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Abstract: Wide-scale automatic monitoring based on the Normalized Difference Water Index (NDWI)
and Mask Region-based Convolutional Neural Network (Mask R-CNN) with remote sensing images is
of great significance for the management of aquaculture areas. However, different spatial resolutions
brought different cost and model performance. To find more suitable image spatial resolutions for
automatic monitoring offshore aquaculture areas, seven different resolution remote sensing images
in the Sandu’ao area of China, from 2 m, 4 m, to 50 m, were compared. Results showed that the
remote sensing images with a resolution of 15 m and above can achieve the corresponding recognition
effect when no financial issues were considered, with the F1 score of over 0.75. By establishing a
cost-effectiveness evaluation formula that comprehensively considers image price and recognition
effect, the best image resolution in different scenes can be found, thus providing the most appropriate
data scheme for the automatic monitoring of offshore aquaculture areas.

Keywords: offshore aquaculture; remote sensing; cost-effectiveness evaluation; automatic monitoring

1. Introduction

Global aquaculture production has increased by 7.5% per year since 1970, creating
economic benefits but also posing significant environmental challenges [1] which has
caused severe pollution in the marine environment [2]. In recent years, due to excessive
aquiculture, water pollution has become more and more serious in mariculture areas. Many
countries, such as New Zealand [3], China [4], and Turkey [5] have problems with excessive
aquaculture pollution. Protecting the marine ecological environment, carrying out proper
planning of aquaculture areas and avoiding over-farming are essential for marine culture
management. This requires real-time and high-precision monitoring data of aquaculture
areas to help managers quickly discover the changes in offshore aquaculture areas and
carry out aquaculture plans [6].

The method of coupling the Normalized Difference Water Index (NDWI) and Mask
Region-based Convolutional Neural Network (Mask R-CNN) can identify remote sensing
images quickly and accurately to analyze the temporal and spatial changes in aquaculture
areas, explore the aquaculture rules, and provide early warning to illegal aquaculture
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problems in prohibited and restricted areas, which is an essential means for automatic
monitoring of aquaculture areas. However, the resolution of remote sensing images greatly
influences the recognition effect. At present, the primary remote sensing data sources
used to identify the mariculture area are multispectral satellite remote sensing images and
microwave remote sensing images [7]. The multispectral satellite remote sensing images
mainly include Spot, GF-1, GF-2, and Landsat [4,8-11]; while microwave remote sensing
images mainly include Radarsat-2, GF-3, Sentinel-1, and Sentinel-2 [12-17]. The spatial
resolution of diverse remote sensing data sources is quite different, and the prices and
effects they can achieve are naturally different. For example, the spatial resolution of GF-1
can reach 2 m, but the price of one view is about USD 230; while the spatial resolution
of Landsat-8 is 30 m and can be obtained for free. The higher the resolution of the data,
the higher the accuracy of the monitoring. Higher-resolution data can reflect the changes
in the mariculture area in more detail, but it is also more expensive and time-consuming
to process. However, many current studies have detected the mariculture area without
considering the effect of the price and resolution of the image on the results analysis and
comparison [9,18,19]. There are mainly two kinds of marine aquaculture areas: raft culture
area (RCA) and cage culture area (CCA) [20]. The size of these marine aquaculture areas
ranges from a few meters to tens of meters. A large amount of image data is used to monitor
the change in the aquaculture area in real-time, so it is necessary to balance the price and
practical effect of remote sensing images.

To solve the above problems, according to the characteristics of offshore aquaculture
areas, this study used remote sensing images with different resolutions to carry out experi-
ments and established cost-effectiveness evaluation formulas in different scenes, to identify
the image resolution that is more suitable for monitoring aquaculture areas.

