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Abstract: Hourly and 15 min GOES-16 and -17 atmospheric motion vectors (AMVs) are evaluated
using the 2020 version of the operational HWRF to assess their impact on tropical cyclone forecasting.
The evaluation includes infrared (IR), visible (VIS), shortwave (SWIR), clear air, and cloud top
water vapor (CAWV and CTWV) AMVs derived from the ABI imagery. Several changes are made
to optimize the assimilation of these winds. The observational error profile is inflated to avoid
overweighting of the AMVs. The range of allowable AMV wind speeds entering the assimilation
system is increased to include larger wind speeds observed in tropical cyclones. Two data quality
checks, commonly used for rejecting AMVs, namely QI and PCT1, have been removed. These changes
resulted in a 20–40% increase in the number of AMVs assimilated. One additional change, specific to
infrared AMVs, is narrowing the atmospheric layer where IR AMVs are rejected from 400–800 hPa to
400–600 hPa. The AMVs’ impact on forecast skill is assessed using storms from the North Atlantic and
the Eastern Pacific, respectively. Overall, GOES-16 and -17 AMVs are beneficial for improving tropical
cyclone forecasting. Positive analysis and forecast impact are obtained for track error, intensity error,
minimum central pressure error, and storm size.

Keywords: data assimilation; atmospheric motion vectors; HWRF; GOES-16 and 17; tropical
cyclone forecasting

1. Introduction

Weather observations provide essential information for data assimilation and fore-
casting of the atmosphere, which is especially important for high-impact weather such as
tropical cyclones. The atmospheric motion vectors (AMVs) supplement direct observations
of the vector wind field provided by conventional data (e.g., rawinsondes). Conventional
data are unevenly distributed and often concentrated over land. AMVs help to fill in
data void regions in the initialization of the Hurricane Weather and Forecasting (HWRF)
model used for tropical cyclone forecasting. These AMVs are derived by tracking the
horizontal motion of atmospheric fields such as clouds or water vapor gradients from
consecutive geostationary satellite images [1], thus having large spatial coverage and more
frequent observations.

Numerical Weather Prediction (NWP) Centers have used AMVs from earlier geosta-
tionary satellites in their global and/or regional models after showing improved forecast
skill [2–6]. The abundance of high temporal and spatial resolution satellite AMVs in the
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tropics is especially beneficial around tropical cyclones. The authors of [7] showed that
the assimilation of these AMVs have improved analyses and intensity forecasts of tropical
cyclones, most notably in the upper outflow regions. Assimilation studies using hourly
AMVs conducted by the U.S. Navy, using the Navy Operational Global Atmospheric
Prediction System [8], showed positive impacts in tropical cyclone track forecasts [9–11].
Refs. [7,12–15] concluded that variational assimilation techniques produce a 100–200 km
reduction in tropical cyclone mean track errors when hourly cloud-drift AMVs from Geo-
stationary Operational Environmental Satellite GOES-8 and Geostationary Meteorological
Satellite-5 were assimilated. Ref. [16] showed that the assimilation of all five types of hourly
AMVs from GOES-13 into operational HWRF helped to improve many of the tropical
cyclone forecast metrics.

GOES-16, the first of the United States’ third-generation geostationary satellite in the
GOES-R series, was launched on 19 November 2016. One of the instruments onboard
GOES-16 is the Advanced Baseline Imager (ABI) [17]. ABI is a 16-band radiometer covering
the visible, near-infrared, and infrared portions of the electromagnetic spectrum with four
times the spatial resolution and five times faster coverage than instruments on earlier
GOESs. ABI is capable of handling multiple scan scenarios. Scan scenario 6 is the default
and most commonly used. With scan scenario 6, full disk images are acquired every
10 min, CONtinental United States (CONUS) images are taken every 5 min and mesoscale
images are taken every minute. The scan coverage for full disk and CONUS are fixed.
The mesoscale scans target high-impact weather, and their locations can change based on
operational needs. More details on ABI can be found in [17].

Multiple ABI scans are processed to derive AMVs using the GOES-R nested tracking
algorithm [18]. Wind vectors in a search box are derived from multiple targets. A cluster
analysis algorithm is then applied to select the final motion vector from the largest cluster
in the search box [19]. Ref. [18] showed that AMVs derived using the above method have a
reduced slow speed bias. The ABI spectral bands, spatial resolution and the derived AMV
spatial resolution with their naming convention are listed in Table 1.

Table 1. GOES-16 and 17 imager spectral channels used to derive the different AMV types.

AMV ABI Band
Central

Wavelength
(µm)

Cloud Clear-Sky
Water Vapor

ABI Image
Spatial

Resolution
(km)

AMV Spatial
Resolution

(km)

VIS 2 0.64 X 0.5 7.5
SWIR 7 3.9 X

2.0 30
WV 8 6.2 X
WV 9 6.9 X
WV 10 7.3 X
IR 14 11.2 X 38

To date, two studies have been published demonstrating that the assimilation of
GOES-16 AMVs improves tropical cyclone forecasting. The authors of [20] reported that
assimilation of the 15 min AMVs, derived from the GOES-16 rapid scan (mesoscale scan)
imagery, have improved the hurricane track and size forecasts for three destructive tropical
cyclones. Using Atlantic Hurricane Irma in 2017, [21] demonstrated that assimilating
enhanced vortex-scale GOES-16 AMVs using the 2019 version of the operational HWRF,
improved track forecast. Both studies used the enhanced vortex-scale GOES-16 AMVs
derived from the technique described in [22].

