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Abstract: In Mars exploration, hyper-spectrometry plays an important role due to its high spectral
resolution. However, due to the technical difficulty and the data size, the spatial resolution or the
coverage of hyperspectral data is often limited. This limitation can be alleviated by deep learning-
based super-resolution (SR) reconstruction. But the spatial size and batch size of the input training
data is limited due to the large number of spectral channels. To improve the efficiency of model
training and SR reconstruction, a dataset based on CRISM hyperspectral data is created in this
paper, and its redundancy is analyzed in both spectral and spatial spital dimensions. Compression
algorithms based on data selection and PCA are used to reduce the size of the input training data. A
network that can perform spatial SR and spectral enhancement is also proposed to make the network
can be trained with the compressed data. With these compression algorithms and network, high-
resolution data with 235 bands can be reconstructed from the low-resolution data with only 40 bands.
Compared with the network trained on the original low-resolution data with 235 bands, the model
training time and the SR reconstruction runtime can be reduced to 30% and 23% with practically no
accuracy loss. The effectiveness of compression algorithms based on data selection also indicates that
maybe not all the bands need to be transmitted from the Mars probes or be collected. Furthermore, it
would, in principle, help improve the efficiency of satellite data transmission and simplify the design
of the hyper-spectrometer. Additionally, a method for spatial dimension correlation evaluation is
also proposed in this paper. The spatial compression shows that the proposed method can reflect the
correlation of spatial texture between patches, and the model can be acceptably trained with only
half of the original data.

Keywords: Mars exploration; remote sensing; hyperspectral image; super-resolution; data compression;
deep learning

1. Introduction

Mars exploration started in the 1960s with the successful launch of humanity’s first
Mars probe [1,2]. Since then, about fifty Mars exploration satellites have been launched
over the past six decades, revealing people’s enthusiasm for Mars exploration [3]. Since
Mars is the most Earth-like planet in the solar system, the study of Mars can help human
beings understand the long-term evolution of the Earth [4–6]. Martian research includes cli-
mate and environmental evolution [7–9],topography and geomorphology research [10,11],
Martian surface composition analysis [12,13], and water detection [14,15], etc.

In remote sensing instruments, hyper-spectrometers play an important role in the
material composition analysis of Mars due to their high spectral resolution and the ability to
detect spatial and spectral features synchronously. Some of the Mars hyper-spectrometers
and their specifications are listed in Table 1 [16,17]. With the rich spectral information,
hyperspectral data collected by hyper-spectrometers can be used for quantitative remote
sensing [18,19]. It is often difficult for the remote sensing data to provide high resolution in
both the spatial dimension and spectral dimension at the same time due to the technical

Remote Sens. 2022, 14, 3062. https://doi.org/10.3390/rs14133062 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133062
https://doi.org/10.3390/rs14133062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14133062
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133062?type=check_update&version=2


Remote Sens. 2022, 14, 3062 2 of 24

challenges, the manufacturing cost of the hyper-spectrometer, and the large size of data. So,
most Martian hyperspectral data have a spatial resolution of tens to hundreds of meters.
Although the spatial resolution of some hyperspectral data, such as the CRISM FRT data,
can reach 18m, its coverage is limited. When the spatial resolution is low, the obtained
spectral features of ground objects are mixed, and the detection accuracy is reduced [20].
Therefore, it is impossible to do a global high-precision Martian surface composition
analysis. Thus, it is of great significance to improve the spatial resolution of hyperspectral
remote sensing data. It will be helpful to make a more accurate analysis of the mineral
and water-ice distribution in the Martian gullies, deltas, alluvial fans, dry river beds, and
ditches globally.

Table 1. Some of the Mars hyper-spectrometer and their specifications.

Spectrometer Satellite Launch Time Spatial
Resolution

Spectral
Resolution

Wavelength
Range

Number
of Bands

TES Mars Global Surveyor 1996 3 × 6 km 10 cm−1/20 cm−1 5.8–50 µm 148/296
OMEGA ESA’s Mars Express 2003 0.3–4.8 km 7–20 nm 0.36–5.1 µm 352

CRISM Mars Reconnaissance
Orbiter 2005 18–200 m 6.55 nm 0.36–3.92 µm 544/72

MMS Tianwen-1 Mission 2020 265 m–3.2 km 6/12/20 nm 0.45–3.4 µm 576/72

The primary technique for improving the spatial resolution of hyperspectral images
is image super-resolution (SR) reconstruction. The SR reconstruction algorithms can be
classified into three types: image interpolation [21,22], image reconstruction [23], and deep
learning-based reconstruction [24–27]. The image interpolation algorithms are simple, but
details are easily lost in the reconstruction results. The image reconstruction methods have
the advantages of low computational cost and fast convergence speed, but their perfor-
mance is still unsatisfactory. SR reconstruction algorithms based on deep learning have
been intensely studied in recent years. With the rapid development of deep learning, these
algorithms show better performance and continuous improvement potential. Addition-
ally, reliant on whether there is auxiliary information (e.g., high spatial resolution RGB or
panchromatic images), the SR reconstruction algorithms can be classified into fusion-based
SR and single SR [28,29]. In the fusion-based SR, the auxiliary information is indispensable.
Being hard to obtain good co-registered auxiliary images on Mars, single SR algorithms are
the best choice for the SR of Mars hyperspectral data.