2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area

The mariculture area of Sandu’ao in Fujian Province was selected as the study area.
The area ranges from 119°28'8” to 120°9’44"E and 26°21'34" to 27°0'24""N, as shown in
Figure 1. Fujian Province is located on the southeast coast of China with a sea area of
136,000 square kilometers, a land coastline of 3752 km, and numerous harbors. There are
six deep-water harbors from north to south, including Shacheng Port, Sandu’ao, Luoyuan
Bay, Meizhou Bay, Xiamen Port, and Dongshan Bay. A total of 366,000 plastic fishing
rafts and more than 3100 deep-water storm-resistant cages have been built. In 2018, the
total output of the top ten aquatic products was 3.38 million tons, and the output of
rhubarb fish, abalone, kelp, laver, and oyster ranked first in China [21]. However, due
to the inability to monitor the status of local aquaculture areas in real-time, problems
such as over-cultivation and encroachment of non-farming areas are common, resulting
in severe marine pollution [22]. Therefore, in order to meet the government’s demand for
fishery development planning and build a modern fishing port system with a beautiful
environment and orderly management, it is necessary to carry out dynamic monitoring of
this area.
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Figure 1. The location and range of Sandu’ao mariculture area in Fujian Province.

2.1.2. Data Sources

The GF-1 remote sensing image data were used in this study. The data sources and
contents are shown in Table 1.

Table 1. Details of experimental data.

Source Format Time Range Space Range Spatial Resolution/m

119°28'8"-120°9'44"'E,
26°21'34"-27°0/24"N

GF-1 tif 13 June 2020 2

In the stage of model training and validation, experiments were carried out using
GF-1 remote sensing image data of Sandu’ao mariculture area. The image was acquired on
13 June 2020, and the spatial resolution after image fusion processing was 2 m.

2.2. Method
2.2.1. Data Pre-Processing
Production of Training and Test Sets

Remote sensing images of GF-1 were cropped into 80 samples of 500 x 500 pixels, 64
of which were used for training and 16 for testing. The boundaries of RCA and CCA in
the samples were finely marked by manual visual interpretation. The ground truth was
obtained, in which the colored block was the aquaculture area, and the black block was the
background. As the GF-1 image was a 10-bit depth and 4-band image, it was converted
into an 8-bit RGB image for input to the network.

Due to the small size of the dataset, data augmentation was carried out to prevent
overfitting in the training network, improve the robustness of the classifier to different
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sensors, atmospheric conditions, and lighting conditions, and improve the generalization
ability of the model. By adding Gaussian noise, Gaussian blur, and adjusting the contrast,
64 images used for training were expanded to simulate the image state under different
influences so that the number of training samples was increased to 256 and the ground
truth corresponding to the samples was generated.

Resampling of Multi-Resolution Data

In order to investigate the influence of different resolutions on the monitoring effect,
images with a resolution of 2 m were processed. According to the spatial resolution of
satellite images commonly used in this kind of research, low-resolution images of 4 m,
10 m, 15 m, 20 m, 30 m, and 50 m were simulated, and the ground truth corresponding to
the samples was generated using bilinear down-sampling.

2.2.2. Model Training and Validation

In order to make full use of existing resources and improve model performance, the
transfer learning method was used to train the pre-training model on the large public
COCO dataset [23]. On this basis, training samples and ground truth were input into
the model.

The model effect was quantified by using the test set. The 16 aquaculture area recogni-
tion results were compared with the ground truth. The precision, recall, and F1 score were
calculated using pixels as the basic calculation unit, which is different from the evaluation
method of object detection algorithms [24], to evaluate the model performance on two cate-
gories of aquaculture area. The precision is mainly used to evaluate the correct recognition
rate of a category. The recall is mainly used to evaluate how many pixels in a category were
correctly recognized. The F1 score is an accuracy index calculated as the harmonic mean of
the precision and recall. Harmonic mean is one of several averages used in mathematics,
more suitable for ratios (such as precision and recall) than the traditional arithmetic mean.
These three indicators are defined as follows:

TP
Precision = ———— 1
recision TD + EP 1
TP
Recall = 75T FN @

2 X Precision x Recall
F1 =
score Precision + Recall ©)

where TP is the number of correctly identified pixels in ground-truth, FP is the number of
misidentified pixels that do not exist in ground-truth, and FN is the number of undetected
pixels in ground-truth.

2.2.3. Cost-Effectiveness Evaluation

To balance the cost and monitoring effect in automatic monitoring of aquaculture areas,
the cost-effectiveness evaluation formula was established to evaluate the image resolution
more suitable for monitoring of aquaculture areas.