In this work, we report on the evaluation of the assimilation the hourly full disk and
15 min CONUS AMVs from GOES-16 and -17 using tropical cyclones from the 2018–2020
hurricane seasons. The paper is organized as follows. Section 2 provides a summary of
the 2020 operational HWRF system. Section 3 describes the experimental set up, the new
quality control procedures and its impact on assimilation statistics. Section 4 highlights
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various aspects of forecast improvements from the GOES AMVs. In Section 4.1, a single
assimilation cycle from 2019 Hurricane Dorian is reviewed to understand how the analysis
changes with the addition of new AMV types, QC procedures and error profile. Results of
the forecast performance for the assimilation of AMVs from GOES-16 and -17 are presented
in Sections 4.2–4.4. Section 5 gives a summary of the findings.

2. Hurricane Weather Forecasting Model

The HWRF is an atmosphere–ocean-coupled system used both in tropical cyclone
research and development as well as operations for the National Hurricane Center (NHC).
The HWRF is configured with a parent domain and two storm following nested domains
shown in Figure 1. The parent domain is 77.2◦ by 77.2◦ with its center determined by the
initial location of the storm and the 72 h forecast. These storm centers are determined by
NHC or the Joint Typhoon Warning Center. The two nested domains are 17.8◦ by 17.8◦

and 5.9◦ by 5.9◦. Both nested domains are two-way interactive, i.e., there is information
exchange between the domains and their parent domain. The three domains have spatial
resolutions of 13.5, 4.5 and 1.5 km [23]. HWRF uses two ghost domains for data assimilation.
They have the same spatial resolution as the two nested domains but have larger coverage
(d02 is 28◦ by 28◦ and d03 is 15◦ by 15◦). The ghost d02 domain sufficiently covers the entire
storm, while the ghost d03 domain is used primarily to assimilate aircraft reconnaissance
data. The HWRF model has 75 vertical levels with a model top of 10 hPa in all three
domains. The initial and boundary conditions used by the HWRF parent domain are
provided by the National Centers for Environmental Prediction (NCEP) Global Forecast
System (GFS). The suite of physical parameterization used by HWRF are selected for
tropical cyclone applications. The parameterizations are the Geophysical Fluid Dynamic
Laboratory’s surface-layer parameterization for air–sea interaction, the Noah Land Surface
Model [24,25], the Rapid Radiative Transfer Model for General circulation models radiation
scheme [26], the Ferrier–Aligo microphysics [27,28], the GFS Hybrid Eddy Diffusivity Mass-
Flux (Hybrid-ESMF) Planetary Boundary Layer (PBL) scheme [29], and the scale-aware
GFS Simplified Arakawa Schubert (SAS) deep and shallow convection scheme [28,30] and
the Hybrid Coordinate Ocean Model. More information on HWRF can be found in [23,31].
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Figure 1. Domain coverage for HWRF data assimilation and forecasts. The parent domain is 77.2◦

by 77.2◦ with its center determined based on the initial location of the storm’s position and the
72-h forecast from NHC or the JTWC. The two nested domains are 17.8◦ by 17.8◦ and 5.9◦ by 5.9◦.
Resolution of outer, middle, and inner domains are 13.5 km, 4.5 km, and 1.5 km, respectively. Data
assimilation is applied to ghost d02 and d03 and they have the same spatial resolution as the nested
domains. They have larger domain coverage (28◦ by 28◦ and 15◦ by 15◦).

The HWRF Data Assimilation System (HDAS) is a hybrid three-dimensional (3D)
ensemble-variational (EnVar) assimilation system [32] implementation of the Gridpoint
Statistical Interpolation (GSI). Data assimilation is performed in the two ghost domains.
The use of a static background error covariance matrix, which is isotropic and constrained
by larger scale geostrophic balance, limits the spreading of observation information in the
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presence of a tropical cyclone [32,33]. To provide information on the flow-dependent error
covariance, a 40-member HWRF forecast-based ensemble is used. The self-cycled system
updates each member through an Ensemble Kalman Filter (EnKF) analysis. The HWRF
self-cycled ensemble hybrid data assimilation system is triggered for tropical cyclones in
the North Atlantic and East Pacific basins that have tail doppler radar data or are defined
as a priority storm by NHC. The HWRF ensemble forecasts are initialized from a previous
6-h NCEP Global Data Assimilation System (GDAS) EnKF analysis. The ensemble forecasts
are run for the parent domain and a 30◦ by 30◦ nest with spatial resolution of 0.033◦. Both
domains are non-vortex following during the forecast but are recentered to the tropical
cyclone center at each analysis time.

To initialize the HWRF state, a multistep procedure was used to optimize modeling the
tropical cyclone storm center. The HWRF nested domains are initialized by the GDAS 3 h
forecast. The vortex (position, structure, and intensity) in the first guess is modified based
on the NHC’s Tropical Cyclone Vitals Database prior to data assimilation. The replaced
vortex can either be drawn from a prior HWRF 6 h forecast or the GDAS 3 h forecast. The
vortex from the 6 h HWRF forecast is extracted if the observed vortex maximum wind
speed is greater or equal to 14 ms−1. This vortex is corrected based on NHC’s TC Vitals and
inserted into the first guess. Otherwise, the corrected vortex from the 3 h GDAS forecast is
used. Details on the vortex correction is outlined in [23]. This vortex-processing step, also
known as vortex initialization [33], is designed to optimize forecast skill [32,33]. However,
the vortex initialization limits the impact of adding new AMV types by inhibiting the
propagation of information from observations assimilated in earlier analysis cycles into the
current analysis cycle.

