dataset, respectively. With a resolution of
3842, the model we proposed also outperformed other state-of-the-art approaches.

The comparison with other state-of-the-art approaches highlighted the good feature
extraction capability of the CNN-Swin model proposed in this paper on the ship image
datasets. The specific design and improvement for feature extraction of ship images are
effective and meaningful.

We also used five-fold cross-validation for the CNN-Swin model to validate the model
stability. In the five-fold cross-validation, the initial sample was split into five subsamples.
One subsample was retained to validate the model, while the other four samples were used
for training. The cross-validation was repeated five times, once for each subsample, and
the results were averaged over five times or using other combinations to end up with a
single estimate.
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Table 3. Comparison with state-of-the-art approaches for image classification.

Model
FGSC-32 Our Military Ship Dataset

Resolution Top-1 Accuracy Resolution Top-1 Accuracy

Densenet-121 [8]
Efficientnet [12]

GoogLeNet v4 [6]
Resnet-18 [7]
VGG-19 [2]

Regnet [2020] [40]

2242

2242

2242

2242

2242

2242

84.0%
85.2%
84.2%
81.9%
81.8%
86.1%

2242

2242

2242

2242

2242

2242

76.7%
81.1%
81.6%
84.2%
84.5%
86.4%

ViT-tiny [25]
ViT-small [25]
ViT-base [25]
ViT-base [25]

CaiT [2020] [32]
Swin-tiny [2021] [33]
Swin-base [2021] [33]
Swin-base [2021] [33]

2242

2242

2242

3842

2242

2242

2242

3842

84.3%
86.3%
87.9%
88.1%
88.0%
86.7%
88.5%
89.1%

2242

2242

2242

3842

2242

2242

2242

3842

81.4%
85.1%
87.2%
87.5%
86.5%
83.4%
88.1%
88.4%

CNN-Swin Model 2242

3842
90.9% ± 0.1%
91.4% ± 0.1%

2242

3842
91.9% ± 0.1%
92.1% ± 0.1%

The variance of the results was controlled to within 0.1%. This also proved that the
91.9% and 90.9% accuracy rates achieved by CNN-Swin model were not a coincidence but
had relatively good stability.

Figure 6 shows the confusion matrices for the state-of-the-art models for the military
ship dataset. The horizontal axis is the prediction result, and the vertical axis is the true
result. The darkest color in the confusion matrices was concentrated along the diagonals,
and the lighter colors appeared in the other the locations. The confusion matrix of Desenet-
121 had the most disorganized color distribution and was less effective in classification.
The confusion matrices of Regnet and Swin-base had more concentrated colors and the
darkest colors on the diagonal, which showed good effectiveness in classification. This was
consistent with the Top-1 accuracy results obtained from our experiments.

The specific analysis of the classification of each approach for the samples of the seven
categories is discussed as follows. For the Alibek-class destroyers, the Top-1 accuracy of
the multi-branch structures Resnet, GoogLeNet, and Regnet was in the range of 68–75%,
which showed less accuracy and effectiveness. However, the Swin transformer was more
effective for feature extraction for this category of ships, and the Swin-base model had an
accuracy of 95%. The fusion of the Swin model based on the multi-branch CNN had a good
complementary effect on the extraction of features.

The confusion matrix of the CNN-Swin model in Figure 6, with the colors nearly
completely concentrated on the diagonal, shows the good classification performances. In
comparison, other state-of-the-art approaches had average classification results and some
generalizability limitations.

3.2.3. Performance Comparison for Ship Detection

This section focuses on the performance comparisons of different model backbones
with three kinds of state-of-the-art method for ship detection. The first section compares the
performance of the backbone on the HRSC2016 dataset, and the second section compares
the performance of the backbone on the ship data in the FAIR1M dataset.

