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Abstract: Forest height is an essential parameter used to derive important information about forest
ecosystems, such as forest above-ground biomass. In this article, a forest height estimation approach
combining P-band and X-band interferometric synthetic aperture radar (InSAR) was introduced.
The forest height was estimated using the difference in the penetration of long- and short-wavelength
radars to the forest. That is, the P-band and X-band InSAR data were used to extract the digital
terrain model (DTM) and digital surface model (DSM), respectively. For the DTM, an improved
time-frequency (TF) analysis method was used to reduce the effect of forest scatterers on the extraction
of a pure understory terrain phase based on P-band InSAR. For the DSM, a novel compensation
algorithm based on a multi-layer model (MLM) was proposed to remove the penetration bias of the
X-band. Compared to the existing method based on the infinitely deep uniform volumes (IDUV)
model, the MLM-based method is more in line with the characteristics of forest structure and the
scattering mechanism for X-band InSAR. The airborne P-band repeat-pass InSAR and spaceborne
X-band (TanDEM-X) single-pass InSAR data were used to verify the proposed method over the
study area in the Saihanba Forest Farm in Hebei, China. The results demonstrated that the improved
TF method can achieve high-precision DTM extraction based on P-band InSAR data, and the root
mean square error (RMSE) was 0.94 m. The proposed MLM-based compensation method of the
DSM achieved a smaller error (RMSE: 1.67 m) compared to the IDUV-based method (RMSE: 3.01 m).
Under the same DTM extracted by P-band InSAR, the estimation accuracy of forest height based on
the MLM method was 86.58% (RMSE: 1.81 m), which was 8.49% higher than that of the IDUV-based
method (RMSE: 2.98 m).

Keywords: interferometric SAR; forest height estimation; digital terrain model; digital surface model;
multi-level model

1. Introduction

The estimation of forest height is a timely and important research topic for improving
forest management activities and studying the role of forests as a sink or a source of carbon
in the global carbon cycle [1]. Synthetic aperture radar (SAR) and light detection and
ranging (LiDAR), which have better penetration ability in forests, are important remote
sensing technologies for forest height estimation. Usually, LiDAR, especially airborne
LiDAR, can achieve high accuracy in the retrieval of forest height [2]. However, the
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technique is mainly applied for small spatial coverage areas because of its low sampling
efficiency [3]. In contrast to LiDAR, SAR can obtain wall-to-wall data on a large area,
especially spaceborne systems such as the SRTM and TanDEM-X mission, which can
provide global-scale elevation products. For SAR, the estimation of forest height mainly
relies on interferometric SAR (InSAR) technology, including current research hotspots
such as tomographic SAR (TomoSAR) and Polarimetric SAR interferometry (PolInSAR)
techniques. Among them, TomoSAR technology enhances the resolution of SAR in the
vertical direction using multi-baseline InSAR joint observations [4]. However, the high
cost (time and money) of data acquisition and complex 3D imaging algorithms discourage
the use of TomoSAR for forest height estimation in large areas. PolInSAR technology
mainly estimates forest height by using the penetration differences of different polarization
channels [5]. However, this difference in penetration between polarization channels is
limited by specific wavelengths, making it difficult to apply to diverse forest-type covers.
In view of this, a more robust option may be to make full use of the penetration differences
of different SAR wavelength technologies to estimate forest height.

Since forest height is normally defined as the difference between the forest surface
height and the underlying surface [6], the basic idea of estimating forest height using
SAR with different wavelengths is clear, as shown in Figure 1. First, the long-wavelength
(e.g., P-band, L-band) InSAR with better penetrating ability to the forest is used to extract
the underlying topography, that is, the digital terrain model (DTM). Second, the short-
wavelength (e.g., X-band, Ka-band) InSAR with limited penetrating ability to the forest
is used to extract the forest surface height, that is, the digital surface model (DSM). The
difference between the DSM and DTM is called the canopy height model (CHM), which
directly reflects the forest height information in forested areas.
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Figure 1. Schematic diagram of estimating forest height using the penetration differences of different
wavelength InSARs.

Several studies have verified the feasibility of estimating forest height based on dual-
frequency InSAR data from two different covers. Among them, the most used dual-
frequency InSAR combination is P-band and X-band [2,7–9], followed by L-band and
X-band [10,11]. The above research results have shown that there is a stable correlation
between the height obtained by long- and short-wavelength SAR interferometric difference
and the forest height, but the forest height is usually underestimated. The main reason is
that the phase center of short-wavelength InSAR is lower than the real DSM because of the
limited—but not negligible—penetration ability. For instance, Kugler et al. [12] found a
penetration of up to 12 m in the boreal forest with TanDEM-X data (X-band). On the other
hand, the phase center of long-wavelength InSAR is higher than the real DTM owing to the
influence of forest scatterers [13]. For example, one study [14] observed an overestimation
bias of about 5 m in understory terrain inversion based on L-band InSAR data. To solve
this problem, empirical models were established based on LiDAR or ground-measured
forest height data to correct the underestimation bias [2,7]. The common disadvantage of
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empirical models is that external data are necessary, and, in most cases, the established
models are applicable only for the study area where the external data are collected [2,7].
This empirical approach limits the applicability and robustness of forest height estimation
methods. Therefore, how to compensate for the deviation between the phase center of
long/short-wavelength InSAR and the DTM/DSM is the key to improving the accuracy
of forest height estimation based on dual-frequency InSAR. Fortunately, in recent years,
several methods have been developed for accurate extraction of the DTM and DSM based
on InSAR data of suitable wavelengths.

For accurate extraction of the DTM based on long-wavelength InSAR data, the methods
based on random volume over ground (RVoG) and time-frequency (TF) analysis are the two
most used approaches [13]. The former mainly relies on the RVoG model and PolInSAR
data, and the DTM is usually a by-product of the forest height inversion process [5,15,16].
This type of method has already been used in the forest height estimation combining dual-
frequency InSAR data [9]. However, the main problem is that the RVoG model assumes that
the forest is a uniformly distributed scatterer, but this assumption does not apply to InSAR
with long wavelengths, such as the P-band. For P-band SAR, the main scatterers of the
forest are trunks and thick branches, which are clearly heterogeneous. In view of this, some
scholars have proposed a TF analysis method based on subaperture decomposition [17,18].
This type of method reduces the influence of forest scatterers on InSAR signals by extracting
subaperture images for interferometric processing. With this method, the phase center of
the underlying topography can be directly separated from the total InSAR signal without
relying on any physical model assumption. This feature improves the applicability of the
DTM extraction method for diverse forests.