The selection and treatment of the complex suite of weather observations used in
the HWRF is likewise optimized to prioritize the modeling of the cyclone. Observation
types that are assimilated into HDAS include conventional observations, tail doppler radar
data, satellite infrared and microwave radiances, hourly GOES-16 and -17 infrared (IR),
Cloud Top Water Vapor (CTWV) and Clear Air Water Vapor (CAWV)-type AMVs and
Global Positioning System Radio Occultation bending angle. In [31], an extensive list of all
the observations assimilated in HDAS is provided. The HDAS assimilates observations
within ±3 h of the analysis time. To better assimilate the observations, HDAS employs
the First Guess-Appropriate Time technique by also using the 3 and 9-h GDAS forecasts.
Observations are compared with the first guess at the observation time to obtain the
innovation. With the First Guess-Appropriate Time, the two closest background fields are
interpolated in time within GSI.

After the data assimilation step, a merging procedure is applied to combine the HDAS
analysis with the GDAS analysis to produce the final analysis. The data are interpolated
to the parent and nested domains to generate a final analysis used to initialize the HWRF
forecast. For tropical cyclones that are hurricane strength (maximum winds greater than
65 kt), the GSI analysis increments are decomposed into respective wavenumber spectra.
Only wavenumbers 0 and 1 are kept within a 150 km radius of the tropical cyclone center
and relaxed to the full GSI increment 250 km. For weak tropical cyclones (maximum winds
less than 64 kt), unaltered data assimilation increments are applied.

The operational HWRF model is run four times daily to produce 126 h forecasts of
tropical cyclone track, intensity, structure, and rainfall when a tropical cyclone is identified.
The HWRF run is stopped when the tropical cyclone either dissipates after making landfall,
becomes extratropical, or degenerates into a remnant low. Figure 2 shows a schematic of
the various processes of a HWRF run during a single analysis–forecast cycle.
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Figure 2. Flow diagram of a self-cycled HWRF hybrid variational system. Blue shaded boxes indicate
components from NCEP global system (GFS).

The model configuration, run time scripts, and all data files were provided by NCEP,
and experiments were conducted in accordance with NCEP’s parallel testing procedures.
The 2020 version of the operational HWRF was used. The new hourly and 15 min AMV
data files were provided by NESDIS Office of Satellite and Product Operations and are
consistent with their operational limits. Experiments were conducted on NOAA’s High-
Performance Computing cluster JET. Forecast evaluations were conducted with NCEP’s
verification software.

3. Data Assimilation of GOES AMVs

To optimize the use of AMVs in data assimilation, the quality-control procedures
and assigned observation error were reviewed for best use within HWRF. In this section,
the current quality control metrics are outlined. Modifications for HWRF use are then
discussed. A critical adjustment to the observation error handling is presented as well as
a change in the gross check. The impact on data usage from the combined adjustments
is shown.

The current quality-control (QC) procedures that are used by HWRF for the assim-
ilation of GOES-16 and -17 AMVs in the GSI are similar to GDAS. The AMVs are used
if the assigned Quality Indicator (QI) [34] computed without the forecast component is
greater than 80. QI is calculated by estimating the consistency in spatial, direction, speed,
and vector. For all AMV types, the observations are used if their normalized Expected
Error [35] (Expected Error/AMV speed) is less than 0.8 ms−1. For low-level IR type AMVs
with pressure values larger than 800 hPa, the normalized Expected Error must be less than
0.55 ms−1 to be used. AMV observations with pressures less than 950 hPa and below the
tropopause are used. All AMV types are subject to a PCT1 check [18] and near surface
and tropopause checks. In the nested tracking algorithm, PCT1 is defined as the standard
deviation of the displacements making up the largest motion cluster divided by the average
displacements the cluster travelled. It is a measure of how much the initial cloud scene has
deformed over the interval of time the cloud is being tracked. AMVs with PCT1 values less
than 0.04 and greater than 0.5 are rejected. The infrared (IR)-type AMV observations over
land with latitudes greater than 20◦N were found to be problematic and are rejected. In
addition, IR-type AMVs with pressure values between 400 and 800 hPa and CTWV-type
AMVs with pressure values greater than 400 hPa are excluded due to height assignment
concerns. The CAWV-type AMVs are also rejected if the difference in the wind direction is
greater than 50◦ from the forecast wind.

The GOES-R AMVs quality control procedures are reviewed for use in HDAS. HDAS
currently employs the global QC procedures derived for synoptic scales, which may not be
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optimal for mesoscales. Specifically, the QI and PCT1 checks are removed as they reject
most of the AMVs available within the HWRF assimilation domains. Density plots of QI
and PCT1 for IR AMVs within the assimilation domain for Hurricane Michael are plotted
against speed and vector departures (observation minus first guess) in Figure 3. The current
QC cutoffs for these two metrics are shown by the red line. From the density plots, IR
AMVs speed and vector departures for QI < 80% and PCT1 < 0.04 are no different to those
with QI > 80% and PCT1 < 0.04. The QI metric can have low values if there is a lack of
a “buddy” AMV for comparison. However, it does not indicate the observation’s quality.
Low PCT1 values are desirable from a tracking standpoint because they imply that the
cloud scene is not deforming much over time and is behaving like a passive tracer. Both
hourly and 15 min AMVs from GOES-16 and -17 for all AMV types are reviewed, and
the same conclusions are drawn to remove the QI and PCT1 checks for AMVs in HWRF
(figures not shown). In addition, the nested tracking algorithm produces more IR AMVs
between 600–800 hPa. Reducing the blacklisting of low-level IR AMVs from 800 hPa to
600 hPa reflects the improved detection.
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first guess) for GOES-16 IR hourly AMV type. The red line indicates the threshold cutoff
used currently.