For the ablation study, we considered three typical detection frameworks: Axis Learn-
ing [49], Rotation-Sensitive Regression Detector (RRD) [50], and Sparse Label Assignment
(SLA) [51]. Axis Learning is a one-stage, anchor-free method with a new aspect-ratio-aware
orientation centerness method for large-aspect-ratio detection. RRD uses two network
branches with different designs: a regression branch extracts rotation-sensitive features, and
a classification branch extracts rotation-invariant features. SLA is a sparse label-assignment
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strategy to select high-quality sparse anchors based on the posterior intersection over union
(IoU) of detections. In addition, we used three different backbones for each detection frame-
work: Resnet, VGG, and ViT. For these different backbones, we utilized the same settings
as those of the CNN-Swin backbone: the Adam optimizer, an initial learning rate of 0.001,
a weight decay of 0.05, and a batch size of 16. For the different detection frameworks, we
used the settings mentioned in their respective papers. The comparisons were conducted
by changing only the backbones and leaving the other settings unchanged.

The mean average precision (mAP07) was calculated based on the visual object classes
(VOC) 07 method which was proposed by the Pascal VOC Challenge [52]. As shown in
the Table 4, on the HRSC2016 dataset, the CNN-Swin backbone we proposed surpassed all
the other backbones from different state-of-the-art methods, including Axis Learning [49],
RRD [50], and SLA [51]. With the CNN-Swin backbone we proposed, Axis Learning, RRD,
and SLA obtained 67.23%, 90.67%, and 90.56% mAP values, respectively. It is surprising
that by using the CNN-Swin backbone, all the methods outperformed the other backbones,
even with the higher resolution. Figure 7 shows some results from the HRSC2016 dataset.
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Table 4. Performance comparison of different methods with different backbones for ship detection in
the HRSC2016 dataset.

Methods Backbone Input Size HRSC2016
mAP(07)

Axis Learning [49]

Resnet101
Resnet50

ViT-S

800 × 800
800 × 800
384 × 384

65.98
64.04
66.72

CNN-Swin 384 ×384 67.23

RRD [50]

Resnet101
VGG16
ViT-S

768 × 768
384 × 384
384 × 384

89.51
84.30
86.79

CNN-Swin 768 ×768 90.67

SLA [51]

Resnet101
Resnet50

ViT-S

384 × 384
768 × 768
384 × 384

87.14
89.51
88.23

CNN-Swin 384×384 90.56
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Figure 7. Some of the detection results obtained from the HRSC2016 dataset with our backbone in
different state-of-the-art methods.

Table 5 shows the performance with the CNN-Swin as the basic backbone in the
three different state-of-the-art methods for the FAIR1M dataset. Due to the high number
of categories in the FAIR1M that we did not need, we only used nine categories of ship
data from this dataset to verify the performance of the CNN-Swin backbone for feature
extraction. The results showed that, with the CNN-Swin backbone, a higher head mAP
could be achieved, with values of 38.52%, 39.77%, and 43.16%, respectively. Figure 8 shows
some results from the FAIR1M dataset.

Table 5. Performance comparison of different methods with different backbones for ship detection in
the ship data of the FAIR1M dataset.

Methods Backbone Input Size Ship Data of FAIR1M
mAP(07)

Axis Learning [49]

Resnet101
Resnet50

ViT-S

800 × 800
800 × 800
384 × 384

33.82
35.72
36.81

CNN-Swin 384 ×384 38.52

RRD [50]

Resnet101
VGG16
ViT-S

768 × 768
384 × 384
384 × 384

36.53
35.64
37.75

CNN-Swin 768 ×768 39.77

SLA [51]

Resnet101
Resnet50

ViT-S

384 × 384
768 × 768
384 × 384

41.94
40.31
42.23

CNN-Swin 384×384 43.16
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Figure 8. Some of the detection results obtained from part of FAIR1M dataset with our backbone in
different state-of-the-art methods.

Figures 7 and 8 show that different methods with the CNN-Swin backbone achieved
high detection performances. The CNN-Swin model was effective in ship image detection
in different ship remote sensing datasets, and its feature extraction performance also
demonstrated great potential as the backbone network for a range of downstream tasks
related to ship image detection.

3.2.4. Ablation Studies

We performed an ablation study to highlight the contributions of each neural stream to
the final classification result. The results are shown in Table 6, where AccCNN and AccTran

denote the accuracy of the CNN and transformer branches, respectively. First, the accuracy
of the CNN-Swin model with the combined CNN and transformer increased by 3.9–8.7%
compared to that of its individual branches. The CNN-Swin model was also compared
with an ensemble model that combined the outputs of the CNN and the transformer. For
a fair comparison, the same data augmentation and training epochs were used to train
ResNet-101, and it was combined with the ViT-base model to form an ensemble model. The
results are reported in Table 6. The accuracies of the CNN branch, the transformer branch,
and the CNN-Swin model reached 84.8%, 88.0%, and 91.9%. In contrast, the ensemble
model (ViT-base + ResNet-101) achieved 89.7% accuracy, which was 2.2% lower than that
of CNN-Swin (91.9%).