The essence of the SR algorithm is the mapping function between the low-resolution
and high-resolution data. Deep learning-based algorithms can construct complex non-
linear mapping functions through multi-layer neural networks and activation functions.
Meanwhile, backpropagation and optimized gradient descent algorithms enable deep
learning to autonomously learn the mapping relationship between input and output data.
Therefore, deep learning has been widely used in various algorithms. In image processing,
the introduction of the convolutional neural network simplifies the network significantly
due to its local connection and weight sharing, making it much easier to train and deploy.
Therefore, deep learning was first introduced into SR reconstruction in a network named SR
Convolutional Neural Network (SRCNN) in 2014 [30]. Subsequently, the residual network
was also introduced into SR algorithms due to its shortcut structure, which can solve the
degradation problem and make deeper learning possible [31,32]. Different from the RGB
data, there are dozens or even hundreds of channels in the spectral dimension of hyperspec-
tral images. The accuracy of spectral information determines the value of hyperspectral
data directly. Therefore, it is essential to preserve the spectral information of hyperspectral
data well while enhancing its spatial information, and spatial loss and spectral loss are
combined to drive the learning of the SR network [33–35]. In addition, due to its high
resolution in the spectral dimension, the size of the hyperspectral data is much larger than
the RGB data. It makes the SR networks of hyperspectral data more complex and more
difficult to train. To simplify the network structure and improve training efficiency, branch
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networks began to appear in the hyperspectral SR network [36]. Hyperspectral data are
divided into several groups and fed to different branch networks for spatial-spectral feature
extraction. The features of these branch networks will then be merged into the back of the
network for global information learning. In the spatial-spectral prior network-based SR
network (SSPSR), the parameters of the branch networks are shared and improve training
efficiency further [37].

For all models mentioned above, the whole bands of the hyperspectral data need to be
fed to the network. It limits the spatial size and batch size of the input training data and
lengthens the model training and SR reconstruction time significantly. The types of Martian
surface materials are much less than the pixel number of the hyperspectral data, the spectral
curve of these materials is continuous, and due to the high resolution of the hyperspectral
data the difference in the central wavelength between adjacent spectral segments is very
small. Therefore, the redundancy between these bands may be quite high, and the size of
the input data may be significantly compressed while retaining most of the information.
If the SR network can be trained well with the compressed data, the model training and
SR reconstruction time may be reduced significantly. To verify its feasibility, a dataset
based on Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral
remote sensing data is created in this paper, and its redundancy is analyzed in detail in
both spectral and spatial dimensions. Compression algorithms based on data selection are
proposed for reducing the size of the input training data. A network that can perform both
spatial SR and spectral enhancement simultaneously is also proposed in this paper to make
the network can be trained with the compressed data.

2. Materials
2.1. Data Description

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the
Mars Reconnaissance Orbiter (MRO) is a hyperspectral imager for Mars exploration. It has
three major types of observations. In multispectral mapping (MSP) mode, data are collected
at a subset of 72 wavelengths covering the key mineralogic absorptions and binned to
pixel footprints of 100 or 200 m/pixel. In full resolution targeted (FRT) mode, a region
of interest is mapped at full spatial and spectral resolution (15–19 m/pixel, 362–3920 nm
at 6.55 nm/channel). In atmospheric mode, only the emission phase function(EPF) is
acquired [38]. The MRO has returned more data than all previous Mars missions combined.
As of early 2022, it continues to send high-resolution data of Mars features and weather [3].
Besides, due to its high spatial and spectral resolution, CRISM collected in FRT mode is
selected as the experimental data in this paper. Considering the mineral spectral features
range and avoiding the interference of thermal emission, the data in the wavelength range
of 1.1 µm–2.65 µm are selected to build the dataset for model training and testing. The
number of the selected bands is 235, and the product IDs of the selected CRISM data are
listed in Table A1.

2.2. Dataset Creation
2.2.1. Data Pre-Processing

The pre-processing of the selected CRISM data can be performed by ENVI with a
plug-in called CRISM Analysis Toolkit (CAT) [39]. The plug-in is developed by the CRISM
scientific team for CRISM data processing and analysis. The pre-processing of CRISM
data includes the following steps. (1) Photometric and atmospheric correction. In the
atmospheric correction, the Martian atmospheric absorption, scattering, and reflection
effects on the spectrum are eliminated, and the actual reflectance of the Martian surface is
obtained [40]. In the photometric correction, the image reflectance differences caused by
the change of solar altitude angle will be removed. (2) Stripes and speckle noise removal.
This step eliminates the influence of the environment and the spectrometer during data
acquisition. (3) Geometric correction. The map projection will be completed to match the
geographic coordinates in this step. (4) Invalid data imputation.
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2.2.2. Data Cropping

Six of the fifty-seven pre-processed CRISM data were selected randomly as test data,
another six data were selected randomly as validation data, and the other forty-five data
were selected as training data. The indexes of the test data are 1, 27, 29, 27, 43, and 51. The
indexes of the validation data are 4, 13, 20, 32, 52, and 53. Please refer to Table A1 for the
corresponding relationship between these indexes and the product IDs of the selected data.
For each test data, a 512 × 512 rectangular region was cropped, and then the six rectangular
data were stacked together. Thus, the size of the test data is 6 × 512 × 512 × 235. For
training and validation data, a rectangular region was cropped as large as possible in each
data. Then 64 × 64 patches were cropped from these rectangular regions, and the stride
in both the height and width direction is 32. The low-resolution patches are obtained by
bicubic downsampling these patches, and the downsampling factor is 4. At last, there are
1376 patches in the validation dataset and 10,713 patches in the training dataset. Therefore,
the spatial resolution of the input low-resolution training and validation data is 16 × 16,
and the spatial resolution of the input low-resolution test data is 128 × 128.

3. Method
3.1. Hyperspectral Image SR Algorithm

The hyperspectral image SR algorithm used in this paper is modified based on the
SSPSR [37]. Compared with SSPSR, the channel numbers of the low-resolution image and
the high-resolution output image are defined independently, and the network is modi-
fied accordingly. Thus, the modified network can perform not only spatial SR but also
spectral enhancement, and the modified network can output high-resolution hyperspec-
tral images based on low-resolution images with fewer spectral bands. Please refer to
Appendix B for the detailed description of the SSPSR network and the model training
parameters configuration.

3.2. Data Compression Algorithms

Each patch of the created CRISM dataset has three dimensions: length, width, and
band. The length and width correspond to the spatial dimension, and the band corresponds
to the spectral dimension. Therefore, data compression can be carried out from the spectral
and spatial dimensions.

Compression algorithms based on data selection proposed in this paper and based on
principal component analysis (PCA) are used for data compression.