While quality control acts as a gatekeeper to limit the used observations to those
meeting a quality standard, the assigned observation error plays an important role on the
influence of the selected observations. Observational error is used within the variational
data assimilation system to determine the magnitude of influence from each observation
on the final analysis solution. The GSI setting for this error is adopted from the GDAS. For
the GDAS, the error profile is halved for GOES-16 AMV assimilation because the global
model uses a larger error profile. When applied to the current HWRF error profile, the
values become too small due to the GSI software logic. Figure 4 shows the current error
profile in blue and labelled as H220. The revised error profile is red. The rawinsonde error
profile is black. The root-mean-square error (RMSE) derived by the data provider for IR
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(green), CTWV (orange), and VIS (in magenta) are also shown for comparison. The revised
error profile is comparable to the data provider’s RMSE and the error profile used in the
assimilation of rawinsondes.
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Figure 4. Proposed profile of observational wind error as a function of pressure used for IR-,CTWV-,
SWIR-, CAWV-, and VIS-type AMVs (red), rawinsonde is in black and the control (H220) is in
blue. Also plotted are the root-mean-square error (RMSE) from comparing GOES-16 AMVs with
rawinsonde derived by the data provider.

A final AMV test, called the gross check, was also modified for the HWRF GSI config-
uration. This test is applied to all AMVs to reject observations that have large observation-
model departures. The maximum range of departures allowed by the gross check is
determined by a gross error parameter multiplied by the observation error profile. Tropical
cyclones generally have larger wind speeds. To allow observations that reflect the higher
wind speeds, the gross error parameter was relaxed from current values of 1.3–2.5 to 3.5
for all GOES-16 and 17 AMV wind types. Doing so allows observations with wind speed
departures of about 17 ms−1 to be assimilated compared to 3 ms−1 with the current settings.

By relaxing the gross check, removing the QI & PCT1 tests, and reducing the vertical
range of rejected lower level infrared AMVs, the count of AMV observations is significantly
increased for HWRF data assimilation. The percentage of accepted GOES-16 AMVs is
shown for Hurricane Michael with and without the recommended changes (Figure 5).
The assimilation counts for GOES-16 hourly AMVs using the current QC, gross check
and error profiles are plotted in Figure 5a. The percentage of observations assimilated is
between 40–60%. Together with the use of a larger gross check and the revised error profile,
the percentage of observations assimilated increases to 60–95%, as shown in Figure 5b.
The inner core domain (ghost domain d03) shows similar improvements in counts. This
evaluation was repeated for the 15 min AMVs when the data stream became available
(figures not shown). The new QC changes are still effective for these higher temporal-
resolution AMVs.
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Figure 5. Percentage of observations assimilated in HWRF ghost d02 domain for each AMV type per
cycle (a) with QI > 80% and PCT1 < 0.04 check and (b) without QI > 80% and PCT1 < 0.04 check for
Hurricane Michael.

With the optimization of the GSI software for AMV use in the HWRF data assimila-
tion complete, the evaluation of all AMV types at the hourly and 15 min frequency was
completed using tropical cyclone cases during the 2018, 2019, and 2020 seasons. Hourly
GOES-16 AMVs are already available in the NCEP Central Operations data stream and
hence are available for all these seasons. However, the 2020 version of the operational
HWRF/HDAS only assimilates hourly IR, CTWV, and CAWV AMVs. It does not contain
the SWIR or VIS AMVs. The operational AMV set will be used in the control (CTRL) and
maintains the 2020 operational HWRF quality control procedures and error profile of AMVs
during data assimilation. A comparison experiment (AMV1) uses the same AMV set as the
CTRL but with the addition of hourly SWIR and VIS AMVs. AMV1 also uses the proposed
QC procedures and error profiles outlined above. An additional assimilation experiment,
AMV2, was conducted and is identical to AMV1 except for the inclusion of the 15-minute
CONUS AMVs for all five types. Table 2 summarizes the experimental set up used for
each experiment.

Table 2. List of assimilation experiments conducted.

Experiment Name AMV Wind Type Used Other Changes

CTRL Hourly IR, CTWV and CAWV
AMVs H220 settings

AMV1 Hourly IR, CTWV, CAWV,
SWIR and VIS AMVs

Proposed new QCs, error
profile and gross check ratio

AMV2 Hourly and 15 min IR, CTWV,
CAWV, SWIR and VIS AMVs

Proposed new QCs, error
profile and gross check ratio

To assess the impact of QC changes and error profile adjustment, the assimilation
statistics of observation—background (O-B) and observation—analysis (O-A) were exam-
ined for the control and the two experiments. The mean normalized wind speed departure
and the standard deviation of the normalized wind vector departure were assessed and
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found to be similar or improved when using the QC changes and error profile adjustment
in the experiments. As expected, the number of assimilated AMV observations increased
for both experiments. Also expected from the experiments was an increase in the standard
deviation of the vector wind departure for both the O-B and O-A. These changes are a result
assimilating more observations with larger wind speeds, switching to a more appropriate
magnitude of observation error and removes the overfitting of the cycled assimilation state
to the AMV data. Assimilation statistics are shown for the infrared AMVs for all cycles of
Tropical Storm Cristobal in Figure 6.
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Figure 6. Impact on IR AMVs due to changes in QC procedures and error profile on (left) the
mean AMV normalized speed departure from the background/analysis (dashed) and the standard
deviation of the AMV normalized vector difference from the background/analysis (solid) binned
at every 50 hPa and (right) the corresponding number of observations assimilated. Statistics are
calculated from the entire life cycle of 2020 Tropical Storm Cristobal. (a) Statistics are derived from
hourly and 15 min AMVs separately and (b) statistics for a different experiment. CTRL is the current
setting used in the 2020 operational HWRF. AMV1 only assimilated hourly AMVs with new QCs and
error profile. AMV2 assimilates both hourly and 15 min AMVs using new QCs and error profile.