Table 6. Performance comparison of single branch.

Model AccCNN AccTran AccAll

ViT-base
Resnet-101

ViT-base + Resnet-101

—
82.1%
82.1%

87.2%
—

87.2%

87.2%
81.8%
89.7%

CNN-Swin 83.2% 88.0% 91.9%

The results of the ablation study proved that each neural stream in the CNN-Swin
model contributed well to the final classification. However, the reason that the model
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worked better when the two branches, i.e., the CNN and the transformer, were fused was
not explained clearly by the experiments in Table 6.

Therefore, the class activation maps of each branch in the CNN-Swin model were
visualized to explain why the proposed model was better than the others. To clearly reveal
the class activation maps, the CNN branch used the Grad-CAM [53], and the transformer
branch used attention rollout [54]. The feature maps of the last layer of the CNN branch
and the last layer of the transformer branch were the inputs of the class activation maps.

As shown in Figure 9, the CNN branch concentrated more on the local regions, which
is clearly demonstrated in Figure 9a–c. Compared with the CNN branch, the transformer
branch of the CNN-Swin model tended to activate larger regions rather than local areas,
suggesting enhanced long-distance feature dependencies, which are clearly demonstrated
in Figure 9d–f.
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Figure 9. Class activation maps: (a) CNN branch in Arleigh Burke-class Destroyer, (b) CNN branch
in Arleigh Burke-class Destroyer, (c) CNN branch in Arleigh Burke-class Destroyer, (d) Transformer
branch in Arleigh Burke-class Destroyer, (e) Transformer branchin Arleigh Burke-class Destroyer,
(f) Transformer branch in Arleigh Burke-class Destroyer.

Due to the fine-detailed local features progressively provided by the CNN branch,
the CNN-Swin retained important, detailed local features. Furthermore, the attention
areas in Figure 9d–f are more complete, while the background is significantly suppressed,
implying that the transformer branch had a higher discriminative capacity for the global
feature representations in the CNN-Swin model. In contrast, the CNN branch activated
discriminative local regions. The CNN-Swin model took advantage of global cues from the
transformer branch and, thereby, performed better than other single models.

Specifically, Figure 9 reveals that the transformer branch focused more on the overall
architectural features of the ship, and the CNN branch concentrated more on the local
features, such as the superstructure, of the ship. The restriction of its receptive field
limits its performance for extracting features of target ship. Additionally, the CNN mainly
concentrates on the local, typical features of ship targets. Similarly, its local receptivity limits
its performance. Considering the different active regions of the CNN and the transformer,
our CNN-Swin model combined them to extract the different-grained features of ship
targets. Finally, the performance of classification and detection demonstrated that our
combined method is effective.
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When a person judges the type of a ship, the characteristics of both the hull shape and
the superstructure of the ship are combined to determine the type of ship. The CNN-Swin
model incorporating a CNN and a transformer is in line with human visual common sense
for ship images.

To further improve the performance of the CNN-Swin model and alleviate the overfitting
issues, we used different data augmentations, such as RandomResizedCrop, RandomHorizon-
talFlip, RandomRotation, ShiftScaleRotate (random affine change), and HueSaturationValue
(random changes of the hue and saturation values of the network). These data augmentation
methods have already been used in recent ship detection methods [55,56].

Each technique was implemented in the PyTorch framework, which is widely used in
deep learning. Finally, the CNN-Swin model with different data augmentation techniques
was implemented, and the results are shown in Table 7.

Table 7. Performance comparison of different data augmentations in CNN-Swin model.