For the extraction of the DSM based on short-wavelength InSAR, there is a certain
consensus that the penetration ability of short-wavelength InSAR will still cause devia-
tions that cannot be ignored [19–21], and the penetration bias can be affected by forest
structures [22,23]. At present, two types of compensation methods of penetration bias
have been proposed: empirical methods and physical model methods. The empirical
methods construct a statistical model to correct the bias of the InSAR DSM based on prior
knowledge of forest height, leaf area index and forest canopy closure obtained from ground
survey or LiDAR sample data [19,20,24]. In contrast, the compensation methods based
on the physical model do not rely on (or rely on relatively little) prior knowledge. For
the first time, Dall proposed a compensation method based on a physical model for the
elevation deviation of InSAR measurements [25]. In Dall’s approach, forests were assumed
to be infinitely deep uniform volumes (IDUV). On this basis, the relationship between
InSAR coherence and elevation measurement bias was established. Subsequently, Schlund
et al. applied the IDUV model to the bias compensation of the DSM measured by X-band
InSAR and obtained a good compensation effect [21]. However, the physical assumptions
of the IDUV model about forests do not actually apply to short-wavelength InSAR. For
short-wavelength SAR, such as the X-band (approximately 3 cm), the dielectric penetration
distance of the SAR signal in the forest canopy is very short, and the SAR signal is more
likely to penetrate the forest stand through canopy gaps [26]. Soja et al. considered this
characteristic of the X-band and proposed a two-level model (TLM) [27]. Moreover, Zhao
et al. proposed a more generalized multi-level model (MLM) [28]. The TLM and MLM
models have been used for forest height retrieval or forest biomass estimation based on X-
band InSAR [27–30]. The related research results indicated that the gap penetration model
represented by the TLM and MLM conforms to the scattering mechanism characteristics of
X-band InSAR. However, such gap penetration models have not been applied to the bias
compensation of the DSM extraction based on short-wavelength InSAR.

In summary, in considering the bibliographic references and studies already carried
out, the combination of P-band and X-band InSAR is an important means to achieve a robust
estimation of forest height, and the key to improving the accuracy of forest height estimation
is to achieve unbiased extraction of the DTM and DSM. In this regard, the existing methods
are mainly based on the dielectric penetration model represented by RVoG and IDUV to
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achieve accurate extraction of the DTM or DSM. However, the homogeneous and isotropic
assumptions of the dielectric penetration model for forests do not apply to very long (e.g.,
P-band) and very short (e.g., X-band) wavelengths. In order to reduce the uncertainty
caused by the inapplicability of the model, for the extraction of the DTM based on the
P-band InSAR, the TF analysis method based on subaperture decomposition should be a
better choice, and for the extraction of the DSM based on the X-band InSAR, it is necessary
to develop new bias compensation algorithm based on the gap penetration model (e.g.,
MLM). In fact, the DTM extraction based on the TF method and the DSM compensation
based on the gap penetration model have similarities, that is, to utilize the gap penetration
capability of SAR. For a long time, the gap penetration ability of SAR has been neglected,
and scholars generally focus on the dielectric penetration mechanism with the extinction
process of SAR. However, gap penetration is actually a fundamental capability of SAR that
cannot be ignored. In recent years, the inversion of forest structure parameters based on
the gap penetration scattering mechanism has gradually increased [18,26,28,29,31].

In this study, we provide a new approach to forest height estimation combining P-
band and X-band InSAR data. First, an improved TF analysis method was used for the
DTM extraction of P-band InSAR data. Second, a novel bias compensation algorithm
was developed for the DSM extraction of X-band InSAR based on the MLM. The article
is structured as follows. The methodology of the DTM extraction method based on TF
analysis and the DSM extraction and compensation method is given in Section 2. The
study area and experimental data are presented in Section 3. In the Section 4, the details
of data processes are presented. Section 5 shows the extracted InSAR elevations and the
estimation results of forest height. Finally, the discussion and conclusion are presented in
Sections 5 and 6.

2. Methods

The proposed forest height estimation method mainly includes three steps, which
are DTM extraction based on P-band InSAR, DSM extraction and compensation based on
X-band InSAR and accuracy validation. The flowchart of the processing steps is given in
Figure 2.
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2.1. DTM Extraction Based on P-Band InSAR
2.1.1. Basic Idea of the TF Analysis Approach

For SAR, the method adopted to achieve high-resolution imaging in the azimuth
direction is to synthesize an apparently long antenna by making use of the forward linear
motion of a short antenna. Therefore, a target in a resolution cell is observed by a SAR sensor
with a time-varying observation angle (ϕ) during the azimuthal integration. Furthermore,
the amount of change (∆ϕ) in the observation angle has the following relationship with the
resolution in the azimuth direction (δaz) and the wavelength (λ) of SAR [17,18].

∆ϕ =
λ

2δaz
(1)

Based on Equation (1), it can be determined that high-resolution P-band SAR has
a larger ∆ϕ compared with short-wavelength SAR with the equivalent resolution. For
example, if the λ is 66.70 cm and the δaz is 1.00 m, then ∆ϕ is easily calculated to be 0.33,
which is close to 20◦. For such a large observation angle range, the likelihood of the SAR
sensor “seeing” the pure ground surface is low in a forest scene. In other words, the signal
of the high-resolution P-band SAR contains more contributions from forest scatterers owing
to the longer synthetic aperture. Therefore, the average phase center of the SAR signal is
higher than the underlying surface. In order to extract the pure underlying ground phase,
Garestier et al. proposed a TF analysis approach that obtains the subaperture images with
the pure ground scattering contribution by changing the observation angle in the azimuth
direction [17,32].

As shown in Figure 3, the subaperture has a smaller viewing angle (∆ϕsub2/3), so it
is easier to “see” the pure ground surface than the full aperture (∆ϕmax). Moreover, for
different forest scenes, the difference in the viewing angle of different subapertures can
also play a flexible role. However, the reduction of the aperture length also raises the
problem of reduced resolution and more susceptibility to the residual motion error (RME)
of the platform [18]. For the former, the influence can be reduced by flexibly setting the
length of the subapertures. For the latter, Fu et al. proposed an improved TF analysis
method, which can be used for the DTM extraction of P-band InSAR [18]. In general,
DTM extraction based on the improved TF analysis method is divided into three steps:
subaperture decomposition, RME removal and DTM generation.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 25 
 

 

2.1. DTM Extraction Based on P-Band InSAR 
2.1.1. Basic Idea of the TF Analysis Approach 

For SAR, the method adopted to achieve high-resolution imaging in the azimuth di-
rection is to synthesize an apparently long antenna by making use of the forward linear 
motion of a short antenna. Therefore, a target in a resolution cell is observed by a SAR 
sensor with a time-varying observation angle (φ) during the azimuthal integration. Fur-
thermore, the amount of change (Δφ) in the observation angle has the following relation-
ship with the resolution in the azimuth direction (δaz) and the wavelength (λ) of SAR 
[17,18]. 

azδ
λϕ
2

=Δ  (1)

Based on Equation (1), it can be determined that high-resolution P-band SAR has a 
larger Δφ compared with short-wavelength SAR with the equivalent resolution. For ex-
ample, if the λ is 66.70 cm and the δaz is 1.00 m, then Δφ is easily calculated to be 0.33, 
which is close to 20°. For such a large observation angle range, the likelihood of the SAR 
sensor “seeing” the pure ground surface is low in a forest scene. In other words, the signal 
of the high-resolution P-band SAR contains more contributions from forest scatterers ow-
ing to the longer synthetic aperture. Therefore, the average phase center of the SAR signal 
is higher than the underlying surface. In order to extract the pure underlying ground 
phase, Garestier et al. proposed a TF analysis approach that obtains the subaperture im-
ages with the pure ground scattering contribution by changing the observation angle in 
the azimuth direction [17,32]. 