More hourly observations are assimilated using the new QC, the updated gross error
parameter, and error profiles. The higher frequency 15 min AMVs significantly increases
the number of AMVs assimilated, especially at 200 hPa. The mean normalized wind speed
difference and standard deviation of normalized wind vector difference increase slightly
for the hourly and 15 min AMVs compared to the CTRL. This change is due to an increase
in number of observations and inclusion of observations with larger wind speeds. The
negative bias observed at 200 hPa agrees with the statistics provided by the data provider.
This bias is expected to improve when the Enterprise cloud algorithm (Heidinger, 2016)
becomes operational in February 2022 [36]. Figure 6b show similar assimilation statistics for
the case when hourly AMVs are assimilated with VIS and SWIR (AMV1) and when hourly
and 15 min AMVs are assimilated (AMV2). Normalized wind speed bias is comparable
between both experiments. Standard deviation of normalized vector difference is smaller
for AMV2 than AMV1. This result indicates the additional 15 min winds were consistent
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with the hourly winds and improved the analysis. Statistics for other AMV types are also
reviewed (figures not shown) and they share similar findings. Table 3 lists both the current
QC and gross ratio used in HWRF and the proposed changes.

Table 3. List of current and proposed QCs and gross ratios for HWRF.

Current Proposed

Gross check ratio of 1.3 for IR, CTWV and 2.5
for CAWV, SWIR and VIS

Gross check ratio of 3.5 for IR, CTWV, CAWV,
SWIR and VIS

QI > 80% No QI check
0.04 < PCT1 < 0.5 for IR, CTWV, VIS and SWIR

AMVs. PCT1 < 0.5 for IR, CTWV. VIS and SIWR AMVs

Blacklisting of IR AMVs 400–800 hPa. Blacklisting of IR AMVs 400–600 hPa.

4. Forecast Impact of GOES AMVs

Tropical cyclone forecast skill is evaluated by comparing model forecasts against
NHC’s postprocessed best-track storm data. Various metrics are used to measure the
tropical cyclone forecast performance. Track forecast error (km) is defined as the great-
circle distance between a cyclone’s forecast position and the best-track position at the
forecast verification time. Wind speed error, defined as the maximum sustained 10 m
winds, and the minimum central pressure (hPa) are used to measure the strength of the
tropical storm. Mean wind radii errors (km) are used to measure the storm size between
different experiments [37]. The radius is defined as the distance from the tropical cyclone
center to the location where the tangential wind has the required speed magnitude. The
mean wind radii errors at 34, 50, and 64 kt in all four quadrants of the tropical cyclone define
the tropical-storm-force (RSTF), storm-force (RSF), and hurricane-force (RHF) wind error.

4.1. Imapact of GOES-16 Hourly and 15 Min AMVs Using a Single Cycle of 2019
Hurricane Dorian

Examining a single analysis cycle from the different assimilation experiments listed
in Table 2 provides insight to how the analysis is influenced by the new AMV data. A
single cycle of the 2019 Hurricane Dorian is examined. The cycle selected is 6 h prior to
Hurricane Dorian attaining the lowest minimum central pressure of 910 hPa according to
NHC’s best track data. Using this cycle, the AMV coverage, analysis winds innovations,
and temperature innovations were found to respond to the changes in AMV assimilation
procedures with the addition of hourly and 15 min AMVs.

For the selected Hurricane Dorian cycle, the HWRF outer domain has an 80% overlap
with the GOES-16 CONUS scan which allows a comparison between hourly and 15 min
AMV coverage. Statistics of innovations and analysis errors are comparable between the
hourly AMV assimilation and the hourly plus 15 min AMV assimilation, spatially, they are
not the same. Figure 7 shows the horizontal coverage of IR AMVs for the selected single
cycle for both HWRF ghost d02 and ghost d03 assimilation domains.

There is a significant increase in the number of 15 min compared to the hourly AMVs,
providing better spatial coverage of the model wind field. Temporal information inherent
in the high temporal AMVs are not exploited because HDAS is a 3DVAR system. Instead,
the 15 min AMVs contribute to spatial regions where hourly AMVs are missing. This
includes areas near the center of the storm (Figure 7a). The lack of AMVs close to the
tropical cyclone center is due to the limits of the AMV generation by the data provider and
is caused by extreme changes in target direction and speed between images. The other four
AMV types (figures not shown) show a similar pattern.
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Figure 7. Spatial coverage of IR AMVs for a single assimilation cycle from 2019 Hurricane Dorian
on 1 September 2019 at 12 UTC for two HWRF assimilation domains. (a) AMVs above 600 hPa for
hourly and 15 min AMVs. (b) AMVs below 600 hPa for hourly and 15 min AMVs. Height of the
AMVs are color coded in hPa. ”X” indicates the center of the storm defined by NHC’s best track.