3.2.1. Spectral Compression

1. Compression Algorithms Based on Data Selection

For compression algorithms based on data selection, the correlation coefficients of
the specified dimension between low-resolution training data are calculated. When the
correlation coefficient exceeds the set threshold, one of the two data will be removed. The
correlation coefficient mentioned in this paper refers to Pearson Correlation Coefficient. If data
A and B have N scalar observations, then the Pearson Correlation Coefficient is defined as:

Pearson Correlation Coe f f icient(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(1)

where µA and σA are the mean and standard deviation of A, respectively, and µB and σB
are the mean and standard deviation of B.

When the data are compressed in spectral dimension, a set of selected bands must
be found first. For each band in this set, the correlation coefficient between this band and
the other bands in the set should be less than the set threshold. For each band that is not
contained in the set, there should be at least one band in the set to make the correlation
coefficient between them greater than or equal to the set threshold. When the selected
bands are found, the data of the corresponding bands will be retained in low-resolution
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data, and the data of the other bands in low-resolution data will be removed. All bands of
the ground truth will be retained.

To find the selected bands, three algorithms were proposed. The workflow charts of
the three algorithms are presented in Figure 1.
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Figure 1. The workflow charts of the three compression algorithms based on data selection.

In Algorithm 1, all the correlation coefficients between each band are calculated first.
Then, the sum of correlation coefficients between this band and the other bands will be
calculated for each band. The band with the maximum correlation coefficients sum will
be selected. For the other bands, if the correlation coefficient between one band and the
selected band is greater than or equal to the set threshold, this band will be removed. Bands
not selected or removed will be sent to the next loop. In the next loop, for each band, the
sum of correlation coefficients between this band and other bands sent to this loop will
be calculated, another band will be selected, and some bands will be removed as in the
previous loop. If there are still some bands that have not been selected or removed, these
bands will be sent to the next loop. At last, all the selected bands will be found.

In Algorithm 2, the first band will be selected first. And then, the correlation coeffi-
cients between the selected and other bands will be calculated. If the correlation coefficient
between one band and the selected band is greater than or equal to the set threshold, this
band will be removed. Bands not selected or removed will be sent to the next loop. The first
band of this loop will also be selected, then the correlation coefficients between the selected
band and the other bands sent to this loop will be calculated. If the correlation coefficient
between one band and the selected band is greater than or equal to the set threshold, this
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band will be removed in this loop. If there are still some bands that have not been selected
or removed, these bands will be sent to the next loop. Finally, all the selected bands will
be found.

It can be found that correlation coefficients between all bands need to be calculated in
Algorithm 1. However, in Algorithm 2, only correlation coefficients between the selected
and the other bands in the current loop must be calculated. Besides, for algorithm 2, due to
the data’s continuity in spectral dimension, many bands with high correlation coefficients
with the first band had been selected or removed already. It will lead to a decrease in
operational efficiency. To solve this problem, the selected band in each loop can be selected
randomly; Algorithm 3.

2. Compression Algorithm Based on PCA

The PCA algorithm is a widely used data dimensionality reduction algorithm in
deep learning [41–43]. The central idea of PCA is to reduce the dimensionality of a data
set consisting of many interrelated variables while retaining as much as possible of the
variation present in the data set, which is achieved by transforming the original data into
a new set of variables. The principal components are uncorrelated and ordered so that
the first few retain most of the variation present in all of the original variables [44]. For
the compression algorithm based on PCA, the covariance matrix of the 235 bands data is
calculated first. Then the eigenvectors and eigenvalues of the covariance matrix are calcu-
lated. The eigenvectors are sorted in descending order according to their corresponding
eigenvalues. The proportion of variation explained by each eigenvalue is used to evaluate
the contribution rate of each eigenvalue. Finally, according to the required contribution
rate or the number of principal components, eigenvectors corresponding to the largest n
eigenvalues are selected to form a 235 × n transformation matrix U. The compressed data
of each pixel will be obtained by multiplying the column vector formed by the data of the
original 235 bands with the transformation matrix U.

3.2.2. Spatial Compression

In spatial compression, the quantity of patches is usually a large number. For example,
the quantity of the training patches used in this paper is 10,713. It means that both the
conversion matrix solving and the data conversion need a lot of floating-point operations.
Besides, in spectral compression, the bands for a specific data source are relatively fixed,
while the patches may be changed with the accumulation of the remote sensing data.
When the dataset changes, the transformation matrix and the compressed data need to be
regenerated, which means the extensibility of the PCA algorithm is not sufficient. Therefore,
compression algorithms based on data selection will be used in patch compression. In
spatial compression, patches with high spatial correlation will be removed according to
the set threshold. The spatial compression algorithms based on data selection are basically
the same as the spectral compression algorithms, and the only difference is the correlation
coefficients. It is worth noting that although the correlation coefficient between two low
resolution patches can be calculated directly, the obtained correlation coefficients are related
to both the spatial correlation and spectral correlation. To solve this problem, a new method
for spatial correlation evaluation of hyperspectral data is proposed in Equations (2)–(5).

CorrPos(A, B) =
N

∑
i=1

ωi × Corr(Ai, Bi)×
sign(Corr(Ai, Bi)) + 1

2
(2)

CorrNeg(A, B) =
N

∑
i=1

ωi × Corr(Ai, Bi)×
sign(Corr(Ai, Bi))− 1

2
(3)

CorrAmp(A, B) = CorrPos(A, B) + CorrNeg(A, B) (4)

CorrPhase(A, B) = 2× arctan
(

CorrNeg(A, B)
CorrPos(A, B)

)
(5)
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where A and B are two low-resolution patches of the dataset, N is the band’s number of
the patches, Corr(Ai, Bi) is the correlation coefficient between the ith band of A and B, wi
is the weight of the ith band, which equals the proportion of the ith band data variance
in the sum of all bands’ variances. CorrPos is the sum of the positive band correlation
coefficients multiplied by their band weights, and CorrNeg is the sum of the absolute
value of negative band correlation coefficients multiplied by their band weights. CorrPos
and CorrNeg are calculated separately because when the correlation coefficient is used
to evaluate the correlation between two data, its absolute value indicates the level of
correlation, and the sign only indicates whether two variables are positively or negatively
correlated. Therefore, it is unreasonable for positive and negative correlation coefficients
to cancel each other out. CorrAmp is the sum of CorrPos and CorrNeg, and CorrPhase
is used to present the relationship between CorrPos and CorrNeg in terms of angle. The
closer CorrPhase is to 0, the more CorrPos dominates the correlation; the closer CorrPhase
is by π, the more CorrNeg dominates the correlation. [CorrPos, CorrNeg] and [CorrAmp,
CorrPhase] are equivalent and interchangeable.