As shown in Figure 3, the subaperture has a smaller viewing angle (Δφsub2/3), so it is 
easier to “see” the pure ground surface than the full aperture (Δφmax). Moreover, for dif-
ferent forest scenes, the difference in the viewing angle of different subapertures can also 
play a flexible role. However, the reduction of the aperture length also raises the problem 
of reduced resolution and more susceptibility to the residual motion error (RME) of the 
platform [18]. For the former, the influence can be reduced by flexibly setting the length 
of the subapertures. For the latter, Fu et al. proposed an improved TF analysis method, 
which can be used for the DTM extraction of P-band InSAR [18]. In general, DTM extrac-
tion based on the improved TF analysis method is divided into three steps: subaperture 
decomposition, RME removal and DTM generation. 

  
(a) (b) 

Figure 3. Schematic diagram of the penetration ability of SAR imaging with different subapertures 
of different forests: (a) Subaperture 2 has a better penetration effect on forests; (b) Subaperture 3 has 
a better penetration effect on forests. 
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2.1.2. Subaperture Decomposition

The subaperture decomposition is realized by a band-pass filter of the original single-
look complex (SLC) image in the azimuth frequency domain and can be summed up as
follows [33,34]:

S = FFT−1
az [ω(n)× FFTaz(SLC)] (2)

where S is the subaperture image, FFTaz and FFT−1
az represent the one-dimensional Fourier

transform and the one-dimensional inverse Fourier transform in the azimuth direction,
respectively. ω(n) represents the band-pass filter with a Hamming window and is designed
as follows [35]:

ω(n) = 0.54− 0.46 cos(2π
n

N − 1
) 0 ≤ n ≤ N − 1 (3)

where N is the window length of the Hamming window, and it is related to the num-
ber of extracted subapertures and the overlap ratio of the subapertures to the full aper-
ture [33]. The specific implementation of subaperture decomposition refers to the pro-
gram in the PolSARpro software (version: 6.0; Eric Pottier et al.; Rennes, France; https:
//earth.esa.int/eogateway/tools/polsarpro, accessed on 20 June 2022). In addition, unlike
the nonoverlapping subapertures shown in Figure 3, the method of extracting subaperture
images with certain overlap can enrich the observation angle variation and maintain an
acceptable resolution.

2.1.3. RME Removal

Through subaperture decomposition, the ground can be “seen” more or less directly
by the SAR sensor. However, it should be noted that different subapertures are affected
differently by the local RME of the platform. Therefore, in the interferometric processing
based on subaperture SAR images, the influence of the RME should be removed first. For
the subaperture interferogram, the interferometric phase (ϕint) is composed of

ϕint = ϕ f lat + ϕtopo + ϕ f orest + ϕnoise + ϕRME (4)

where ϕflat and ϕtopo are the flat-earth phase and topographic phase, respectively. ϕforest is
the phase caused by the forest components, and ϕnoise is the random error phase. ϕRME is
the phase caused by the motion error.

Firstly, ϕflat and ϕtopo can be removed based on the globally shared digital elevation
model (DEM) data, such as the SRTM DEM, ASTER DEM, etc. [36]. In this step, there is
also a topographical residual phase (∆ϕtopo) in ϕint owing to the error of the input DEM.
Secondly, it is recommended to use wavelet decomposition to remove some components
of ∆ϕtopo, ϕforest and ϕnoise, which are high frequency components in the interferogram
compared to ϕRME [18]. The process also reduces the influence of vertical precision for
the SRTM DEM or the ASTER DEM used in the previous step. After the above two steps,
the phase information in the interferogram is mainly ϕRME. Then, for each row datum
of azimuth direction, the one-dimensional polynomial fitting in the range direction is
used to reduce the influence of the phase error caused by the baseline error in the range
direction [18]:

ϕRMEx, y =
n

∑
i=0

ai · yi + b · h (5)

where x, y are the azimuth and slant range coordinates, respectively. n is the order of
the polynomial. ai and b are the unknown coefficients, and h is the elevation information
obtained by the input DEM. Finally, the relatively pure ϕRME is obtained and can be
easily removed from the subaperture interferograms by complex conjugate multiplication.
Specifically, first, ϕRME can be converted into a complex form based on Euler’s formula [37].
Then, ϕRME can be removed by complex conjugate multiplication between subaperture
interferograms and ϕRME in complex form [37].

https://earth.esa.int/eogateway/tools/polsarpro
https://earth.esa.int/eogateway/tools/polsarpro
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2.1.4. DTM Generation

After the above processing steps, each pixel of the SAR data contains several inter-
ferometric phases corresponding to different subapertures. We then need to determine
which subaperture corresponds to the interferometric phase that is the optimal ground
phase. Here, we selected the subaperture whose interferometric phase had the largest
difference from the interferometric phase of the volume-dominated polarization channel of
the full aperture data. Subsequently, the extraction of the DTM is the same as that of the
conventional InSAR measurement of the DEM, that is, it includes steps such as filtering,
phase unwrapping, and phase-height conversion [18].

2.2. DSM Extraction and Compensation Based on X-Band InSAR
2.2.1. Bias of DSM Extraction Based on X-Band InSAR

Based on conventional interferometric processing (i.e., registration, filtering, unwrap-
ping, phase-height conversion, etc.), the initial version of the DSM can be extracted based
on X-band InSAR data, denoted as DSMX-InSAR. As shown in Figure 4a, because of the
radar signal penetration, there is a bias (DSMbias) between the DSMX-InSAR and the true
values of DSM (DSMTrue), that is:

DSMTrue = DSMX-InSAR + DSMbias (6)
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Therefore, the accurate estimation of DSMbias is the critical step for obtaining an
accurate DSM and subsequently extracting the forest height by the difference based on the
DTM extracted by P-band InSAR.

In order to estimate the DSMbias, it is first necessary to model the forest stand and
the scattering behavior of X-band InSAR in the forest area. Then, the inversion of DSMbias
is completed by establishing a mathematical relationship between DSMbias and the inter-
ferometric coherence (γ). In the following, two estimation methods of DSMbias will be
introduced: one is the published method based on the IDUV model [21], and the other is
the method based on the MLM model proposed in this paper.