Data Augmentation Methods Accuracy

RandomRotation
RandomBrightnessContrast

RandomHorizontalFlip
ShiftScaleRotate

HueSaturationValue
RandomResizedCrop

90.37%
90.59%
91.24%
91.59%
91.72%
91.77%

CNN-Swin without data augmentation
CNN-Swin+Data Augmentation (Final)

91.41%
91.94%

The experimental results showed that when using ShiftScaleRotate (random affine
change), HueSaturationValue (random changes of the hue and saturation values of the
network), and RandomResizedCrop, the CNN-Swin model yielded a certain degree of
performance improvement. By combining various types of data augmentation technique,
we finally selected three optimization methods that had positive effects on the CNN-Swin
model for the ship dataset.

The CNN-Swin model achieved a 91.94% accuracy on the ship image dataset us-
ing three data augmentation tricks. Compared with the basic model without any data
augmentation, the performance of the model after using aggressive data augmentation
was improved.

To further explain the computational complexity, we performed experiments to explore
the computational complexity of CNN-Swin model, and the results are in Table 8.

Table 8. Computational complexity analysis of in CNN-Swin model.

Model Batchsize Computational
Time/h Accuracy

VGG-16 8 2.38 83.9%
VGG-19 8 2.56 84.5%

CNN-Swin 8 2.66 91.9%

Swin+VGG-13
Swin+Resnet-50

CNN-Swin

4
4
4

4.86
3.96
3.26

89.9%
90.4%
92.0%

All models were trained 100 epochs to provide a fair comparison. In addition, for fair
contrast, the batch size was not only kept the same between comparators, but was also
adjusted by the GPU-limited performance, which was improved to the highest level of the
computational platform.

As the results in the upper column of the table show, our CNN-Swin model can be
trained equally in nearly the same time as the competitors VGG-19 and VGG-16. Although
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the training computational time of CNN-Swin model is longer than others, the accuracy is
much higher than VGG-16 and VGG-19. We believe that the high performance of CNN-
Swin model makes it worth training for longer than others to a certain extent.

The lower rows of the table show that, with the concise CNN backbone we designed,
our model not only trained faster than other CNN branches but also had higher accuracy.

4. Conclusions

By analyzing remote sensing ship images in detail, we found that the differences in
ship images were concentrated in the ship equipment and superstructures. Therefore, ship
image feature extraction requires more attention to be paid to fine-grained and coarse-
grained features. To better extract the features of ship images, we applied a transformer
structure based on self-attention for the first time in ship image classification and detection,
and we proposed a CNN-Swin model that fused CNN and transformer structures. To
exploit the good extraction effect of the CNN on the features of ship images and avoid
overfitting due to the model fusion, we proposed the CNN-Block, a CNN feature extraction
module with multiple branches in the CNN-Swin model. We also used a Resnet-like
structure to construct a CNN backbone based on the CNN-Blocks.

Experimental results showed that the CNN-Swin model achieved a 90.9% accuracy
on the FGSC-23 dataset and 91.9% accuracy on a military ship dataset. We also performed
experiments with other state-of-the-art approaches. The results showed that, for the military
ship dataset, the CNN-Swin model accuracy was 4.9% higher than that of Regnet (2020),
the highest-accuracy CNN model, and 3.2% higher than the Swin transformer model (2021),
the highest-accuracy transformer. Meanwhile, for the FGSC-23 dataset, the CNN-Swin
model accuracy was 4.8% higher than that of Regnet and 2.4% higher than that of the Swin
transformer model. In ship image classification and recognition, the CNN-Swin model
showed good classification performances.

Moreover, the model applied a transformer structure with self-attention for the first
time in this field, and its good feature extraction ability showed its great potential for
a range of downstream tasks, such as ship detection. Therefore, the CNN-Swin model
was used as the basic backbone to extract features with different state-of-the-art remote
sensing detection methods. The Axis Learning, RRD, and SLA methods with the CNN-Swin
backbone achieved higher mAP values than the other backbones, Resnet and ViT, on the
open dataset HRSC2016 and part of the FAIR1M dataset. Although the CNN-Swin model
we proposed achieved good results in ship classification and detection, its computational
complexity increased to a certain extent. However, the novel CNN-Block was designed
to decrease the computational complexity, and, finally, the CNN-Swin model was trained
faster than other confused models. The feature extraction performance of CNN-Swin
demonstrates its great potential as a backbone network for downstream tasks such as ship
detection.
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