4. Results
4.1. Spectral Compression
4.1.1. Compression Algorithms Based on Data Selection

The correlation coefficients between the 235 bands are presented in Figure 2. Different
colors are used to represent different correlation coefficients in this figure. The value at (i,j)
is the correlation coefficient between the ith and jth bands. It can be observed from this
figure that most of these correlation coefficients are larger than 0.9. It proves that the data
are highly redundant in spectral dimension.
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Figure 2. Correlation coefficients between the 235 bands.

The correlation coefficients between 8 bands selected according to equal band number
spacing and some images of these bands are presented in Appendix C.

The number of correlation coefficient calculations and the number of selected bands
of the three algorithms under different correlation coefficient thresholds are presented in
Figure 3. Since the result of Algorithm 3 has certain randomness, the results of the three
times are given in the figure. It can be seen that before the correlation coefficient threshold
reaches 0.995, the num of selected bands is always less than 10, which again reveals the
high redundancy between bands.



Remote Sens. 2022, 14, 3062 8 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 2. Correlation coefficients between the 235 bands. 

The correlation coefficients between 8 bands selected according to equal band num-
ber spacing and some images of these bands are presented in Appendix C. 

The number of correlation coefficient calculations and the number of selected bands 
of the three algorithms under different correlation coefficient thresholds are presented in 
Figure 3. Since the result of Algorithm 3 has certain randomness, the results of the three 
times are given in the figure. It can be seen that before the correlation coefficient threshold 
reaches 0.995, the num of selected bands is always less than 10, which again reveals the 
high redundancy between bands. 

 
Figure 3. Comparison of the three compression algorithms based on data selection: (a) The number 
of correlation coefficient calculations. (b) The number of selected bands of the three algorithms un-
der different correlation coefficient thresholds. 

The specific values when the correlation coefficient thresholds are 0.997, 0.998, 0.999, 
and 0.9996 are presented in Tables 2 and 3. 

Figure 3. Comparison of the three compression algorithms based on data selection: (a) The number
of correlation coefficient calculations. (b) The number of selected bands of the three algorithms under
different correlation coefficient thresholds.

The specific values when the correlation coefficient thresholds are 0.997, 0.998, 0.999,
and 0.9996 are presented in Tables 2 and 3.

Table 2. The number of correlation coefficient calculations of the three algorithms under four selected
correlation coefficient thresholds.

CorrTh Algorithm 1 Algorithm 2 Algorithm 3-1 Algorithm 3-2 Algorithm 3-3 Algorithm 3 Algorithm 3/2 Algorithm 3/1

0.9970 27,495 1382 877 853 866 865.33 62.61% 3.15%
0.9980 27,495 1955 994 1164 1061 1073.00 54.88% 3.90%
0.9990 27,495 3341 1728 1732 1888 1782.67 53.36% 6.48%
0.9996 27,495 7263 3616 3656 3494 3588.67 49.41% 13.05%

Algorithm 3 is the average of Algorithm 3-1, Algorithm 3-2, and Algorithm 3-3; Algorithm 3/2 is the ratio of
Algorithm 3 and Algorithm 2, and Algorithm 3/1 is the ratio of Algorithm 3 and Algorithm 1.

Table 3. The number of the selected bands of the three algorithms under four selected correlation
coefficient thresholds.

CorrTh Algorithm 1 Algorithm 2 Algorithm 3-1 Algorithm 3-2 Algorithm 3-3 Algorithm 3 Algorithm 3/2 Algorithm 3/1

0.9970 8 11 9 9 9 9.00 81.82% 112.50%
0.9980 11 15 11 12 11 11.33 75.56% 103.03%
0.9990 19 27 21 21 23 21.67 80.25% 114.04%
0.9996 40 58 47 49 47 47.67 82.18% 119.17%

It can be seen from Tables 2 and 3 and Figure 3 that Algorithm 3 has the best operational
efficiency, and the number of correlation coefficient calculations of Algorithm 3 under the
four selected thresholds is about half of Algorithm 2. When the correlation coefficient
threshold is set to 0.997, the correlation calculation times of Algorithm 3 is only about 3%
of Algorithm 1, and for most of the thresholds, this ratio is less than 10%. Regarding the
number of selected bands after compression, Algorithm 1 performs best because it has the
complete correlation information of all the bands. The number of the bands selected by
Algorithm 3 is only about 10% more than Algorithm 1, while the amount of calculation is
significantly reduced. Besides, the number of the bands selected by Algorithm 3 is about
20% less than Algorithm 2.
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In spectral compression, there are only 235 bands, and even the number of correlation
coefficient calculations of Algorithm 1 is acceptable. Therefore, Algorithm 1 is selected
for the spectral compression. According to the results of Algorithm 1, 40 and 8 bands are
selected to generate the datasets S40 and S8 when the correlation coefficient threshold is set
to 0.997 and 0.9996.

4.1.2. Compression Algorithm Based on PCA

When the compression algorithm based on PCA is applied in the training dataset,
the percentage of explained variances of each principal component and the cumulative
percentage of explained variances are presented in Figure 4. As can be observed from this
figure, the percentage of explained variances decreases rapidly with the increase of the
principal component number. The percentage of explained variances of the first principal
component reaches 97.0211%. The sum of the first two principal components is 99.5647%,
which indicates the high redundancy in the spectral dimension again. The percentage of
explained variances decreases gradually after the 10th principal component and forms a
long tail.
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To compare with the algorithm based on data selection, the number of the principal
components is also set to 40 and 8, respectively, and two datasets named P40 and P8 are
generated. The cumulative percentage of explained variances of the first 40 and the first
8 principal components is 99.9895% and 99.9735%, respectively.

4.2. Comparision of Models Trained on Different Compressed Datasets

In order to find the influence of different spectral compression algorithms on model
training speed and the performance of the trained model, the following datasets are
constructed.