2.2.2. Estimation Method of Bias Based on IDUV

Estimation Model

As shown in Figure 4b, the IDUV model is similar to the RVoG model, which assumes
that the forest is a layer of uniform density without gaps. The scattering mechanism of
X-band is a dielectric penetration process characterized by the mean extinction coefficient
(κ). The thickness of the vegetation layer is also the maximum penetration depth and is
denoted as Dmax. Clearly, the vegetation layer shown in Figure 4b is still a finite depth
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uniform volume. When Dmax tends toward positive infinity (Dmax → +∞), the IDUV model
can be derived and written as [21,25]:

γ =
1
2
+

1
2

1− j2πd2/HoA
1 + j2πd2/HoA

, d2 =
cos θ

2κ
(7)

where d2 is the two-way penetration depth, θ is the incidence angle, and HoA is the height
of ambiguity, which is defined as

HoA = 2π/kz (8)

where kz is the vertical wavenumber, which for a single-pass InSAR system is

kz = 2πBn/λR sin θ (9)

where Bn is the perpendicular baseline, λ is the wavelength, R is the slant range.
Based on the geometric relationship of the IDUV model in the complex plane, the

normalized interferometric phase (∠γ) corresponding to DSMbias can be obtained through
certain analysis and derivation [25]:

∠γ = sgn(HoA)arctan
(√
|γ|−2 − 1

)
(10)

where sgn() is the sign function that returns the symbol of the input number.
Therefore, DSMbias can be obtained as follows:

DSMbias =
∠γ

kz
=
|HoA|

2π
arctan

(√
|γ|−2 − 1

)
(11)

Based on Equation (11), it can be determined that the upper limit of DSMbias estimated
based on the IDUV model is equal to one-fourth of the HoA. Obviously, this is not a
reasonable limit for diverse forests.

Calculation of Coherence for IDUV

Based on Equation (11), DSMbias can be easily calculated using the coherence obtained
from X-InSAR data. For the IDUV model, the observed coherence (γIDUV) is calculated
using the following formula:

γIDUV =

∣∣∣∣∣ N

∑
i=1

√
s1,is2,i · ejϕint,i · e−jϕ f lat,i · e−jϕtopo,i

∣∣∣∣∣/
√√√√ N

∑
i=1

s1,i ·
N

∑
i=1

s2,i (12)

where N is the number of pixels of the estimated window, s1 and s2 represent the backscat-
tering coefficients of the primary and secondary images, respectively. As shown in
Equation (12), combined flat-earth and topographic phase removal should be performed
prior to coherence estimation.

In addition, it should be noted that the input coherence for the IDUV model is the
decorrelation from volume scattering, therefore, other decoherence factors need to be
removed, such as decorrelation from the signal-to-noise ratio (SNR) [21].

2.2.3. Estimation Method of Bias Based on the MLM
General Estimation Method

The MLM is a theoretical model of coherence with generalized properties that only
considers the gap penetration of radar signals. In the model, forest is assumed as multi-
layers of negligible thickness without dielectric penetration (Figure 4c). Originally, the
MLM was proposed for the inversion of forest height [28]. In this case, it was assumed that
the radar signal of X-band InSAR penetrates the forest and reaches the ground surface, that
is, it was assumed that Dmax in Figure 4c is equal to the forest height. In this paper, we will
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further expand the application scope of the MLM, that is, Dmax can be less than or equal to
the forest height, so that it can be used for DSMbias estimation of diverse forests.

The original MLM model is derived from the maximum likelihood estimator of coher-
ence based on the following three assumptions [28]:

Assumption 1. The backscattering coefficients of the primary and secondary images are equal.

Assumption 2. A combined flat-earth and topographic phase removal prior to the coherence
estimation is performed.

Assumption 3. The backscattering coefficients of the pixels at same heights are equal.

First, we need to replace the forest height (H) in the original MLM model with the
maximum penetration depth (Dmax), namely:

γ =

∣∣∣∫ Dmax
0 f (x)σ(x)ejkzxdx

∣∣∣∫ Dmax
0 f (x)σ(x)dx

(13)

where f (x) is a continuous probability density function (PDF) with the interval (0, Dmax),
which reflects the location distribution of scatter in the vertical direction. σ(x) represents
the backscattering coefficient of scatterers at different penetration depths. Then, to further
simplify Equation (13), we assumed that σ(x) is a constant. That is, the fourth assumption:

Assumption 4. The backscattering coefficients of the pixels at different heights are equal.

Then, Equation (13) can be simplified as

γ =

∣∣∣∣∫ Dmax

0
f (x)ejkzxdx

∣∣∣∣ (14)

For Equation (14), when f (x) is a known definite PDF, Dmax can be obtained by further
model simplification or iterative search [28]. After the inversion of Dmax, it is further
necessary to determine the average penetration depth (Dmean, in Figure 4c) of the X-band
SAR signal over the interval (0, Dmax). The Dmean is actually equal to the mathematical
expectation of the depths of the scatterers at different levels, that is,

Dmean =
∫ Dmax

0
x f (x)dx (15)

Based on Equations (14) and Equation (15), the estimation of Dmean can be achieved,
and DSMbias is numerically equal to Dmean. Obviously, choosing a suitable f (x) is critical for
estimating DSMbias based on the MLM model.

Special Case Based on Uniform Distribution

If we assume that f (x) is the PDF of a uniform distribution with the interval (0, Dmax),
it is defined as

f (x) =
1

Dmax
, x ∈ (0, Dmax) (16)

Then, inserting Equation (16) into Equation (14) yields

γ =
sin(kzDmax/2)

kzDmax/2
ejkzDmax/2 (17)

Furthermore, the inversion model of Dmax can be obtained [5,28]:

Dmax =
2π

|kz|

(
1− 2

π
sin−1

[
|γ|0.8

])
(18)
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Furthermore, inserting Equation (16) into Equation (15) yields

Dmean =
1

Dmax
· 1

2
x2
∣∣∣Dmax

0
=

1
2

Dmax (19)

Therefore, we get the estimated formula for DSMbias:

DSMbias = Dmean =
π

|kz|

(
1− 2

π
sin−1

[
|γ|0.8

])
(20)

Calculation of Coherence for the MLM

As opposed to traditional models such as IDUV and RVoG, the coherence in the MLM
model does not mean the pure volume scattering decorrelation. In MLM-based parameter
inversion, the priority is not to remove other decorrelation factors, but to emphasize
that the calculation of coherence need to meet the assumptions of the theoretical model
of coherence as much as possible. Based on this consideration, Zhao et al. proposed a
coherence calculation method suitable for the MLM model [28], that is,

γMLM =

∣∣∣∣∣ 1
N

N

∑
i=1

ejϕint,i · e−jϕ f lat,i · e−jϕtopo,i

∣∣∣∣∣ (21)

γMLM satisfies the four Assumptions 1–4 in the derivation of the MLM simplified
model. It was proven in [28] that in the forest height inversion based on the MLM model
the γMLM can achieve better accuracy than the traditional coherence calculation method
(γIDUV). Predictably, γMLM should have the same effect on the estimation of DSMbias based
on the MLM.

