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Abstract: The model of atmosphere optical turbulence is important in the research field of laser
atmospheric transmission, and plays a key role in astronomical site selection. In this paper, the single
and overall statistical analysis between different outer scale models (HMNSP99 and the Dewan
model) were conducted and the results show that the HMNSP99 model has better performance
with the lowest bias, root mean square error, and center root mean square error. The results of
the statistical analysis of three turbulence parameters revealed that there is a correlation between
turbulence parameters and statistical operators, where statistical operators increase significantly
when wind shear and temperature gradient respectively exceed 0.016 s−1, 0 K/m, and the outer scale
is within 2.5 m. Furthermore, a new statistical outer-scale model, the WSTG model, is proposed and
the results of statistical analysis present that the WSTG model is more reliable than the HMNSP99
model in reconstructing optical turbulence strength. These results acquired from this paper add
substantially to our understanding of atmosphere optical turbulence and the conclusions can be
applied to improve the performance of an adaptive optics system and astronomical site selection.

Keywords: optical turbulence; temperature gradient; wind shear; empirical model

1. Introduction

One of the most significant current discussions in adaptive optics (AO) systems is
atmospheric optical turbulence because of its direct effects on light waves propagated in
the turbulent atmosphere including scintillation, phase change, beam drift and angle-of-
arrival fluctuation [1–3]. The primary parameter used to characterize atmospheric optical
turbulence is the index of refraction structure constant C2

n [4–6]. In the past decades, several
instruments have been developed to measure atmospheric optical turbulence, such as the
meteorological balloons equipped micro-thermometer [7], SCIDAR (scintillation detection
and ranging) [8], MASS (multi-aperture scintillation sensor) [9], and DIMM (differential
image motion monitor) [10–12]. Despite their use in field testing, these instruments are
expensive and difficult to operate in complicated environments, which makes estimation a
less expensive and convenient alternative.

Over the years, the developments in adaptive optics have heightened the need for a
C2

n estimation model. The simplest empirical model was proposed from segmented fitting
on experimental data, which represent the statistically averaged results of atmospheric
optical turbulence. For example, the submission laser communication (SLC) model, the Air
Force Geophysics Laboratory (AFGL) and Air Force Maui Optical Station (AMOS) model,
and the Critical Laser Enhancing Atmospheric Research (CLEAR I) model [13–16]. Based
on the basic theory of turbulence, parameterization models were developed to establish
the relationship between conventional meteorological parameters and the profiles of C2

n
through the outer scale. The National Oceanic and Atmospheric Administration (NOAA)
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model was developed by VanZandt in 1985, which integrated the fine structure of wind
shear and was relatively complex [17]. In 1988, Coulman used standard meteorological
observation data to estimate C2

n profiles whose external scale was a function of altitude [18].
In 1993, based on sounding data, an outer scale model was proposed by Dewan considering
the vertical shear of the horizontal wind speed [19]. Later, Trinquet established a model
named AXP (with parameters A and P both functions of altitude), which indicated a
vertical resolution of 300 m and a wind shear under 0.04 s−1 [20]. A simple approach to
estimate the C2

n profile was proposed using the Thope scale and the overturning of the
temperature applied to distinguish turbulence [21]. Furthermore, Ruggiero & DeBenedictis
developed an outer scale model at the Air Force Research Laboratory from the Holloman
Spring 1998 and Holloman Spring 1999 thermosonde campaigns (HMNSP99), which gave
the relationships relating parameterization to wind shear and temperature gradient [22].
In 2020, Bi et al. investigated the accuracy of the HMNSP99 model by comparing them
with the corresponding radiosonde measurements and indicated that the estimated C2

n
profiles were not completely consistent with the measured values at the corresponding
altitudes [23]. The existing optical turbulence models each have their own advantages
and disadvantages, and no one model is recognized as the best. Despite its drawbacks,
the HMNSP99 model represents the most widely used outer scale model [23–25]. Due to
the shortcomings of the existing optical turbulence models, improvements are needed to
reflect the optical turbulence characteristics more accurately. Through a large amount of
experimental data, the existing model is statistically analyzed to find the source of error,
and finally a credible optical turbulence model is obtained.