235: the original dataset with 235 bands;
S40: dataset with 40 bands constructed by using compression algorithm based on data selection;
P40: dataset with 40 principal components constructed by using compression algorithm
based on PCA;
S8: dataset with eight bands constructed by using compression algorithm based on
data selection;
P8: dataset with 8 principal components constructed by using compression algorithm based
on PCA;
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S40P8: dataset with eight principal components constructed by using compression algo-
rithm based on PCA on dataset S40;

For the branch network, if bands are grouped in band number order, adjacent bands
with high correlation will be assigned to the same branch. Therefore, the data fed to branch
networks might be more diverse by disrupting the original band order, and it might be
beneficial for the model training. To minimize the correlation between bands in the same
group, the 235 bands were randomly reordered 10,000 times, and the sum of the correlation
coefficients in each group was calculated. At last, the reordered band number with the
minimum correlation coefficients sum is selected to construct a new dataset.

R235: dataset with 235 bands constructed by reordering the bands of dataset 235;
SR40: dataset with 40 bands constructed by reordering the bands of dataset S40.

Under the same hardware configuration, the batch size of the model training is set
as large as possible. The hardware configuration of the computer is CPU (Intel i5-10400F,
Intel, Santa Clara, CA, USA), memory (16 GB × 2, DDR4 2133 MHz), GPU (Nvidia GeForce
RTX3070Ti, 8 GB, Micro-Star, Nvidia, Santa Clara, CA, USA), SSD (Samsung 870 EVO
500 GB, Samsung, Seoul, Korea), HDD (Seagate ST4000DM004, 4TB, Seagate Technology,
Fremont, CA, USA). When the number of the selected bands or the principal components
(hereinafter referred to as spectral features) is 235, the batch size is set to 16. When the
number of the spectral features is 40 and 8, the batch size is set to 32 and 64, respectively.

The SR models were trained based on the datasets mentioned above. The training
time for 20 epochs and the SR reconstruction time of one 128 (height) × 128 (width) data
are presented in Table 4. This table shows that when compared with the model trained
on datasets with 235 spectral features, and when the number of the spectral features
is compressed to 40 and 8, the training time is reduced to 30% and 21%, and the SR
reconstruction time is reduced to 23% and 6%.

Table 4. Comparison of training time (20 epochs) and SR reconstruction time.

Spectral Feature Number Training Time SR Reconstruction Time

235 ~910 min ~109 ms
40 ~276 min ~25 ms
8 ~187 min ~7 ms

Spectral angle mapper (SAM) [45], erreur relative globale adimensionnelle de synthèse
(ERGAS) [46], root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), cross-
correlation (CC) [47], and structure similarity (SSIM) [48] are used to evaluate the perfor-
mance of models trained on different datasets. The PSNR and SSIM of the reconstructed
hyperspectral images are the mean values of all spectral bands. The best values for these
indices are 0, 0, 0, +∞, 1, and 1, respectively [37].

Figure 5 presents the performance data obtained by SR reconstructing the test dataset
on models trained on different datasets under different epochs. Unsurprisingly, models
trained on datasets with 235 bands perform best because there is no information loss in
these datasets. Besides, for datasets with 235 bands, band reordering has nearly no effect
on model improvement. That might be because the dataset contains too much redundant
information, which would be repeatedly learned by the model. Therefore, even though the
data fed to the branch network are highly correlated, the model can still be well trained.
The model trained on dataset 235 is set as the benchmark.
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Figure 5. The performance of models trained on different datasets under different epochs.
SAM(Spectral Angle Mapper), ERGAS(Erreur Relative Globale Adimensionnelle de Synthèse),
RMSE(Root Mean Squared Error), PSNR(Peak Signal-To-Noise Ratio), CC(Cross-Correlation), and
SSIM(Structural Similarity Index Measure are used for the performance evaluation.

It can be seen from Figure 5 that when the number of the spectral features is com-
pressed to 40, the trained models still perform very well both in terms of spectral charac-
teristics and spatial characteristics. The model trained on dataset SR40 performs better
and more stably than the model trained on dataset S40. When the number of the spectral
features is further compressed to 8, there is a clear gap between the performance of these
trained models and the benchmark, no matter how the dataset is compressed, and the
performances of these three models are nearly the same.

Part of the SR reconstruction images of test data frt000050f2_07_if165l_trr3 using
models trained on different datasets under the same training epochs (twenty epochs) is
presented in Figure 6. In this figure, the spatial resolution of the ground truth and the SR
reconstruction images is 200 × 200, and the spatial resolution of the low-resolution image is
50× 50. Three bands with central wavelengths of 2.53 µm, 1.51 µm, and 1.1 µm are selected
as R, G, and B channels to synthesize these pseudo-color images. All the pixels were linearly
stretched by the same scale factor to make the difference between these images more visible.
It can be seen from the figure that when the number of spectral features is 235 or 40, the
images are almost the same, and there is no discernible difference. When the number of
spectral features reduces to 8, the crater edge becomes more blurred and wider. In addition,
the ground truth data is selected as the benchmark in Figure 7. The reason is to evaluate the
RMSE of all 235 bands between the benchmark and the other images. It can be observed
more clearly that when the number of spectral features is 235 or 40, the difference between
the SR reconstructed images is small. When the number of spectral features reduces to 8,
the difference between the right edge and the crater interior is more apparent.
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Figure 7. The RMSE of all 235 bands between the ground truth and the SR reconstruction images.
The image in the first column are the original high-resolution (ground truth) image. The images in the
other four columns are the RMSE of all 235 bands between the ground truth and the SR reconstruction
data reconstructed by the models trained on different datasets, and the name of the datasets are
labeled in the titles of these images.