2.3. Accuracy Validation

To comprehensively evaluate the accuracy of the proposed approach, four evaluation
indicators were selected in this paper. As Table 1 shows, these indicators are the mean error
(ME), root mean square error (RMSE), accuracy (Acc.) and coefficient of determination (R2).

Table 1. The evaluation index used in this paper *.

Evaluation Index Symbol Formula Ideal Value

Mean Error ME 1
n

n
∑

i=1
(xi − yi) 0

Root Mean Square Error RMSE
√

1
n

n
∑

i=1
(xi − yi)

2 0

Accuracy Acc.
(

1− RMSE
E(yi)

)
· 100% 100%

Coefficient of Determination R2 1−
n
∑

i=1
(xi − yi)

2/
n
∑

i=1
(E(yi)− yi)

2 1

* xi and yi are the estimation value and reference value, respectively. n is the number of samples. E() denotes
mathematical expectation.

3. Study Area and Data
3.1. Study Area

The study was conducted at Saihanba Forest Farm located in the north of Hebei
Province, China. As shown in Figure 5, the geographical location of the study area is
117◦18′45′′E to 117◦20′20′′E and 42◦23′48′′N to 42◦24′55′′N. The width (east–west) of the
area is about 2.2 km and length (north–south) is about 2.1 km. It lies in the junction of
the northern Hebei Province mountainous areas and the Inner Mongolian plateau, with
altitudes ranging from 1550 to 1700 m. Both coniferous forest and broad-leaved forest are
distributed in the area and predominant tree species of the forests are Pinus sylvestris var.
mongolica Litv., Betula platyphylla Suk., and Larix gmelinii (Rupr.) Kuzen.
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3.2. InSAR Data

In the study area, the InSAR data of P-band and X-band were acquired. The P-band
InSAR data were acquired on 29 October 2019, based on the airborne SAR system using
the repeat-pass mode. The P-band airborne SAR system was independently developed
by the Aerospace Information Research Institute, Chinese Academy of Science. The speed
of the airborne platform was about 80 m/s with the flying height about 4000 m. The
acquisition time difference between the primary image and the secondary image of P-band
InSAR was about 30 min. In addition, the X-band single-pass InSAR data were acquired
on 29 December 2018, based on the TanDEM-X system, which is a well-known European
spaceborne InSAR system. The details of the acquired P-band and X-band InSAR data are
presented in Table 2.

Table 2. Parameters of acquired P-band and X-band InSAR data *.

Parameters P-Band X-Band

Frequency 0.45 GHz 9.65 GHz
Polarization HH/HV/VH/VV HH

Center Incidence Angle 63◦ 43◦

Spatial baseline 60.25 m 332.77 m
HoA (mean) 81 m 44 m

SLC Resolution (a × r) 1.45 m × 1.50 m 2.21 m × 1.36 m
* HoA, height of ambiguity; SLC, single-look complex.

The Pauli RGB of the P-band primary image over the study area is shown in Figure 6a.
Figure 6b presents the intensity information of the X-band primary image.

3.3. LiDAR Data

Airborne LiDAR data were acquired from the study area with the full waveform
laser scanner (LMS-Q680i, Riegl, Horn, Austria) of the CAF-LiCHY (Chinese Academy of
Forestry-LiDAR, CCD and Hyperspectral) system around September 2018 [38,39]. Subse-
quently, LiDAR products, including the DTM, DSM and canopy height model (CHM) were
obtained from the LiDAR point cloud data. The LiDAR DTM, DSM, and CHM are shown
in Figure 6a–c. The spatial resolution of the above LiDAR product was 2 m, which was
similar to the SLC resolution of the P-band and X-band InSAR data (Table 2). It should be
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noted that both P-band and X-band InSAR data involve some down-resolution processing
steps such as multi-look, filtering, etc. Therefore, for the final accuracy assessment of forest
height, the 100th percentile heights (H100) data with a suitable filtering window size should
be extracted based on LiDAR CHM data. The H100 data of the study area were obtained
using the maximum filtering method with the 18 m × 18 m filter window, as shown in
Figure 7d. That is, it corresponded to the 3 × 3 multi-look window and the 3 × 3 filtering
window of the SAR data process. It should be noted that the pixel size of H100 remained
the same as the above LiDAR product, that is, 2 m.
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4. Data Processing
4.1. DTM Extraction Process

The DTM extraction process began with SLC images of P-band InSAR data, and as
mentioned before, mainly included three steps: subaperture decomposition, RME removal
and DTM generation.

For P-band polarimetric InSAR data used in this paper, we first needed to select a
polarization channel with the strongest penetration ability into the forest, and previous
studies have shown that HH polarization is the better choice [17]. Then, based on P-band
InSAR data of HH polarization, five subaperture images of equivalent resolution with
50% overlap (each subaperture was a third of the full aperture) were generated for both
primary and secondary images. Subsequently, the co-registrations between the primary
and secondary images of the same subaperture were completed with the accuracy of
0.02~0.03 pixels in range and 0.05~0.06 pixels in azimuth. Then, the interferograms of the
subaperture InSAR pairs were completed with a 3 × 3 multi-look window size.

In the RME removal, ϕflat and ϕtopo were generated and removed from the interference
phase of each subaperture based on the image parameters (interferometric baseline, slant
range and incidence angle) of the InSAR system and SRTM DEM data [36]. Then, the
level 1 wavelet decomposition with Haar wavelet basis was performed for removing
∆ϕtopo, ϕforest and ϕnoise. Subsequently, ϕRME was fitted according to a three-order (n = 3)
polynomial based on Equation (5). Finally, the effect of RME was removed by multiplying
ϕRME by the complex conjugate of the original subaperture interferograms.

For the DTM generation, the subaperture whose interferometric phase had the largest
difference with the interferometric phase of the HV polarization in the full aperture data
was selected as the optimal ground phase for every pixel. Then, to reduce the phase noise,
the optimal ground phase was filtered with a modified Goldstein filter with a 3× 3 window
size [40]. Next, the filtered phase was unwrapped using the minimum cost flow (MCF)
method [41]. Finally, the P-band DTM (DTMP-band) was obtained by linear function of
phase-height conversion [36].
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In terms of the noise level of the P-band SAR data used, the equivalent number of
looks (ENL) for the SLC level was 0.90, and the ENL after multi-looking and filtering
was 13.51.

4.2. DSM Extraction and Compensation Process

The processing of DSM extraction and compensation was mainly divided into two
steps, which were the extraction of the initial DSM version (DSMX-InSAR) and the estimation
of DSMbias.