A tropical cyclone in the Northern Hemisphere has a negative zonal wind component
north of the tropical cyclone center and a positive zonal wind component south of the
tropical cyclone center. On the north side of the tropical cyclone, if the analysis zonal
wind component is weaker than the first guess zonal wind component, then the zonal
wind increment (analysis—first guess) will have a positive magnitude. If the zonal wind
increment is negative, the analysis zonal wind component is stronger than the first guess
zonal wind component. The opposite is true on the south side of the tropical cyclone.
Figure 8a shows zonal wind analysis increment at 250 hPa where IR and CTWV are the
dominant AMV types. There is a reduction in extent and magnitude of the negative zonal
wind increment, relative to the CTRL, southwest of the tropical cyclone center in the
AMV1 experiment. This reduction is enhanced when 15 min AMVs are also assimilated
in AMV2. North and west of the tropical cyclone center, zonal wind increments are larger
with the assimilation of hourly and 15 min AMVs. These regions coincide with increased
observation coverage provided by the 15 min AMVs. Meridional cross section of the
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zonal wind increment (Figure 8b) shows strengthening anticyclonic increments in the mid
troposphere and weakening of the cyclonic increment in the upper troposphere close to the
center of the storm, when comparing AMV1 to CTRL. The increase in observation density
coverage in the vertical for AMV2 moderated the magnitude of the increments.
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Figure 8. First guess wind speed (kts) in black contours and u-component wind (kts) analysis
increment (analysis—first guess) in color shades. (a) 250 hPa isobaric level. (b) Meridional cross
section of the inner core domain taken through the center of the storm (marked with an “x”) defined
by the NHC best track at 26.5 oN, 76.5 oW for Hurricane Dorian at 12 UTC on 1 September 2019 for
(top) CTRL, (center) AMV1 and (bottom) AMV2.

Inherent to the GSI multivariate solution is the response of the temperature state
from changes in the wind field. Examining the temperature analysis increments reveals
this relationship for the Hurricane Dorian cycle. The temperature analysis increments for
HWRF’s inner core assimilation domain are plotted in Figure 9 for CTRL, AMV1 and AMV2.
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Figure 9. First guess temperature [K] in black contours and temperature analysis increment (analysis—
first guess) in color shades [K]. (a) 500 hPa isobaric level. (b) Meridional cross section of the inner core
domain taken through the center of the storm defined by the NHC best track at 26.5 oN, 76.5 oW for
Hurricane Dorian at 12 UTC on 1 September 2019 for (top) CTRL, (center) AMV1 and (bottom) AMV2.

Black contours are first-guess temperature fields. Shaded colors are temperature
analysis increments. Temperature analysis increments at 500 hPa (Figure 9a) show increased
temperature cooling northwest of the tropical cyclone center and warming southeast of
the tropical cyclone center in AMV1 compared to CTRL. The cooling and warming are
further enhanced in AMV2. These regions overlap with regions of large change in zonal
component wind. The correction to temperature by the wind observations is a result of the
multivariate background error covariance. The temperature warming extends further south
(Figure 9b) in AMV2 for the entire troposphere. North of the tropical storm center, AMV1
shows larger cooling in the mid troposphere compared to the CTRL. However, presence
of better observation coverage in AMV2 reduces the magnitude of cooling compared to
AMV1. The moderated analysis increments in AMV2, compared to AMV1, has led to
improvements (closer to NHC best track) in forecast storm track (Figure 10a). For intensity
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and minimum center pressure (Figure 10b,c), all experiments do not produce forecasts that
match the NHC best track analysis. However, AMV2 produces forecast intensity closest to
the best track beyond 80 forecast hours. It also has the closest minimum center pressure
from 20 to 80 forecast hours.
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4.2. Statistics for AMV1

A total of 15 tropical cyclones from the 2018 and 2019 hurricane seasons in the North
Atlantic are used to evaluate the impact of hourly GOES-16 AMVs (AMV1). For AMV1, the
HWRF shows improved forecast skill in track error along with modest improvements in
intensity and wind error. Forecast metrics assessing the impact from assimilating hourly
SWIR and VIS AMVs, the new QCs, and the revised error profile for tropical cyclones in the
North Atlantic Ocean for the 2018 and 2019 hurricane seasons are plotted in Figure 11. A
paired t-test with adaptive serial correlation is used for significance testing (Sarah Ditchek,
personal communication). Squares (circles) indicate statistical significance at the 95% (90%)
confidence level. Overall, the impact is positive. Intensity improvements are achieved
between 12 to 112 forecast hours (Figure 11a). The largest improvement is at 72 forecast
hours and is statistically significant at the 95% level. Smaller intensity biases coincide with
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the intensity improvement. The largest improvement of minimum center pressure error
(Figure 11c) also falls within the same time range.
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Figure 11. Verification statistics for the 2018 and 2019 hurricane seasons in the Atlantic Ocean for
control (red) and experiment AMV1 (green). AMV1 includes SWIR and VIS AMVs. It also uses
the new QCs and error profiles. Panel (a) is wind speed error measured using maximum sustained
10 m winds [m/s], (b) is wind speed bias [m/s], (c) is pressure error [hPa], (d) is track error [km],
(e) is along-track bias [km] and (f) is across-track bias [km]. Squares (circles) indicate statistical
significance at the 95% (90%) confidence level based on a paired t-test with adaptive serial correlation.
The number of samples used in deriving these statistics is shown in secondary axis.
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Total track error (Figure 11d) is reduced between 18 to 84 forecast hours. Improvements
are statistically significant at the 95% level up to 72 h. The total track error is decomposed to
across track and along track bias (Figure 11e,f). The speed of tropical cyclone advancement
(along track) improves from 12 to 72 forecast hours. Improvement of the veering of the
forecast path (across track) from the observed track are observed between 30 to 78 forecast
hours. Improvements in the tropical cyclone track forecast were expected to be larger
with the addition of the SWIR and VIS AMV types. A possible reason for the smaller
improvements is that the additional AMV types are not currently being assimilated in
NOAA’s operational GDAS, which provides the initial and boundary conditions for the
HWRF. There may be inconsistencies in the large-scale environmental flow between the
initial conditions provided by the GDAS to the HDAS.