4.3. Spatial Compression

In spatial compression, the correlation coefficients between low-resolution patches
are calculated first, and the results of datasets 235, S40, and P40 are presented in Figure 8.
It can be observed from the figure that there are noticeable differences among them. The
reason is that when the correlation coefficients between patches are calculated directly,
the correlations of spatial and spectral dimensions are mixed. In the principal component
analysis in the spectral dimension, it can be found that the percentages of explained
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variances of the leading principal components are very high. Therefore, the percentages of
explained variances of the following principal components are rather low, which means
that the value range of these principal components is rather limited and eventually leads to
the high correlation coefficient between patches.
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To exclude the influence of the spectral dimension and get the correlation coefficients
between patches in the spatial dimension, the correlation coefficients between patches can
be calculated according to Equations (2)–(5). The correlation coefficients between patches
of datasets 235, S40, and P40 calculated in this way are presented in Figure 9.
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The results of these three datasets are very close to each other. It indicates that the
calculation method proposed in this paper is unaffected by spectral compression. In
spectral compression, the band correlation coefficient threshold of S40 is set to 0.9996, and
the cumulative percentage of explained variances of the first 40 principal components
reaches 99.9895%. Thus, the information of the patches is preserved very well, and the
performance of the models trained on datasets 235, S40, and P40 is nearly the same. So, it is
reasonable for the correlation coefficients between patches to be close in datasets 235, S40,
and P40. The spatial correlation between patches is mainly derived from the similarity of
the Martian surface texture features in these patches. It can be seen from the figure that the
spatial correlation between patches is relatively low, which shows the diversity of spatial
texture. The analysis of the relationship between the calculated correlation coefficients
and the spatial texture of patches and the histogram of the CorrPhase of dataset 235 are
presented in Appendix D. The results indicate that the CorrPos and CorrNeg can reflect
the correlation of spatial texture between patches accurately. The signs of the correlation
coefficients between patches are highly consistent in each spectral feature.

Because moderate spectral compression could reduce the model training time and
the SR reconstruction runtime significantly with almost no accuracy loss, the spatial com-
pression is performed on the dataset SR40. It can be found from Equations (2)–(5) that the
correlation coefficients between patches have nothing to do with the band order; thus, the
patch correlation coefficients of the dataset SR40 are just the same as the dataset S40. The
same three algorithms used in spectral compression are also used in spatial compression,
and the results are plotted in Figure 10. Since the result calculated by Algorithm 3 has
randomness, the data of Algorithm 3 in the figure is the average of three runs.
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Figure 10. Comparison of the three compression algorithms based on data selection: (a) the number
of correlation coefficient calculations and (b) the number of selected patches of the three algorithms
under different correlation coefficient thresholds. (Amp means the correlation coefficient thresholds
are set for CorrAmp, and Pos means the correlation coefficient thresholds are set for CorrPos.).

As can be observed in Figure 10, although in spatial compression, Algorithm 3 still
performed better than Algorithm 2, the improvement is limited. The reason is that although
patches with adjacent numbers might be close to each other in the spatial dimension and
even have certain overlapping regions, these effects on the spatial correlation between
patches are not decisive, and the scope of these effects is limited. Therefore, the correlation
between the patch number and the patch correlation coefficients is inherently random, and
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Algorithms 2 and 3 are nearly equivalent. Similar to the spectral compression, when the
correlation coefficient threshold is relatively low compared with the correlation coefficients
of patches, many patches with high correlation coefficients are removed quickly in Algo-
rithms 2 and 3. It significantly reduces the number of correlation coefficient calculations
compared with Algorithm 1. To find the effect of spatial compression on model training
speed and the performance of the trained model, the spatial compression ratios are set
to 12.5%, 25%, 50%, and 75%. Since the negative correlation means a different trend of
texture change, CorrPos was selected as the correlation criterion for patch selection. Because
of the compression efficiency and the uniqueness of the operation result, Algorithm 2 is
selected for spatial compression. Finally, the CorrPos thresholds set for algorithm 2 are
0.385, 0.458, 0.576, and 0.692, and the number of the selected patches are 1349, 2688, 5372,
and 8037, which are 12.59%, 25.09%, 50.14%, and 75.02% of the total number of patches in
the training dataset.

The performance of models trained on different spatial compression datasets under
different training times is presented in Figure 11. In this figure, the horizontal axis is the
training time in units of the SR40 epoch, which is about 14 min for each SR40 epoch. For
spatial compression datasets, the training time of each epoch and the number of patches in
training datasets are reduced in the same proportion.
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Figure 11. The performance of models trained on different spatial compression datasets with different
training times.

It can be seen from these figures that when the spatial compression ratio is higher than
0.5, the training speed of the models and the performance of the models are nearly the
same. When the ratio is lower than 0.25, the quantitative picture quality indices (except for
the SAM) start to worsen with the compression ratio reduction. So, due to the low spatial
correlation between patches, the spatial compression cannot improve the training speed or
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the performance of the trained model. However, it proves the redundancy of the dataset in
the spatial dimension. The model can be well trained with only half of the original patches.

The SR reconstruction images of test data frt000050f2_07_if165l_trr3 using models
trained on different datasets with nearly the same training time (19.5 SR40 epochs for SR40-
0.750 and 20 SR40 epochs for the other datasets) are presented in Figure 12. In addition,
the RMSE result of all 235 bands between the ground truth and the SR reconstruction
images based on the models trained on these datasets are also presented in Figure 12. The
differences between these SR reconstruction images are subtle. It can be observed from
Figures 5 and 11 that the performance gap of the models trained with different spatial
compression datasets is smaller than the performance gap of the models trained with
different spectral compression datasets. That is why the differences between the images in
Figure 12 are more subtle than in Figure 6.
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5. Discussion

This paper proposes a network model that can perform SR in both spectral and spatial
dimensions, and a CRISM dataset is created for model training first. Then the compression
algorithms in both spectral and spatial dimensions are being researched to optimize the
model training and the SR construction speed.

5.1. Spectral Compression

Three algorithms based on data selection and one algorithm based on PCA are applied
to the CRISM dataset for data compression in spectral dimension. The results of spectral
compression can be summarized as follows.

The original dataset is highly correlated in the spectral dimension. Moderate spectral
compression can significantly reduce the model training time and the SR reconstruction
runtime with nearly no loss of accuracy. Compared with the performance of the original
dataset with 235 bands, when the number of the spectral features is compressed to 40,
training time and SR reconstruction runtime can be reduced to 30% and 23%. After
the spectral compression, the correlation between bands in each branch group can be
reduced by reordering these bands. It can make each branch network obtain more diverse
information in the model training so that the model can be trained better.