For the extraction of DSMX-InSAR, the first step was co-registration. Since the InSAR
data of the TanDEM-X system undergo co-registration before they are provided to users,
the step can be skipped and the extraction processing begun with interferogram generation
using the SLC images of TanDEM-X InSAR data. The interferogram was completed with
a 3 × 3 multi-look window size. Then, the flat-earth phase was calculated and removed
based on the image parameters of the InSAR system [36]. Subsequently, the flattened
InSAR phase was filtered with the Goldstein filter with a 3 × 3 window size reducing the
phase noise [40]. Next, the MCF algorithm was used for phase unwrapping [41]. Finally,
DSMX-InSAR was extracted by linear function of phase-height conversion based on the
unwrapped phase [36].

For the estimation of DSMbias, the first step was the calculation of coherence. Before the
calculation, the combined flat-earth and topographic phase was calculated and removed
according to the image parameters of the InSAR system and the DTMP-band previously
extracted [36]. Then, γIDUV and γMLM were estimated according to Equation (12) and
Equation (21), respectively. The estimated window size of both estimations was 3 × 3.
Since the main decoherence factors of the TanDEM-X InSAR data were the SNR ratio and
volume scattering [12,42], the influence of SNR was removed by dividing γIDUV by the
SNR decorrelation, which was computed based on the backscattering intensity and noise
equivalent sigma zero (NESZ) provided as the image parameters for every TanDEM-X
acquisition [42].

For the IDUV model, DSMbias was estimated according to Equation (11) based on
γIDUV, and the compensated DSM based on IDUV (DSMX-IIDUV) was obtained by adding
DSMbias to DSMX-InSAR. Similarly, for the MLM, the compensated DSM based on the MLM
(DSMX-MLM) was formed by adding the DSMbias of the MLM to DSMX-InSAR. The DSMbias of
the MLM in the special uniform distribution case was estimated according to Equation (20),
based on γMLM.

In terms of the noise level of the X-band SAR data used, the ENL for the SLC level was
0.84, and the ENL after multi-looking and filtering was 19.64.

4.3. Forest Height Estimation and Accuracy Validation

The final forest height estimation results were completed by subtracting DTMP-band
from different X-InSAR DSMs. The pixel size of P-band and X-band InSAR products
was 6 m × 6 m (coordinate: UTM zone 50N), which was decided according to the pixel
size of InSAR SLC data (about 2 m) and the parameters of the multi-looking process
(3 × 3 window size).

The accuracy verification was based on the InSAR product with a 6 m × 6 m pixel
size and the LiDAR product with a 2 m × 2 m pixel size. For each pixel of the InSAR
product to be evaluated, we first found the LiDAR pixel located at the center of the pixel of
InSAR product. Then, taking this LiDAR pixel as the center, all LiDAR pixels within the
actual range corresponding to the pixel of InSAR product were used for verification. Since
there are 3 × 3 window size multi-look and 3 × 3 window size filtering involved in the
InSAR procedures, each pixel of InSAR products contained the information corresponding
to an area of about 18 m × 18 m. Therefore, although the pixel size of the InSAR product
was 6 m × 6 m, the LiDAR-based verification value was calculated based on all LiDAR
pixels within 18 m × 18 m. For the validation of the DTM, the validation value was the
mean of all LiDAR DTM pixels within the 18 m × 18 m. For the validation of forest
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height, the validation value was the maximum value of all LiDAR CHM pixels within the
18 m × 18 m, as displayed by Figure 7d in the previous section. For the validation of the
DSM, the verification value was the sum of the above two values.

For the validation of forest height estimation results, a total of 2631 samples were
extracted systemically with 42 m intervals. In fact, at 42 m intervals, a total of 2754 samples
could be extracted, and 123 samples from non-vegetated areas (H100 < 0.5 m) were removed,
and the remaining 2631 samples were evenly distributed in the study area.

The above steps were completed using GAMMA software (version: 2012; GAMMA
Remote Sensing corporation, Gumligen, Switzerland; https://www.gamma-rs.com/, ac-
cessed on 20 June 2022), PolSARpro software and our own program. The software and
program were run on a computer with AMD Ryzen 7 5800H CPU and NVIDIA GeForce
RTX 3060 GPU.

5. Results
5.1. DTM Extraction from P-Band InSAR Data

The final DTMP-band is displayed in Figure 8a. It can be seen that DTMP-band and
DTMLiDAR (Figure 7a) presented similar patterns, with elevation ranging from 1550 to
1700 m. Figure 8b shows the difference between DTMP-band and DTMLiDAR. Figure 9
shows the histogram of the difference. It can be observed that the differences were mainly
distributed between −3 and 2 m. There was no obvious relation between the areas of large
differences with their land-cover type, vegetation height, altitude or other factors. In our
opinion, the main reason behind the differences was the effect of random errors in the
overall process, such as the residual phase error of RME. The ME of DTMP-band was 0.14 m,
and the RMSE was 0.94 m. According to H100 (Figure 7d), the forest height in the study area
was about 10 to 30 m. This suggested that the accuracy of the extracted DTM was sufficient
for the forest height estimation. In addition, a study [18] achieved DTM extraction accuracy
with an RMSE of 2.01 m based on the same TF method.
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5.2. DSM Extraction and Compensation from X-Band InSAR Data
5.2.1. Raw Result of DSM Extraction

The initial DSM version (DSMX-InSAR) is displayed in Figure 10a. It can be seen that
DSMX-InSAR and DSMLiDAR (Figure 7b) presented similar patterns. The differences between
DSMX-InSAR and DSMLiDAR are shown in Figure 10b. For most forest-covered area, the
differences were lower than −5 m and down to −15 m, indicating DSMX-InSAR had a clear
underestimation compared to DSMLiDAR. The main reason behind the large deviation was
the non-negligible penetration ability of X-band InSAR into the forests. In areas where the
forest height is high enough (e.g., >20 m), large enough gaps in the forest stand allowing
the SAR signal to penetrate the underlying surface are enough to generate a large InSAR
DSM error (e.g., ~15 m). The study [12] also found a substantial penetration of up to 12
m in a boreal forest with TanDEM-X data. The large deviation between DSMLiDAR and
DSMX-InSAR suggested that, for accurate forest height estimation, the bias of DSMX-InSAR
should be compensated.
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5.2.2. DSM Compensation Result