This study sets out to evaluate the performance of different models, determines influ-
encing factors of the models and develops a new model to better estimate C2

n profiles. The
remainder of this paper is organized as follows: Section 2 introduces three methodologies
associated with the investigation of the C2

n profiles, Section 3 provides the experimental
results and discussion, including the use of contrast experiments, and, finally, Section 4
concludes the paper and proposes some limitations.

2. Experiment and Methodology
2.1. Experiment Detail

From November to December in 2017, an offshore atmospheric turbulence in situ
measurement experiment was implemented in Sanya where balloon-borne radiosondes
equipped with micro-thermometers and GPS was conducted by the Anhui Institute of Op-
tics and Fine Mechanics of the Chinese Academy of Sciences. A comprehensive description
of the micro-thermometer and its specifications are given in [13–16]. All the flights were
released during the early morning at 7:40 a.m. or late evening at 7:40 p.m. Sanya (18.3◦ N,
109.5◦ E) is located in the South China Sea, south of Hainan Island, at an altitude of 9 m
above mean sea level (AMSL), which has outstanding marine climate characteristics. The
location of the experiment site and the photographs of the experimental scenario picture
of the micro-thermometer are shown in Figure 1. The red point in the figure is the release
position of our balloon-borne radiosondes.

2.2. Estimation Model

To obtain a vertical profile of optical turbulence strength, the parameterization models
are developed to convert radiosonde meteorological parameters into the refractive index
structure constant [19]. Under the assumption of local homogeneity and stationarity of
the refractive index fluctuations, the parameterization model used the Tatarskii model for
estimating C2

n, and the profile can be expressed in the following form [4]:

C2
n = aL0

4/3M2 (1)

where a is a dimensionless constant set to 2.8 [26]. L0 is the outer scale that mean it is the
largest scale of inertial range turbulence, and the potential refractive index gradient M is
expressed as:
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M = −
(

79× 10−6P
T

)
∂ ln θ

∂h
(2)

where M is related to atmospheric temperature (T), atmospheric pressure (P), and potential
temperature (θ). h is the height above ground. C2

n can be expressed from the outer scale
L0 and meteorological parameters. In addition to the turbulent outer scale L0, these
meteorological parameters can be obtained by the balloon-borne radiosondes during the
actual experiments. Therefore, it is particularly important to choose an appropriate outer
scale model to estimate the C2

n profiles.

Figure 1. Location of experiment site (left) and experimental scenario picture of balloon-borne
micro-thermometer (right).

Based on the Tatarskii equation, Dewan developed an outer scale model considering
the vertical shear of the horizontal wind speed, in which two expressions for the troposphere
and stratosphere are proposed [19]. The outer scale model is given as follows:

L0
4/3 =

{
0.14/3 × 101.64+42×S, Troposphere
0.14/3 × 100.506+50×S, Stratosphere

(3)

S =

√(
∂u
∂h

)2
+

(
∂v
∂h

)2
(4)

where S is the vertical shear of the horizontal velocity. u and v are two horizontal wind
components. Another outer scale mode, known as the HMNSP99 model, was proposed to
estimate the C2

n profiles, which takes the temperature gradient ( dT
dh ) and wind shear (S) into

account [22]. For containing multiple parameters associated with the optical turbulence,
the outer scale model plays an important role in estimating C2

n profiles, and its specific
expression is:

L0
4/3 =

{
0.14/3 × 100.362+16.728S−192.347 dT

dh , Troposphere
0.14/3 × 100.757+13.819S−57.784 dT

dh , Stratosphere
(5)

2.3. Statistical Operators

In this paper, two statistical operators of the bias and root mean square error (RMSE)
operators are applied to evaluate the performance and reliability of the estimated values of
different models in reconstructing optical turbulence strength [27]. The bias contains infor-
mation on systematic model errors, and the RMSE contains information on the statistical
errors plus the systematic errors. Furthermore, utilizing the bias and the RMSE, we retrieve
the center root mean square error (CRMSE), which represents the intrinsic uncertainty
not affected by the bias, and provides fundamental information on the systematic bias
and statistical uncertainties. Bias refers to the difference between the estimated value and
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the measured value, which can be used to evaluate the accuracy of the estimated result.
The smaller the absolute value of Bias, the higher the evaluation accuracy. RMSE and
CRMSE reflects the degree to which the evaluated data deviates from the true value, and
small RMSE and CRMSE values represent high calculation accuracy. The definition of the
statistical operators is given as follows:

BIAS =
N

∑
i=1

(Yi − Xi)

N
(6)

RMSE =

√√√√ N

∑
i=1

(Yi − Xi)
2

N
(7)

CRMSE =

√√√√ N

∑
i=1

[(
Xi − Xi

)
−
(
Yi −Yi

)]2
N

=
√

RMSE2 − BIAS2 (8)

where Xi and Yi represents the estimated index values and individual measured index
values from radiosonde at the same height, respectively, and N is the number of samples for
a couple (Xi, Yi) at the same height. Xi and Yi stand for the average values of the measured
and the model parameters, respectively. Furthermore, considering the measured value of
C2

n, basically in the range of10−19–10−14 m−2/3, using log (C2
n) instead of C2

n makes it easier
to calculate and visualize the statistical results, which makes the results more readable. This
is just a substituted conversion to represent the error of C2

n so that it is reliable and valid.
When the three statistical evaluation factors are actually used, the range of reliable values
has a great relationship with the magnitude of the measured data. In this paper, statistical
factors (the absolute value of Bias, RMSE and CRMSE) less than 1.5 are considered to
be reliable.

3. Results and Discussion
3.1. Profiles from Models and Radiosonde Measurement

In this experiment, a total of available 89 radiosonde measurements were obtained,
excluding the abnormal radiosonde measurements due to various factors such as weather
and strong winds. In this paper, the altitude range of the following figures is from the
surface to 25 km above sea level. Figure 2 shows the C2

n profiles estimated by the models and
measured by the radiosonde at the Sanya site. It is notable that the C2

n profiles reveal a steep
drop around the ground. Then the C2

n values gradually increase, with altitudes from around
3 km up to 15 km and gradually decrease with altitudes in the free atmosphere thereafter.
The trend between the estimated and measured profiles is consistent in general. In order to
verify the turbulence strength profiles, the Fried parameters (r0) for the measured profiles
are calculated in the figures. Comparing the two outer scale models, we cannot draw a
definitive conclusion as to which has obvious advantages. Therefore, it is necessary to
conduct a statistical analysis on the estimation results of the two outer scale models.

3.2. Statistical Model Performances

As can be seen from Equations (3) and (5), the outer scale models contain two ex-
pressions corresponding to the troposphere and stratosphere, respectively. Therefore, it is
necessary to use statistical operators to evaluate the performance of the model hierarchically.
The statistical operators for individual flights of troposphere and stratosphere between
the measurements and model-based estimates are illustrated in Figure 3. According to
the distribution characteristics of C2

n, the statistical operator of the boundary layer is also
shown here, where the statistical height is from the ground to 3 km [28]. It is notable that
the bias of HMNSP99 and the Dewan models are less than 1.25 m−2/3 and 1.75 m−2/3,
respectively. In different atmospheric stratification, the bias peaks of the two models are
smaller in the boundary layer and larger in the stratosphere. It is obvious that the RMSE in
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the three atmospheric stratifications is significantly different, where the value gradually
increases with height. The RMSE peaks of the HMNSP99 model respectively are 0.85 m−2/3,
1 m−2/3, and 1.3 m−2/3 in the boundary layer, troposphere, and stratosphere. Similarly,
the RMSE peaks of the Dewan model corresponds to 1 m−2/3, 1.05 m−2/3, and 1.25 m−2/3.
Comparing the CRMSE of different atmospheric stratifications, there is no obvious differ-
ence. However, the CRMSE of the HMNSP99 model has a range of 0.4–1.2 m−2/3, which is
smaller than the range of 0.6–1.4 m−2/3 of the Dewan model. Overall, the estimated values
of C2

n profiles using the HMNSP99 model are more consistent with the measured values
than the Dewan model.

Figure 2. Comparison of C2
n profiles between measurements by radiosonde and estimations by

HMNSP99 and Dewan model.