The performance of the compression algorithms based on data selection and PCA is
nearly the same. When the number of principal components is only one or two, or even
eight, although the proportion of explained variances of the leading principal components
is high, the information contained in these principal components can not ensure the model
can be trained well. To enrich the spectral information of the compressed dataset, more



Remote Sens. 2022, 14, 3062 17 of 24

principal components need to be included. Since the explained variances proportions of the
following principal components are pretty low, the number of the principal components
needs to be increased significantly. Therefore, the compression algorithm based on PCA has
no prominent advantage in compression rate compared with the compression algorithms
based on data selection. Besides, in compression algorithms based on data selection, spectral
compression can be completed by directly extracting selected bands from the original data
with almost no computation. All the selected bands have clear physical meaning. While in
compression algorithm based on PCA, the principal components needed to be obtained by
matrix multiplications and have no explicit physical meaning. Therefore, the compression
algorithm based on data selection is more suitable for the spectral compression of the
original dataset and performs well.

5.2. Spatial Compression

A new method for spatial correlation evaluation of hyperspectral data is proposed in
spatial compression. The proposed evaluating indicators CorrPos and CorrNeg can reflect
the correlation of spatial texture between patches well. The correlation of patches in spatial
dimensions between patches is relatively low.

The training time and the performances of the models trained on the datasets with
different spatial compression ratios indicate that the spatial compression has nearly no
effect when the ratio is higher than 0.5. When the spatial compression ratio reduces to
0.25, the performance of the trained models becomes worse and worse with the reduction
of the compression ratio, even if the training time is long enough. This means that the
dataset with half patches has contained sufficient mapping information between the low-
resolution and high-resolution data. Therefore, the model can be trained well with the same
training time. But when the compression ratio is lower than 0.25, the mapping information
contained in the dataset becomes incomplete. Therefore, even if the time of the model
training is long enough, there will still be a gap between the performance of the model
trained on the compressed dataset and the model trained on the complete dataset. When
the compression ratio decreases further, the performance degradation of the trained model
will aggravate further.

Therefore, the amount of data in the dataset is not just ‘the more, the better’. When the
dataset contains enough mapping information, the newly added data is useless for the model
training. It can be used to check the completeness of the dataset by correlation analysis.

6. Conclusions

In this paper, to apply the SR algorithm based on deep learning to hyperspectral
remote sensing data more effectively, the correlation of the CRISM dataset in both spectral
and spatial dimensions is analyzed in detail. A network that can perform spatial SR and
spectral enhancement simultaneously and some data compression algorithms based on
data selection or PCA are proposed.

The results indicate that when the number of the bands is compressed to 40, training
time and SR reconstruction runtime can be reduced to 30% and 23% with almost no accuracy
loss. The effectiveness of compression algorithms based on data selection indicates that
maybe not all the bands need to be transmitted from the Mars probes or be collected. It
would, in principle, help improve the efficiency of satellite data transmission and simplify
the design of the hyper-spectrometer. Because the trained model can perform spectral
enhancement, the algorithm and the network may also be used for the abnormal band
and invalid data recovery. In addition, the datasets used for model training in this paper
are created based on the Targeted Reduced Data Record (TRDR) of CRISM. To realize the
complete mapping model between the spectral compressed raw data received from the
Mars probes and the final spatial SR reconstructed and spectrally enhanced outputs, the
radiometric calibration algorithm based on the spectral compressed raw data needs to and
will be developed and integrated into the proposed model in the future work. The validity
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of the complete mapping model will also be fully tested on more kinds of hyperspectral
remote sensing data to verify the feasibility of onboard spectral compression.

In spatial compression, it can be observed that the model could be trained well with
only half of the original data. It indicates that the completeness of the dataset can be
checked by analyzing the correlations between the data.
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Appendix A

Table A1. Product IDs of the selected CRISM data.

Index Product ID Index Product ID Index Product ID

1 frt0000a8ce_07_if166l_trr3 20 frt000165f7_07_if166l_trr3 39 frt000093be_07_if166l_trr3
2 frt0000a09c_07_if166l_trr3 21 frt0000634b_07_if163l_trr3 40 frt000095fe_07_if166l_trr3
3 frt0000a33c_07_if164l_trr3 22 frt0001756e_07_if164l_trr3 41 frt000097e2_07_if166l_trr3
4 frt0000a063_07_if165l_trr3 23 frt00008144_07_if164l_trr3 42 frt000135db_07_if166l_trr3
5 frt0000a425_07_if166l_trr3 24 frt00009824_07_if164l_trr3 43 frt000174f4_07_if166l_trr3
6 frt0000a546_07_if165l_trr3 25 frt00003bfb_07_if166l_trr3 44 frt000199c7_07_if166l_trr3
7 frt0000aa03_07_if166l_trr3 26 frt00003e12_07_if166l_trr3 45 frt000251c0_07_if165l_trr3
8 frt0000abcb_07_if166l_trr3 27 frt00003fb9_07_if166l_trr3 46 frt0000406b_07_if165l_trr3
9 frt0000ada4_07_if168l_trr3 28 frt00005a3e_07_if165l_trr3 47 frt0000979c_07_if165l_trr3
10 frt0000bda8_07_if165l_trr3 29 frt00009d31_07_if164l_trr3 48 frt0001642e_07_if166l_trr3
11 frt0000a106_07_if163l_trr3 30 frt00013d3b_07_if165l_trr3 49 frt0001821c_07_if166l_trr3
12 frt0000a377_07_if165l_trr3 31 frt00016a73_07_if166l_trr3 50 frt00003584_07_if166l_trr3
13 frt0001b615_07_if166l_trr3 32 frt00018dca_07_if166l_trr3 51 frt00009971_07_if166l_trr3
14 frt00004af7_07_if164l_trr3 33 frt00019daa_07_if165l_trr3 52 frt00017103_07_if165l_trr3
15 frt00008c90_07_if163l_trr3 34 frt00024c1a_07_if165l_trr3 53 frt00018781_07_if165l_trr3
16 frt000028ba_07_if165l_trr3 35 frt000047a3_07_if166l_trr3 54 frt00019538_07_if166l_trr3
17 frt000035db_07_if164l_trr3 36 frt000048b2_07_if165l_trr3 55 frt00023565_07_if166l_trr3
18 frt000128d0_07_if165l_trr3 37 frt000050f2_07_if165l_trr3 56 frt00023728_07_if166l_trr3
19 frt000161ef_07_if167l_trr3 38 frt000064d9_07_if166l_trr3 57 frt000088d0_07_if166l_trr3