4.3. Statistics for AMV2

The combined impact of GOES-16 hourly and high-temporal AMVs (AMV2) are
evaluated using 2019 and 2020 hurricane seasons due to the data availability. A total
of 19 tropical cyclones are used. Small positive impact in the tropical cyclone forecast
performance was obtained during the 2019 and 2020 hurricane seasons for AMV2 where
GOES-16 15 min AMVs are added. Intensity improvements are positive up to 84 forecast
hours (Figure 12a) and intensity bias also improves after 36 forecast hours (Figure 12b).
Reduction in track errors (Figure 12c) spans most of the forecast hours and are statistically
significant at the 95% level. The across-track bias has more improvement compared to the
along-track bias. RSTF and RHF errors (Figure 12e,f) also show improvements for the first
48 and 54 h, respectively.

The lack of computational resources does not allow running experiments to isolate
the impacts from the 15 min AMVs. Without such experiments, quantitative conclusions
on the impact from the 15 min AMVs alone cannot be drawn. Despite this limitation, data
from completed experiments are used to attempt an assessment of the impact from the
15 min AMVs. This approach is to group forecasts according to the percentage overlap
between HWRF’s larger assimilation domain (ghost d02 in Figure 1) and the CONUS sector
scan, where the 15 min AMVs are produced. A total of 535 cycles were collected from 15
tropical cyclones which had the required intermediate files available for the analysis. Only
about 150 cycles have a 70% or greater overlap between the assimilation domain and the
CONUS scan sector. Forecast impact statistics (figures not shown) showed small positive
improvement in the track error as well as minimum center pressure error between 12 to
48 forecast hours and beyond 84 forecast hours. Impact on wind speed error was neutral.
Wind speed bias was reduced from the 18 to 96 forecast hours. If an AMV1 experiment was
conducted for comparison, the impact from the addition of high-temporal AMVs would
be small. As discussed in Section 2, HDAS is a hybrid 3DEnVar data assimilation system.
Flow information inherent in the high temporal AMVs is not exploited; instead the 15 min
AMVs extend the coverage of wind data where the hourly AMVs are absent



Remote Sens. 2022, 14, 3068 17 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 12. Verification statistics for the 2019 and 2020 hurricane seasons in the Atlantic Ocean for 
control (red) and experiment AMV2 (green). AMV2 assimilates hourly SWIR and VIS as well as 
high-temporal AMVs for all five wind types. It also uses the new QCs and error profiles. Panel (a) 
is wind speed error measured using maximum sustained 10 m winds [m/s], (b) is wind speed bias 
[m/s], (c) is track error [km], (d) is across track bias [km], € is radius of tropical storm-force (RTSF) 
wind error [km], and (f) is radius of hurricane-force (RHF) wind error [km]. Squares (circles) 
indicate statistical significance at the 95% (90%) confidence level based on a paired t-test with 
adaptive serial correlation. The number of samples used in deriving these statistics is shown in the 
secondary axis. 

The lack of computational resources does not allow running experiments to isolate 
the impacts from the 15 min AMVs. Without such experiments, quantitative conclusions 
on the impact from the 15 min AMVs alone cannot be drawn. Despite this limitation, data 

(a) (b)

(c)

(e)

(d)

(f)

AMV2
CTRL

AMV2
CTRL

AMV2
CTRL

AMV2
CTRL

AMV2
CTRL

AMV2
CTRL

Figure 12. Verification statistics for the 2019 and 2020 hurricane seasons in the Atlantic Ocean for
control (red) and experiment AMV2 (green). AMV2 assimilates hourly SWIR and VIS as well as
high-temporal AMVs for all five wind types. It also uses the new QCs and error profiles. Panel (a) is
wind speed error measured using maximum sustained 10 m winds [m/s], (b) is wind speed bias
[m/s], (c) is track error [km], (d) is across track bias [km], (e) is radius of tropical storm-force (RTSF)
wind error [km], and (f) is radius of hurricane-force (RHF) wind error [km]. Squares (circles) indicate
statistical significance at the 95% (90%) confidence level based on a paired t-test with adaptive serial
correlation. The number of samples used in deriving these statistics is shown in the secondary axis.
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4.4. GOES-17 Evaluation

Evaluation of GOES-17 AMVs on tropical cyclone forecasting in the East Pacific basin
was limited to a small number of tropical cyclones in the 2020 hurricane season. This
is due to the GOES-17 ABI’s cooling system not performing as designed. The increased
temperature on the ABI detectors has led to degraded or loss of imagery. This setback
delayed the production of GOES-17 AMVs until November 2019. The 9 longest-lasting
tropical cyclones in the East Pacific basin were used to evaluate the performance of the
GOES-17 AMVs with the experiment configuration matching AMV2, which included
the 15 min CONUS sector AMVs. Even though the number of tropical cyclones is small,
forecast performance evaluation on the impact of these AMV types is informative on
expected performance of future GOES-18 AMVs. GOES-17 will be replaced by GOES-18
(launched on 1 March 2022) in the near future.