Cost Analysis

The cost of automatic monitoring mainly includes the time consumed and the cost of
purchasing remote sensing images of monitored areas. Time consumed includes the time
to train the model for identification and to identify the aquaculture area. Considering that
the model only needs to be trained the first time it is used and does not need to be repeated
in subsequent monitoring, and that the automatic monitoring of aquaculture areas is less
demanding in terms of real-time, the cost of automatic monitoring of aquaculture areas is
set as the cost of purchasing images per square kilometer in USD, which is recorded as C.
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Effectiveness Analysis

The precision, recall, and F1 score were mainly used to evaluate the recognition effect
of aquaculture areas, while the F1 score is the synthesis of the first two indicators, so the
effectiveness of automatic monitoring is set as the average of F1 score of two types of
aquaculture areas, which is recorded as E.

Comprehensive Performance Evaluation

The cost and effectiveness of automatic monitoring in aquaculture areas are compre-
hensively analyzed to evaluate the comprehensive performance of different remote sensing
images used for automatic monitoring, which is recorded as P. The calculation formula is:

P=—aC+BE @)

where « and B are weight parameters, both positive numbers. Different parameters can be
set in different scenes. The best image resolution for monitoring the aquaculture area can be
obtained by calculating and comparing the comprehensive performance of different images.

3. Results
3.1. Model Validation

The model training ended after 100 epochs, then evaluation indicators were calculated
quantitatively by using the test set, as shown in Table 2. The precision, recall, and F1 score
of the cage culture area are 0.014, 0.069, and 0.043 higher than those of the raft culture area,
respectively, which may be related to the clearer boundaries of the cage culture areas.

Table 2. Precision, recall, and F1 score of test samples in two types of aquaculture area.

Indicator Raft Culture Area Cage Culture Area
Precision 0.890 0.904

Recall 0.839 0.908
F1 score 0.863 0.906

The precision, recall, and F1 score for the identification of aquaculture area in different
provinces in studies of Liu et al. [4] were in the range of 0.79-0.98, 0.71-1.00, and 0.83-0.91,
respectively, and in studies of Cui et al. [18] were around 0.89. The model’s accuracy
constructed in this study reached the level of other current studies, indicating that this
model is reliable. In the studies of Liu et al. [4], the F1 score of the extracted aquaculture area
in Fujian using 15 m resolution data was 0.83. Compared with the F1 score of the extracted
aquaculture area in Sandu’ao, Fujian Province, using higher resolution in this study allows
us to obtain higher accuracy results correspondingly by using higher resolution images.

Combining NDWI and Mask R-CNN, the extraction results of the aquaculture area
with 2 m resolution data in Sandu’ao area in June 2020 are shown in Figure 2; in which
blue boxes represent RCA, and red boxes represent CCA, and most of the RCA and CCA
are successfully identified. A total of 10234 raft culture areas were extracted, with an area
of about 66.19 km?2; and 4245 cage culture areas were extracted, with an area of about
25.33 km?. The actual number of aquaculture areas should be higher due to the influence
of waves or turbid waters, and because several aquaculture areas were combined when
the culture density was high. Identification results of several boxed locations in the study
area in Figure 2 show that this method can accomplish the identification of two types of
aquaculture area. The boundary of the aquaculture area was accurate, and there were fewer
missed and false detections.
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Figure 2. (a) Extraction results of aquaculture area in Sandu’ao; (b) extraction results of six aquacul-
ture areas (A-F in (a)), where the blue box represents raft culture area, and the red box represents
cage culture area.

In addition, we also used other low-resolution images to identify aquaculture areas.
Several 15 m resolution Landsat-8 images in Xiapu area of Sandu’ao were identified using
this model, and the results are shown in Figure 3. As can be seen from the figure, the model
can identify the overall situation of aquaculture areas for low-resolution images; however,
it cannot accurately reflect the area and quantity of aquaculture areas so it is necessary to
explore the influence of image resolution on the performance of the model.

Figure 3. Extraction results of aquaculture area in Xiapu using Landsat-8 images, where the blue box
represents raft culture area, and the red box represents cage culture area.



Remote Sens. 2022, 14, 3079

7 of 11

3.2. The Impact of Different Resolutions on Model Performance

The model trained with different resolution data was used to identify samples with
the corresponding resolutions, and the precision, recall, and F1 score were calculated and
are shown in Figure 4.

1.0
—»— RCA Precision
=¥~ CCA Precision
—8— RCA Recall
-®- CCA Recall
0.8 1 RCA F1 score
CCA F1 score
0.6 -

Performance

\
AY
0.4 \\(

0.2 1

0.0

2 4 10 15 20 30 50
GSD(m)

Figure 4. Precision, recall, and F1 score of test samples with different spatial resolutions in two types
of aquaculture area.