In addition, the overall statistics between the HMNSP99 and Dewan models derived
from all eighty-nine balloons are performed, as shown in Figure 4, with the vertical profiles
of the bias, the RMSE, and CRMSE. In this figure, N is the number of flights for a couple
(Xi, Yi) at each precise height and we use N = 89 at each height. Moreover, the absolute
value of bias is taken to better show the performance of the different models. It is obvious
that bias, RMSE and CRMSE increase with altitudes. Notably, the bias of the HMNSP99
model is overall less than the Dewan model, that within 0.75 m−2/3 and 1 m−2/3, respec-
tively. It is worth highlighting that the RMSE values from the Dewan model are slightly
smaller than the HMNSP99 model from the ground to 15 km and larger above 15 km.
Compared with the HMNSP99 model, the Dewan model has larger CRMSE values and
is within 1.25 m−2/3 from the ground up to 25 km. In conclusion, the estimated values
from the HMNSP99 model are generally coherent with the radiosonde measurements. It
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should be pointed out that the estimated values have a relatively large drift compared with
measurements above 15 km, which can obviously be seen in Figure 4.

Figure 3. Statistical analysis of log C2
n calculated by HMNSP99 and Dewan model for eighty-nine

flights of individual meteorological balloons.

Figure 4. Overall statistical analysis of log C2
n profiles of eighty-nine balloon flights.

3.3. Statistical Analysis of the Effects of Turbulence Parameters

At present, despite the fact that the mechanism of the generation and development
of optical turbulence is not clear, previous studies have shown that turbulence can be
produced by a buoyancy heat bubble and wind shear. Therefore, temperature gradient and
wind shear are widely applied to estimate optical turbulence strength [25,29–33]. According
to Equations (3) and (5), we know that the HMNSP99 model contains more parameters
relating to turbulence generation, which may lead to better model performance than the
Dewan model. As mentioned previously, the HMNSP99 model was developed from the
statistics of the connection between the outer scale to wind shear and temperature gradient.

In this section, we focus on the relationship between turbulence parameters (wind
shear, temperature gradient and outer scale) and statistical operators (bias, RMSE and
CRMSE), as described in Figure 5. It is obvious that there is a correlation between wind
shear and statistical operators, where statistical operators increase significantly when wind
shear exceeds 0.016 s−1. This could be the result of variations in the weight of wind shear
on turbulence. Therefore, when the wind shear increases, the coefficients of temperature
gradient and wind shear in the model should be adjusted appropriately. Note that the
statistical operators are divided into two parts by the temperature gradient, where the



Remote Sens. 2022, 14, 3085 7 of 13

statistical operator increases significantly when the temperature gradient exceeds 0 km−1.
Generally, the temperature in the stratosphere gradually increases with height, eventually
resulting in a temperature gradient of more than 0 km−1. This result is consistent with the
conclusions above that the stratosphere and has a larger statistical operator. Also, different
outer scales also correspond to different statistical operators, where the outer scale has a
critical value of 2.5 m. Differences in statistical operators may be attributed to the fact that
the results of the parametric model cannot accurately reflect the fine structure of turbulence,
especially small-scale turbulence.

Figure 5. Statistical analysis of the relationship between statistical operators and turbulence parameters.

Based on the previous statistical results, we conclude that the value of turbulence pa-
rameters will have a non-negligible impact on the performance of the model. It is necessary
to perform statistical analysis on the turbulence parameters of different atmospheric layers.
As shown in Figure 6, the x-axis and y-axis respectively represent the number of balloon-
borne radiosondes and the average values of turbulence parameters. In addition, red, green
and blue respectively represent the boundary layer, troposphere and stratosphere. It is
visible that the wind shear in the stratosphere is larger than the boundary layer and tropo-
sphere, with a value exceeding 0.016 s−1. Similarly, the temperature gradient increases with
the boundary layer, troposphere, and stratosphere successively, and the stratosphere has
the largest temperature gradient, which is close to a constant of 2 × 10−3 km−1. In contrast,
the stratosphere has the smallest outer scale, which is almost less than 2.5 m. Compared
with the boundary layer and stratosphere, the outer scale of the troposphere has a larger
range of 5–16 m. The differences of the outer scale can be attributed to a wider variety of
turbulence strength in the stratosphere. In summary, different atmospheric layers have
different turbulence parameters, which will affect the performance of the model, and finally
make statistical operators present different distributions in different atmospheric layers.
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Figure 6. Statistically average turbulence parameters in different atmospheric layers. BL: boundary
layer; Ts: troposphere; Ss: stratosphere.