The calculation results of coherence (γIDUV and γMLM) are displayed in Figure 11a and
Figure 11b, respectively. Overall, it is clear that the coherence level of γMLM was greater
than that of γIDUV. Figure 12 presents the histogram of both coherence images. Compared
with γIDUV, γMLM had a higher mean and lower standard deviation (Std).
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DSMX-IDUV and DSMX-MLM are displayed in Figures 13a and 13b, respectively. Both
DSMX-IDUV and DSMX-MLM have similar distribution trends to DSMLiDAR (Figure 7b).
Figure 13c shows the difference between DSMX-IDUV and DSMLiDAR. Compared to the
differences between DSMX-InSAR and DSMLiDAR (Figure 10b), the DSM underestimation of
forest area was corrected effectively. However, for the area where the differences between
DSMLiDAR and DSMX-InSAR were lower than −10 m (appearing in blue in Figure 10b),
DSMX-IDUV still had an underestimation of about 5 to 10 m, which will result in a large
error in the forest height estimation. The main reason for the large error is that the IDUV
model did not conform to the actual situation of the forest, that is, the gaps in the forest were
not considered. For relatively sparse forests, this error was even greater. In addition, for our
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study case, it should be noted that the upper limit of the IDUV DSMbias is about 11 m (refer
to Table 2 and Equation (11)). Figure 13d shows the difference between DSMX-MLM and
DSMLiDAR. It can be seen that most of the differences were centered around 0 m (appearing
in yellow in Figure 13d), indicating an overall substantial compensation performance by
the MLM method. Obviously, DSMX-MLM was closer to DSMLiDAR than DSMX-InSAR and
DSMX-IDUV.
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As shown in Figure 14, the histograms of the differences between the InSAR DSMs and
the LiDAR DSM confirm the above visual representation analyses. The difference between
DSMX-InSAR and DSMLiDAR was mainly distributed from −15 to 5 m, and two peaks appear
around 0 and −10 m. The peak near 0 m corresponds to the non-forest area where the
X-band InSAR signal penetration was trivial, and the peak near −10 m corresponds to
the considerable signal penetration of the forest-covered area. The ME of DSMX-InSAR was
−7.58 m, and the RMSE was 8.78 m. This error is undoubtedly large. In contrast, the
difference between DSMLiDAR and DSMX-IDUV was mainly distributed from −10 to 5 m.
The ME of the DSMX-IDUV was −0.97 m, and the RMSE was 3.01 m. Obviously, compared
to the results of DSMX-InSAR, the RMSE of DSMX-IDUV significantly decreased, which means
that the bias of DSMX-InSAR was effectively compensated. Moreover, it can be observed that
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the differences between DSMLiDAR and DSMX-MLM mainly ranged from −5 to 5 m. The
ME of DSMX-MLM was −0.17 m, and the RMSE was 1.67 m. For DSMX-MLM, both ME and
RMSE were superior to those of DSMX-IDUV, which means that the compensation based on
the MLM outperformed the compensation based on the IDUV model.
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Figure 14. Histograms of the DSM differences (DSMX-InSAR/IDUV/MLM minus DSMLiDAR).

For more detailed exhibition and analysis, the elevation profile of DTMP-band, DTMLiDAR,
DSMLiDAR, and DSMX-InSAR/IDUV/MLM are displayed in Figure 15. The latitude line of
42◦24′20′′N located in the middle of the study area was chosen as the location of the profile.
There were a total of 370 pixels in the profile. Figure 15 indicates that DTMP-band had the
same topographical features and trends as the DTMLiDAR with a small bias. It also can be
observed in Figure 15 that DSMX-InSAR had a significant underestimation compared with
DSMLiDAR, indicating that the signal penetration of X-band InSAR in the study area was
about 5 to 10 m. Moreover, both DSMX-IDUV and DSMX-MLM were closer to DSMLiDAR than
DSMX-InSAR, confirming effective compensation by both methods. In general, compared
with DSMLiDAR, the underestimation of DSMX-IDUV was obvious, and the accuracy of
DSMX-MLM was better. However, in some areas, especially low vegetation areas, both
methods had different degrees of overestimation. The phenomenon was mainly due to
the strong heterogeneity of the areas. That is, the areas were mainly located at the edge of
the forest. Because of the characteristics of side-looking illumination of the SAR sensors,
the scatter information of nearby tall trees was likely to be mixed in the non-vegetation or
low-vegetation pixels, resulting in overestimation.
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5.3. Estimation Results of Forest Height

For the sake of description, HX-InSAR, HX-IDUV and HX-MLM were used to label the
estimation results of the forest height generated based on DSMX-InSAR, DSMX-IDUV and
DSMX-MLM, respectively. The final estimation results of forest height are shown in Figure 16.
Comparisons of the estimation results with H100 (Figure 7d) revealed that overall forest
height was underestimated in HX-InSAR. In contrast, HX-IDUV and HX-MLM were obviously
higher and closer to H100 than HX-InSAR. However, in HX-IDUV, there were still some obvious
deficiencies. For example, the underestimation was still observed in several forest-covered
areas such as the northwest of the study area (marked by the black circle in Figure 16b,c),
and the overestimation was observed in the bare soil/non-vegetated areas such as those in
the southeast of the study area (marked by the red circle in Figure 16b,c). Overall, the best
consistency was observed between HX-MLM and H100.
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Based on the evaluation indicators (Table 1) and H100 data (Figure 7d), the forest height
estimation results were quantitatively evaluated. Figure 17a–c shows the scatter plots of
H100 with respect to HX-InSAR, HX-IDUV and HX-MLM, respectively. The evaluation indicators
of each forest height estimation result are also shown in the figure. It can be observed in
Figure 17 that HX-MLM achieved the most accurate forest height estimation result with an
accuracy of 86.58%, which was 8.49% more accurate compared with HX-IDUV and 42.15%
more accurate compared with HX-InSAR.
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Similarly, for more detailed exhibition and analysis, the forest height profile in the
same location as Figure 15 was extracted and is displayed in Figure 18. It can be seen
that after removing the understory topography, the normalized forest height profile shows
more and clearer details. Overall, consistent with the previous analysis, HX-MLM showed
the best agreement with H100. That is, for tall forest areas, the method based on the MLM
compensated better than the IDUV model. In the low vegetation areas (marked by the red
circle in Figure 18) such as the area around 117◦19′32.5′′, both methods overestimated the
height. Moreover, the overestimation phenomenon of HX-MLM was obviously weaker.
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There may be two reasons for the above-mentioned overestimation phenomenon. First,
when comparing the LiDAR data of the test area (marked by red polygons in Figure 7c),
it is not difficult to see that the overestimation phenomenon was basically located in the
heterogeneous region, such as the edge of the forest. Owing to the characteristics of
side-looking illumination by SAR sensors, the scatterer information of nearby tall trees
was likely mixed in the non-vegetation pixels, resulting in overestimation (including
HX-InSAR). Second, the coherence observations (γIDUV and γMLM) still contained some
non-forest-induced decoherence that was not removed. In addition, it should be noted that
both methods had an obvious underestimation in some regions, such as the area around
117◦20′10′′. The main reason is that this area is a very sparse forest, and although the
decoherence caused by the forest was small, H100 still took the maximum value within
the modeling unit. In other words, the scattering mechanisms were inconsistent with the
model assumptions of IDUV and MLM.