Figure 4 shows the variation in precision, recall, and F1 score versus resolution for
raft culture area and cage culture area. It can be seen that with the decrease in spatial
resolution of samples, the F1 score shows an overall downward trend. For the raft culture
area, the F1 score reaches 0.863 at 2 m resolution and drops to 0.433 at 50 m resolution, with
a decrease of 49.83%; while it is 0.855 at 4 m resolution, with a decrease of only 0.93%. For
the cage culture area, the F1 score reaches 0.906 at 2 m resolution and decreases to 0.349 at
50 m resolution, which decreases by 61.48%, while it is 0.894 at 4 m resolution, which only
decreases by 1.32%. Similarly, the change rates of precision and recall of the raft culture
area and cage culture area also have a significant span, with the precision decreasing from
0.890 and 0.904 to 0.393 and 0.266, respectively, and the recall decreasing from 0.839 and
0.908 to 0.481 and 0.510 respectively.

The results in Figure 4 indicate that the extraction efficiency of aquaculture areas
depends on the spatial resolution of the used images. With better resolution (2—4 m),
extraction efficiency is good and rather stable. Starting from resolutions larger than 4 m,
performance gradually decreases, and from resolutions above 20 m, the model’s perfor-
mance drops rapidly. Monitoring the actual situation of the aquaculture area by using such
low-resolution remote sensing images is difficult or impossible.

3.3. Cost-Effectiveness Analysis of Aquaculture Monitoring

In the automatic monitoring of aquaculture areas, the effect of remote sensing images
with different resolutions is quite different, so it is necessary to analyze the cost and
effectiveness. Based on the results obtained in the experiment of resolution influence on
model performance, the polynomial fitting function was established to obtain the average
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value of the F1 score for two types of aquaculture areas with different resolutions. The
fitting function is:

v =1.534 x 107% x® — 9.722 x 107° x% — 0.009282 x + 0.9063 (5)

where x is the spatial resolution of the image and y is the average value of the F1 score for
two types of aquaculture areas identified by the image.

The SPOT series satellites with a wide range and rich spatial resolution were selected
as the price reference, and the effect was obtained based on the fitting function. Con-
sidering the cost, as the importance of each factor may vary in different scenarios, the
cost-effectiveness of three types of chargeable images in different scenarios was evaluated,
as shown in Table 3.

Table 3. Cost-effectiveness evaluation under different scenarios, where o and {3 are weight parameters,
C is the cost, E is the effectiveness, and P is the comprehensive performance.

Price First Effect First Balancing
Spatial Resolution/m  Cost/(USD/km?)  Effect
oE BC P «E BC P oE BC P
25 2.361 0.883 0.708 0.883 0.175 0.142 1.766 1.624 0.142 0.883 0.741
5 1.417 0.858 0425 0.858 0.433 0.085 1.716 1.631 0.085 0.858 0.773
10 1.102 0.805 0331 0.805 0474 0.066 1610 1544 0.066 0.805 0.739

3.3.1. Price First

In view of the two factors of price and effect, price is more important when in the
scene of price priority. Set the weight oc as 0.3 and (3 as 1 and evaluate the comprehensive
performance of each image according to Formula (4), as shown in Table 3. It can be seen
that under the condition of price priority, images with 10 m resolution can obtain relatively
good results at a lower price, which is the best choice in this scene.

3.3.2. Effect First

When in the scene of effect priority, the effect is more important. Set the weight o
as 0.06 and 3 as 2 and evaluate the comprehensive performance of each image according
to Formula (4), as shown in Table 3. It can be seen that when the effect is given priority,
images with 5 m resolution becomes the best choice for this scene with its excellent effect
and relatively low price.

3.3.3. Balancing Price with Effect

For the two factors of price and effect, when they are in a balanced scenario, the
importance of the two is considered in a balanced way. Set the weight « as 0.06 and {3 as 1
and evaluate the comprehensive performance of each image according to Formula (4), as
shown in Table 3. The results show that in this scenario, the price and effect of images with
5 m resolution are moderate, which is the best choice in this scene.