3.4. New Statistical Outer Scale Model

According to previous studies, it can be demonstrated that temperature gradient and
wind shear play an important role in the estimation optical turbulence strength. Compared
with the Dewan model, the HMNSP99 model with the function of S and dT/dh can better
reveal the physical mechanism of optical turbulence. However, the values of S and dT/dh
have an important impact on the performance of the model, whose coefficients in the outer
scale model become the key to accurate estimation. Therefore, using the meteorological
balloons data, a new statistical outer scale model, called the WSTG model, was derived from
the HMNSP99 model. In detail, first, the statistical average profiles of L0, S, and dT/dh with
a vertical resolution of 100 m are acquired from the meteorological balloons data. Second,
according to the value of S and dT/dh, L0, S and dT/dh are used for piecewise fitting to
develop the WSTG model. Finally, a new outer scale model is obtained through constant
fitting, where the residual sum of squares between measured values and estimations are
minimized. Its specific expression is:

L0
4/3 =


0.14/3 × 100.835−37.164S−306.034 dT

dh , S < 0.016∩ dT/dh < 0
0.14/3 × 100.825+66.9S−52.783 dT

dh , S < 0.016∩ dT/dh > 0
0.14/3 × 100.715+52.907S−102.515 dT

dh , S > 0.016∩ dT/dh < 0
0.14/3 × 102.215−9.882S−101.666 dT

dh , S > 0.016∩ dT/dh > 0

(9)

In this part, attention has been given to evaluate the performance of the newly pro-
posed WSTG model. Figure 7 presents statistically average profiles of L0 and C2

n between
the estimations calculated by models and the radiosonde measurements. It is notable that
the L0 and C2

n profiles of estimated and measured are consistent in the trend in general.
Comparing the L0 profiles of two estimation models, the differences between the WSTG
model and measurement are relatively minor from ground up to 25 km. It should be
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pointed out that the C2
n profiles between WSTG model and measurements present better

agreement as a whole, but the C2
n values from the HMNSP99 model have a relatively large

drift compared with measurements above 15 km, which can be clearly seen in Figure 7.
Overall, the WSTG model performs better than the HMNSP99 model in reconstructing the
optical turbulence strength.

Figure 7. Statistically average profiles of L0 and C2
n from models and radiosonde measurement.

In order to ensure the applicability of the newly proposed WSTG model, the com-
parisons of the estimated C2

n profiles obtained by the two outer scale models (HMNSP99
and WSTG) for individual meteorological balloons in Sanya, along with the measured C2

n
profiles, are depicted in Figure 8. It is clear that the HMNSP99 and WSTG model are in
alignment with the measured values in trends as a whole, but the WSTG model has better
estimation results in magnitude. The differences between two models are relatively small
from ground up to 15 km, and more obvious above 15 km. However, there is still some
room to improve the WSTG model, especially above 20 km. In other words, despite the fact
that the WSTG model is not perfect, its performance has been greatly improved compared
to the HMNSP99 model.

In addition, the statistical operators between the estimations calculated by models
(HMNSP99 and WSTG) and the radiosonde measurements from all eighty-nine flights are
performed, as shown in Figure 9. It is obvious that the absolute values of the bias of the
WSTG model are less than or equal to the HMNSP99 model for most of the flights, which
have a range of −0.5–0.5. Similarly, the RMSE of the WSTG model are smaller than the
HMNSP99 model for most of flights as well as less than 0.8 and 1.2, respectively. Despite
the fact that the differences in CRMSE between the two models are relatively minor, the
CRMSE of the WSTG model are still smaller than the HMNSP99 model as a whole. In
conclusion, in consideration of the individual statistical analyses, the WSTG model is more
reliable than the HMNSP99 model in reconstructing optical turbulence strength.
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Figure 8. Comparison between estimated C2
n profiles using the HMNSP99 model (blue), the WSTG

model (red), and the measured profiles (black).