Figure 13 shows the forecast performance metrics for these nine tropical cyclones.
GOES-17 AMVs have a positive impact on tropical cyclone track error across all forecast
hours with larger improvements at longer forecast times. These improvements are, on
average, 20 km and are statistically significant at the 95% level. The positive impact in
track error is due to large improvements in cross track errors (Figure 13b). The maximum
education in cross track bias is 30 km. Impact on minimum central pressure is neutral for
the first 42 forecast hours and improves after that. RHF is improved from 18 forecast hours
onwards. Impact on storm intensity is positive beyond 42 forecast hours. There is a slight
degradation in storm intensity error for the first 24 h. Reviewing the intensity errors for
each of the individual storms showed that the dominant signal came from Hurricane Marie
which contributed the greatest number of samples during this time period. Positive impact
in intensity bias error is only between 12 and 36 forecast hours.



Remote Sens. 2022, 14, 3068 19 of 22
Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure 13. Verification statistics for the 2020 hurricane seasons in the Eastern Pacific Ocean for 
control (red) and experiment AMV2 (green). AMV assimilates hourly SWIR and VIS as well as high-
temporal AMVs for all five wind types. It also uses the new QCs and error profiles. Panel (a) is track 
error [km], (b) is cross track bias [km], (c) is minimum central pressure [hPa], (d) radius of hurricane-
force (RHF) wind error [km], (e) is intensity error measured using maximum sustained 10 m winds 
[m/s] and (f) is intensity bias [m/s]. Squares (circles) indicate statistical significance at the 95% (90%) 
confidence level based on a paired t-test with adaptive serial correlation. The number of samples 
used in deriving these statistics is shown in the secondary axis. 

  

Figure 13. Verification statistics for the 2020 hurricane seasons in the Eastern Pacific Ocean for control
(red) and experiment AMV2 (green). AMV assimilates hourly SWIR and VIS as well as high-temporal
AMVs for all five wind types. It also uses the new QCs and error profiles. Panel (a) is track error [km],
(b) is cross track bias [km], (c) is minimum central pressure [hPa], (d) radius of hurricane-force (RHF)
wind error [km], (e) is intensity error measured using maximum sustained 10 m winds [m/s] and
(f) is intensity bias [m/s]. Squares (circles) indicate statistical significance at the 95% (90%) confidence
level based on a paired t-test with adaptive serial correlation. The number of samples used in deriving
these statistics is shown in the secondary axis.
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5. Conclusions

The assimilation of hourly and 15 min GOES-16 and -17 AMVs is beneficial for im-
proving tropical cyclone forecasting. This can be attributed to the increased number of
observations and more consistent mesoscale quality control procedures. The changes that
are made to optimize the assimilation of these AMVs in HWRF are as follows. (1) The
observational error profile is adjusted to represent more realistic values and to prevent
overfitting to the AMVs. The new errors are comparable to those used by rawinsondes
and the RMSE derived by the data provider in their data verification. The values range
from 3.7 m/s near the surface to 7 m/s at the middle of the troposphere and above. (2) The
range of allowable AMV wind speeds entering the assimilation system is increased to
accommodate the larger wind speeds observed in tropical cyclones by relaxing the gross
check thresholds. (3) Two data quality checks, QI and PCT1, are removed. Wind speed
and vector departures between observations and first guess do not justify that these two
checks be used to quality control the AMVs. Removing these checks allow more observa-
tions to be assimilated. The above changes are applicable for all the GOES-R AMV wind
types and have resulted in a 20–40% increase in the number of AMVs assimilated. One
additional change specific to IR AMVs is narrowing the blacklisting region of 400–800 hPa
to 400–600 hPa.

The forecast performance of the GOES-16 hourly AMVs are evaluated mainly using
tropical cyclones in the 2018 North Atlantic hurricane season. The forecast impact of the
combined GOES-16 hourly and 15 min AMVs are dominated by tropical cyclones in the
2020 North Atlantic hurricane season. Forecasts from both sets of experiment are verified
against the NHC best track and compared with the 2020 operational version of HWRF
(control). Addition of SWIR and VIS hourly GOES-16 AMVs and the optimized used of
all wind types from GOES-16 improved the intensity error and minimum center pressure
for most of the forecast hours verified. Impact on track error is from neutral to positive.
GOES-16 15 min AMVs forecast impact are evaluated in the presence of the hourly AMVs.
Like the hourly AMVs, improvement in track error is achieved for all forecast hours and
the first 3 days for intensity error. Positive impact is also achieved up to day 2 for average
50 and 65 kt radius error.

The GOES-17 AMVs are only evaluated for the 2020 Eastern Pacific hurricane season.
The forecast impact for GOES-17 AMVs is also compared with a control experiment. Despite
the cooling issue of GOES-17 ABI, positive impact is still achieved when these winds are
assimilated. The tropical cyclone metrics that are improved are track error, intensity,
minimum center pressure, and hurricane force wind radius error.

Other improvements in the generation of AMVs and incorporating time dependencies
in the assimilation system are expected to show further improvements in tropical cyclone
forecasts. A major source of error for AMVs is the height assignment. The error increases in
regions of high wind shear. The soon-to-be-implemented Enterprise cloud algorithm [38]
will also improve data quality as the negative bias observed in AMVs at about 300 hPa
is reduced. To fully exploit the temporal information in these AMVs, a data assimilation
system that allows for the simultaneous assimilation of asynchronous observations such
as the 4DEnVar developed within the HWRF framework [33] will be critical. The next
generation Hurricane Analysis and Forecast System (HAFS), currently under development,
has plans to move to a 4DEnVar system.
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