4. Discussion

In recognition of the aquaculture area, with the decrease in the spatial resolution of
image data, the actual area represented by a single pixel increases and the features of the
aquaculture area gradually blur; more and more boundary parts of the aquaculture area
are mixed with the background into the same pixel, resulting in a poor recognition effect.
In addition, because there is some conflict between precision and recall, and when more
pixels are identified, there may be more errors; therefore, the precision is lower and the
recall is higher. When higher accuracy is needed, smaller pixels are identified; therefore,
the precision is higher and the recall is lower. That is why the precision suddenly becomes
lower at 10 m resolution in the cage culture areas, which is different from the overall change
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trend. However, the F1 score obtained by the combination of the precision and recall shows
a relatively smooth decreasing trend.

Because the boundary of the cage culture areas is clearer but the features are complex,
and the boundary of the raft culture areas is blurred but the color tone is uniform, the
recognition effect of cage culture is slightly better than that of raft culture when the spatial
resolution is high. With the gradual decrease in spatial resolution, the boundary information
of the aquaculture area is gradually blurred. It can be seen from Figure 5 that the recognition
effect of cage culture decreases slightly faster than that of raft culture, two indicators are
below 0.7 at 20 m resolution for both raft culture and cage culture, so the recognition
effect cannot meet the needs of monitoring at this time. Considering the image recognition
accuracy of the two types of aquaculture area under different resolutions, the images of
15 m and above resolution should be selected for automatic monitoring of aquaculture areas
when the funding problem is not considered to reflect the changes in the aquaculture area.

50 m

Figure 5. Aquaculture areas with seven different spatial resolutions under the same location and the
identification effect, where the blue box represents raft culture area and the red box represents cage
culture area.

Considering that the effect of remote sensing images with different resolutions is quite
different, it is necessary to analyze the cost and effect when considering the cost. Based on
the analysis, the best images in different scenes can be quantified to obtain the best data
scheme for automatic monitoring of offshore aquaculture areas. This study explores the
cost-effectiveness analysis method of aquaculture area monitoring. In Formula (4), the
selection of parameters considered the requirements of the relevant government budget
and management departments, consulted the opinions of relevant experts and managers,
and referred to the research of Zhang et al. [25]. Finally, three parameter selection schemes
under different scenarios and requirements were obtained: taking SPOT series satellites
as an example, when focusing on cost, images with 10 m resolution can be selected first,
followed by 5 m resolution; when paying attention to effect, images with 5 m resolution
can be selected first, followed by 2.5 m resolution; when comprehensively considering
the performance, images with 5 m resolution can be selected first, followed by those
with 2.5 m and 10 m resolution. This scheme is proposed for the Sandu’ao area and can
also be extended to other marine aquaculture areas according to the needs of users. In
addition, this cost-effectiveness analysis method can also be extended to other image
classification applications, which will bring more reference directions for the selection of
image classification schemes.



Remote Sens. 2022, 14, 3079 10 of 11

5. Conclusions

In order to assess the suitable resolution of spatial images for automatic monitoring in
offshore aquaculture areas, this study experimented with images of different resolutions
and carried out a cost-effectiveness evaluation accordingly to explore the most suitable
data scheme for automatic monitoring. First, the identification method of coupling NDWI
and Mask R-CNN was trained and verified. Secondly, the image resolution required
for aquaculture area monitoring was discussed by comparing different extracting results
among 2m, 4 m, 10 m, 15m, 20 m, 30 m, and 50 m resolutions. It was found that at least 15 m
resolution is necessary for aquaculture area extracting. On this basis, SPOT series satellites
can be taken as an example to analyze the cost-effectiveness of automatic monitoring in
aquaculture areas; the best image resolution in different scenes is obtained, which provides
the best data scheme for the automatic monitoring of offshore aquaculture areas.

The method proposed in this study has some limitations. The selection of cost and
benefit items is not comprehensive enough; for example, without considering the different
contributions of the two types of aquaculture areas, the average value of F1 score is directly
used as the effect item. Further research in the field of marine aquaculture will be carried
out in the future, and the allocation of cost and effect items in the automatic monitoring will
be explored more comprehensively to obtain a more scientific data scheme and promote
the development of aquaculture areas monitoring.