Figure 9. Statistical analysis of log C2
n calculated by HMNSP99 and WSTG model for eighty-nine

flights of individual meteorological balloons.
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4. Conclusions

In this investigation, the balloon-borne radiosondes equipped with micro-thermometers
are released to require the C2

n profiles and conventional meteorological parameters at Sanya,
south of the Hainan Island. Returning to the purpose posed at the beginning of the study,
this study set out to evaluate the performance of different models, determine influencing
factors of the models and developed a new model to better estimate C2

n profiles. In order
to achieve satisfactory results for this goal, this research first statistically analyzed the
performance of different outer-scale models (HMNSP99 and Dewan model) in different
atmospheric layers using three statistical operators (bias, RMSE and CRMSE). After that,
we put our attention to the influence of turbulence parameters on statistical operators and
the turbulence parameters of different atmospheres. Finally, a new model containing wind
shear and temperature gradient used to estimate C2

n profiles was proposed from the results
of statistical analysis. The conclusions are summarized as follows.

According to the individual and overall statistical analysis results, the HMNSP99
model has better performance with the lowest bias, RMSE, and CRMSE than the Dewan
model, which includes the results of different atmosphere layers. On the one hand, the
individual statistical analysis results indicate that the bias of the HMNSP99 model are less
than 1.25 m−2/3 and the RMSE peaks respectively are 0.85 m−2/3, 1 m−2/3 and 1.3 m−2/3

in the boundary layer, troposphere, and stratosphere. Also, the CRMSE of the HMNSP99
model has a range of 0.4–1.2 m−2/3, which is smaller than the range of 0.6–1.4 m−2/3 of the
Dewan model. On the other hand, the overall statistical analysis results show that that bias,
RMSE and CRMSE increase with altitudes. The bias and RMSE of the HMNSP99 model
respectively are within 0.75 m−2/3 and 1.5 m−2/3 from the ground up to 25 km. In a word,
the estimated values of C2

n profiles using the HMNSP99 model are more consistent with the
measured values, but the estimated values have a relatively large drift in the stratosphere
(above 15 km).

Three turbulence parameters analysis revealed that there is a correlation between
turbulence parameters and statistical operators, where statistical operators increase signifi-
cantly when wind shear and temperature gradient exceed 0.016 s−1 and 0 km−1, respec-
tively. Similarly, the outer scale has a critical value, where statistical operators increase
significantly when the outer scale is within 2.5 m. Moreover, this paper has performed
statistical analysis on the turbulence parameters of different atmospheric layers. It has
shown that the wind shear and temperature gradient in the stratosphere is larger than
the boundary layer and troposphere, which respectively exceed 0.016 s−1 and 0 km−1. In
contrast, the stratosphere has the smallest outer scale, which is almost less than 2.5 m.

A new statistical outer-scale model, the WSTG model, is proposed based on the results
of previous statistical analyses. To evaluate the performance of the newly proposed model,
the comparisons of the estimated C2

n profiles from the HMNSP99 and WSTG models for
individual meteorological balloons is carried out. It is apparent that the HMNSP99 and
WSTG models are in good agreement with the measured values in trends as a whole, but
the WSTG model has better estimation results in magnitude. Furthermore, the HMNSP99
and WSTG models are applied to calculate statistical operators of individual meteorological
balloons and the results suggest that the WSTG model is more reliable than the HMNSP99
model in reconstructing optical turbulence strength.

This work was undertaken to evaluate the performance of the most used optical tur-
bulence models and to propose a new outer scale model through statistical analysis. These
results add substantially to our understanding of atmosphere optical turbulence and the
conclusions may be applied to improve the performance of an adaptive optics system and
astronomical site selection. The newly proposed optical turbulence model can be used to
estimate optical turbulence strength, especially in harsh and complex environments, where
it is impractical and expensive to deploy instrumentation to characterize the atmospheric
turbulence. However, these results are limited by the time and position of the experiment.
It is recommended that future analysis should include more comprehensive data and the
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performance of the WSTG model needs further verification in different regions, seasons,
and weather conditions.
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