6. Discussion

In this paper, we proposed a method for forest height estimation using the penetration
difference between P-band and X-band InSAR. Although the experimental results verified
the effectiveness of the proposed method, some key issues and future developments of this
study should be further described.

For DTM extraction based on P-band InSAR, we adopted the improved TF analysis
method proposed by Fu et al. [18], which used a subaperture decomposition technique to
enhance the ability of P-band SAR to “see” the pure ground surface through forest gaps.
In this paper, we again verified the effectiveness of the TF analysis method. However, it
should be noted that the experimental verification of the TF method included in this study
was based on the airborne P-band high-resolution InSAR data [17,18]. It is important to
note that this method is only suitable for high-resolution long-wavelength InSAR data.
However, this requirement is somewhat difficult for spaceborne long-wavelength SAR. For
example, the spaceborne P-band InSAR mission BIOMASS will have a spatial resolution of
about 12.5 m× 25 m [43], which is much lower than the spatial resolution of airborne InSAR
data used in this study. Low spatial resolution will lead to a narrow observation angle. For
this situation, it is also difficult to obtain pure ground surface SLC pixels with methods
based on TF analysis. In other words, the size of the SLC pixel is likely to be larger than the
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forest gap that can be penetrated, and mixing in forest scatterers is unavoidable. In this
case, it may be useful to consider the dielectric penetration scattering mechanism within
the SLC pixel based on the TF analysis method. In addition to algorithmically adapting
to low resolutions as much as possible, we strongly recommend launching the P-band
SAR satellites with a spatial resolution better than 3 m to improve the gap penetration
capability of spaceborne SAR. It is notable that China’s civil P-band SAR has just entered
the pre-research stage, and higher spatial resolution should be the basic feature of this
satellite [44]. In addition, the TF method only increases the probability of the SAR signal
seeing the pure ground surface by changing the observation angle in the azimuth direction.
In fact, in the range direction, the viewing angle of the SAR relative to the forest has a
strong effect on the penetration ability. In general, a smaller angle of incidence is more
conducive to penetration of the forest [9]. However, in this paper, the incident angle of the
P-band SAR was about 63 degrees, which is relatively large. This may also have an impact
on the extraction accuracy of the DTM. If multi-angle InSAR observations are carried out
in the range direction, such as complementary observations of ascending and descending
orbits, it will be possible to further increase the possibility of SAR sensors seeing the pure
ground surface.

For DSM extraction based on X-band InSAR, we proposed a new compensation
method based on the gap penetration scattering mechanism. Compared with the IDUV
method, the advantage of our method is that there is no theoretical limit on the maxi-
mum penetration depth, so it is more likely to be applied to diverse forests. Because of
the wavelength limitation, X-band cannot use subaperture decomposition technology to
enhance the ability of gap penetration, like high-resolution P-band SAR. Even so, the gap
penetration capability of the X-band is unquestionable. For example, Lei et al. realized the
simultaneous automatic extraction of the DTM and DSM in the tropical forest area by using
the gap penetration ability of the X-band InSAR [31]. However, in Lei’s method, in order to
avoid the influence of multi-look averaging, only few looks can be performed. In this case,
the algorithm must have strong adaptability to the influence of various noises. In contrast,
we did not need to worry about this aspect with our method. Within an estimation unit
(such as 20 m × 20 m), we did not focus on extracting the phase of the SLC pixel that has
the highest phase center and is close to the location of the forest canopy top because the
phase of a single SLC pixel has a large uncertainty. We chose to average all SLC pixels in
the estimation unit to eliminate the influence of noise, and then reconstruct the position of
the highest SLC pixel with certain model assumptions mainly about the distribution of the
scatters. Therefore, for our method, reasonable model assumptions about the distribution of
the scatters based on the type and structure of the specific forest are the most important for
the extraction accuracy of DSM. In this study, the distribution was assumed to be uniform
for the purpose of model simplicity. Obviously, this does not work for all forest types. For
example, for sparse forest, the scatterers are more likely to be concentrated on the ground
surface than be evenly distributed. In this case, a more complex and realistic distribution
rather than uniform distribution may improve the extraction accuracy of the DSM, thereby
improving the estimation accuracy of the forest height. As a previous study [28] shows,
the MLM with a mixed truncated normal distribution achieved a superior forest height
result compared to the model with less complex distribution. Further study will focus on
the more complex scatters distribution to improve the accuracy and adaptability of the
MLM-based DSM compensation method.

In addition, it should be mentioned that the integration of InSAR data from a different
frequency requires accurate geo-positioning and comparable spatial resolution, especially
when the data are obtained with a different platform. In our case, the spaceborne X-
band InSAR data and airborne P-band InSAR data were used. Along with these data,
accurate orbit information and image parameters were provided, which allowed us to
perform accurate geocoding (within 1 pixel,) for both datasets based on the Range-Doppler
positioning model. The resolutions of the airborne and spaceborne InSAR SLC data are
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comparable. Therefore, the influence of this aspect on the results of this paper should
be small.

7. Conclusions

This paper presented a forest height estimation approach utilizing the penetration
difference between P-band and X-band InSAR data. The forest height was determined by
subtracting the P-band DTM from the X-band DSM. To realize the unbiased DTM extraction,
the improved TF analysis method was utilized to separate and obtain the pure underlying
topography phase. The method enhanced the capability of gap penetration of the P-band
InSAR by adopting subaperture decomposition. To compensate for the height bias in the
DSM, we proposed a novel method based on the MLM. As opposed to traditional scattering
models (such as IDUV, RVoG), which focus on the dielectric penetration of the SAR signal,
the MLM emphasizes the penetration capability of the radar, which is more in line with the
characteristics of the scattering mechanism for X-band InSAR in a forest scenario.

Based on the spaceborne X-band and airborne P-band InSAR data of the Saihanba
Forest Farm, the proposed method was validated. The experimental results showed that
the extracted DTM based on the TF method achieved an RMSE with an accuracy of about
0.94 m, which is sufficient for forest height estimation. The proposed MLM-based DSM
compensation method outperformed the IDUV-based method by 1.34 m in terms of RMSE.
Furthermore, in the area where the original X-band DSM underestimated the forest surface
height over 10 m, the MLM-based method achieved a better compensated result compared
to the IDUV-based method. As a result, under the extracted P-band DTM, the forest
height estimation based on the MLM-based compensation method achieved better accuracy
(Acc. = 86.58%, RMSE = 1.81 m) compared to the IDUV-based method (Acc. = 78.09%,
RMSE = 2.98 m). The results demonstrate the effectiveness of the proposed forest height
estimation method in the study area. In the future, we plan to adopt this approach to
estimate the forest height in more and larger areas to further assess the adaptability of
the method.
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