Author Contributions: Conceptualization, Y.W. and Y.Z.; Data curation, ].W.; Funding acquisition,
T.Z.; Investigation, Y.W.; Methodology, Y.W.; Project administration, W.L. and S.L.; Resources, Y.C.;
Software, Y.Z.; Supervision, H.B. and B.W.; Validation, YW., Y.C. and ]J.W.; Visualization, Y.Z;
Writing—Original draft, Y.W.; Writing—Review and editing, Y.Z. and Y.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Open Research Fund Program of MNR Key Laboratory
for Geo-Environmental Monitoring of Great Bay Area (5Z2U51029202010), Key Laboratory of Marine
Environmental Survey Technology and Application, Ministry of Natural Resources, China.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. FAO. The State of World Fisheries and Aquaculture. Sustainability in Action; FAO: Rome, Italy, 2020.

2. Penczak, T.; Galicka, W.; Molinski, M.; Kusto, E.; Zalewski, M. The Enrichment of a Mesotrophic Lake by Carbon, Phosphorus
and Nitrogen from the Cage Aquaculture of Rainbow Trout, Salmo gairdneri. J. Appl. Ecol. 1982, 19, 371-393. [CrossRef]

3. Mcginnis, M.V.; Collins, M. A Race for Marine Space: Science, Values, and Aquaculture Planning in New Zealand. Coast. Manag.
2013, 41, 401-419. [CrossRef]

4. Liu, Y.; Wang, Z.; Yang, X.; Zhang, Y.; Yang, F; Liu, B.; Cai, P. Satellite-based monitoring and statistics for raft and cage aquaculture
in China’s offshore waters. Int. J. Appl. Earth Obs. 2020, 91, 102118. [CrossRef]

5. Demirak, A.; Balci, A.; Tuefekci, M. Environmental impact of the marine aquaculture in Giilliik Bay, Turkey. Environ. Monit.
Assess. 2006, 123, 1. [CrossRef] [PubMed]

6. Fu,Y;Ye Z;Deng,J.; Zheng, X.; Wang, K. Finer Resolution Mapping of Marine Aquaculture Areas Using WorldView-2 Imagery
and a Hierarchical Cascade Convolutional Neural Network. Remote Sens. 2019, 11, 1678. [CrossRef]

7. Xu, Y,; Hu, Z.; Zhang, Y.; Wang, J.; Yin, Y.; Wu, G. Mapping Aquaculture Areas with Multi-Source Spectral and Texture Features:
A Case Study in the Pearl River Basin (Guangdong), China. Remote Sens. 2021, 13, 4320. [CrossRef]

8. Chu,J,; Shao, G.; Zhao, J.; Gao, N.; Wang, F.; Cui, B. Information extraction of floating raft aquaculture based on GF-1. Sci. Surv.
Mapp. 2020, 45, 92-98.

9. Liu, Y; Yang, X,; Wang, Z.; Lu, C.; Li, Z,; Yang, F. Aquaculture area extraction and vulnerability assessment in Sanduao based on
richer convolutional features network model. J. Oceanol. Limnol. 2019, 37, 1941-1954. [CrossRef]

10. Lin, Q.; Lin, G.; Chen, Z.; Chen, Y. The Analysis on Spatial-temporal Evolution of Beach Cultivation and Its Policy Driving in
Xiamen in Recent Two Decades. Geo-Inf. Sci. 2007, 9, 9-13.

11. Lu, X; Gu, Y,; Wang, X,; Lin, Y.; Zhao, Q.; Wang, K; Liu, X.; Fei, X. The identification of Porphyra culture area by remote sensing
and spatial distribution change and driving factors analysis. Mar. Sci. 2018, 42, 87-96.

12.  Zhang, Y.; Wang, C.; Chen, J.; Wang, F. Shape-Constrained Method of Remote Sensing Monitoring of Marine Raft Aquaculture

Areas on Multitemporal Synthetic Sentinel-1 Imagery. Remote Sens. 2022, 14, 1249. [CrossRef]


http://doi.org/10.2307/2403474
http://doi.org/10.1080/08920753.2013.822284
http://doi.org/10.1016/j.jag.2020.102118
http://doi.org/10.1007/s10661-005-9063-y
http://www.ncbi.nlm.nih.gov/pubmed/17082906
http://doi.org/10.3390/rs11141678
http://doi.org/10.3390/rs13214320
http://doi.org/10.1007/s00343-019-8265-z
http://doi.org/10.3390/rs14051249

Remote Sens. 2022, 14, 3079 11 of 11

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

Fan, J.; Zhao, J.; An, W.; Hu, Y. Marine Floating Raft Aquaculture Detection of GF-3 PolSAR Images Based on Collective
Multikernel Fuzzy Clustering. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2741-2754. [CrossRef]

Geng, J.; Fan, J.; Wang, H. Weighted Fusion-Based Representation Classifiers for Marine Floating Raft Detection of SAR Images.
IEEE Geosci. Remote Sens. Lett. 2017, 14, 444-448. [CrossRef]

Hu, Y,; Fan, J.; Wang, J. Target recognition of floating raft aquaculture in SAR image based on statistical region merging. In
Proceedings of the 2017 Seventh International Conference on Information Science and Technology (ICIST), Da Nang, Vietnam,
16-19 April 2017.

Zhang, Y.; Wang, C.; Ji, Y,; Chen, J.; Deng, Y.; Chen, J.; Jie, Y. Combining Segmentation Network and Nonsubsampled Contourlet
Transform for Automatic Marine Raft Aquaculture Area Extraction from Sentinel-1 Images. Remote Sens. 2020, 12, 4182. [CrossRef]
Ottinger, M.; Bachofer, F.; Huth, J.; Kuenzer, C. Mapping Aquaculture Ponds for the Coastal Zone of Asia with Sentinel-1 and
Sentinel-2 Time Series. Remote Sens. 2022, 14, 153. [CrossRef]

Cui, B;; Fei, D.; Shao, G.; Lu, Y.; Chu, J. Extracting Raft Aquaculture Areas from Remote Sensing Images via an Improved U-Net
with a PSE Structure. Remote Sens. 2019, 11, 2053. [CrossRef]

Fu, Y,; Deng, J.; Wang, H.; Comber, A.; Yang, W.; Wu, W.; You, S.; Lin, Y.; Wang, K. A new satellite-derived dataset for marine
aquaculture areas in the China’s coastal region. Earth Syst. Sci. Data 2020, 13, 1829-1842. [CrossRef]

Liang, C.; Cheng, B.; Xiao, B.; He, C.; Liu, X,; Jia, N.; Chen, J. Semi-/Weakly-Supervised Semantic Segmentation Method and
Its Application for Coastal Aquaculture Areas Based on Multi-Source Remote Sensing Images—Taking the Fujian Coastal Area
(Mainly Sanduo) as an Example. Remote Sens. 2021, 13, 1083. [CrossRef]

Fujian Development and Reform Commission. Layout and Construction Planning of Fishing Ports in Fujian Province; Fujian
Development and Reform Commission: Fuzhou, China, 2020.

Wang, Z. Analysis of Variation Trend of Water Quality Based on Time Series in Sansha Bay. Environ. Impact Assess. 2017, 39, 76-81.
Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Zitnick, C.L. Microsoft COCO: Common Objects in Context; Springer International
Publishing: Cham, Switzerland, 2014.

Padilla, R.; Netto, S.L.; Silva, E.A.B.D. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of
the 2020 Interna-tional Conference on Systems, Signals and Image Processing (IWSSIP), Rio de Janeiro, Brazil, 1-3 July 2020;
pp. 237-242.

Zhang, A.; Que, L.; Li, X.; Wang, Y.; Cui, W. Cost-benefit Model and Its Application of Reclaimed Water Project Based on
Perspective of Stakeholders. Water Resour. Power 2021, 39, 136-139.


http://doi.org/10.1109/JSTARS.2019.2910786
http://doi.org/10.1109/LGRS.2017.2648641
http://doi.org/10.3390/rs12244182
http://doi.org/10.3390/rs14010153
http://doi.org/10.3390/rs11172053
http://doi.org/10.5194/essd-13-1829-2021
http://doi.org/10.3390/rs13061083

	Introduction 
	Materials and Methods 
	Study Area and Data Sources 
	Study Area 
	Data Sources 

	Method 
	Data Pre-Processing 
	Model Training and Validation 
	Cost-Effectiveness Evaluation 


	Results 
	Model Validation 
	The Impact of Different Resolutions on Model Performance 
	Cost-Effectiveness Analysis of Aquaculture Monitoring 
	Price First 
	Effect First 
	Balancing Price with Effect 


	Discussion 
	Conclusions 
	References