Appendix B

In the SSPSR network, the input low-resolution hyperspectral image is first divided
into several overlap groups. For each group, a branch network is applied to extract the
spatial-spectral features of the input grouped hyperspectral images (a subset of the entire
hyperspectral linages) and upscale them with a smaller upsampling factor (compared with
the final target). And then, the output features of all branches are concatenated and fed to
the following global spatial-spectral feature extraction and upsampling networks. To let
the spatial-spectral prior network (SSPN) in the branch network and global network share
the same structure, a “reconstruction” layer was inserted after each branch upsampling

http://pds-geosciences.wustl.edu/missions/mro/crism.htm
http://pds-geosciences.wustl.edu/missions/mro/crism.htm
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module. A global residual structure is also adapted to facilitate the prediction of the target.
And the SSPN is constructed by cascading multiple spatial-spectral blocks (SSBs). For each
SSB, it contains a spatial residual module and a spectral attention residual module.

The overall network architecture of the SSPSR network and the network architecture
of the spatial-spectral block (SSB) can be found in Figures 1 and 2 of reference [37]. The ILR

in Figure 1 of reference [37] is the low-resolution hyperspectral image, I(S)LR is the grouped
data fed to each branch network, ILR ↑ is a Bicubic upsampling version of the input low-
resolution hyperspectral images, and ISR is the output high-resolution hyperspectral image.

The model training parameters are set as follows. The scale factor is set to 4. The
number of the spectral bands in each group and the overlap between neighboring groups
were set to 8 and 2. And the ADAM optimizer with an initial learning rate of 1 × 10−4,
which decays by a factor of 10 when it reaches 30 epochs, is used to adjust the learning
rate. In the SSPN, the number of spatial-spectral blocks is set to 3, and the size of all Conv
layers to 3 × 3 except for that in the spectral residual modules, where the kernel size is
set to 1 × 1. The zero-padding strategy is applied for these Conv layers with kernel size
3 × 3. The Conv layers in shallow feature extraction and SSPN have 256 filters, except
in the channel-downscaling. Data augment, including all possible flipping and rotation
(integer multiples of 90 degrees), is used to enhance the richness of the data.

Appendix C

Table A2 shows the correlation coefficients between 8 bands selected according to
equal band number spacing.

Table A2. Correlation coefficients matrix between 8 bands.

Band Number 1 34 67 100 133 166 199 232

1 1.0000 0.9960 0.9841 0.9413 0.9248 0.9119 0.9061 0.8889
34 0.9960 1.0000 0.9926 0.9529 0.9373 0.9286 0.9244 0.9107
67 0.9841 0.9926 1.0000 0.9803 0.9686 0.9623 0.9571 0.9431

100 0.9413 0.9529 0.9803 1.0000 0.9956 0.9939 0.9863 0.9698
133 0.9248 0.9373 0.9686 0.9956 1.0000 0.9968 0.9918 0.9780
166 0.9119 0.9286 0.9623 0.9939 0.9968 1.0000 0.9967 0.9848
199 0.9061 0.9244 0.9571 0.9863 0.9918 0.9967 1.0000 0.9942
232 0.8889 0.9107 0.9431 0.9698 0.9780 0.9848 0.9942 1.0000

Besides, the low-resolution images of the eight bands of two test data are presented in
Figures A1 and A2. Different colors are used instead of grayscales to represent different
values to make the difference between different bands more visible. It can also be seen
from these two figures that the images of different bands are pretty similar to each other.
As the difference of the band number, that is, the difference of the central wavelength of
the band, becomes larger, the difference between the corresponding images also becomes
more significant.
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Appendix D

To present the relationship between the calculated correlation coefficients and the
spatial texture of patches visually, several groups of patches of dataset 235 with high or low
correlation coefficients are selected, and the data of the band with a central wavelength of
1.51 µm are drawn in Figure A3. Some of the correlation coefficients between these patches
are listed in Table A3. It can be found from this table that patch 1 and patch 2, patch 3, and
patch 4 are highly positively correlated, while patch 1 and patch 2 are highly negatively
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correlated with patch 3 and patch 4. There is no correlation between patch 5 and patch
6, patch 7 and patch 8, while there is a specific negative correlation between patch 5 and
patch 8. These conclusions are consistent with the spatial texture variation of these patches
presented in Figure A3. It indicates that the CorrPos and CorrNeg can reflect the correlation
of spatial texture between patches well.
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Table A3. Part of the correlation coefficients between patches presented in Figure A3.

CorrPos Patch 1 Patch 2 Patch 3 Patch 4 CorrNeg Patch 1 Patch 2 Patch 3 Patch 4

Patch 1 1.00 0.95 0.00 0.00 Patch 1 0.00 0.00 0.95 0.96
Patch 2 0.95 1.00 0.00 0.00 Patch 2 0.00 0.00 0.92 0.96
Patch 3 0.00 0.00 1.00 0.92 Patch 3 0.95 0.92 0.00 0.00
Patch 4 0.00 0.00 0.92 1.00 Patch 4 0.96 0.96 0.00 0.00

CorrPos Patch 5 Patch 6 Patch 7 Patch 8 CorrNeg Patch 5 Patch 6 Patch 7 Patch 8
Patch 5 1.00 0.00 0.00 0.00 Patch 5 0.00 0.00 0.08 0.44
Patch 6 0.00 1.00 0.00 0.00 Patch 6 0.00 0.00 0.04 0.13
Patch 7 0.00 0.00 1.00 0.00 Patch 7 0.08 0.04 0.00 0.00
Patch 8 0.00 0.00 0.00 1.00 Patch 8 0.44 0.13 0.00 0.00

The histogram of the CorrPhase of dataset 235 is presented in Figure A4. In this
histogram, the bin size of the histogram is π/200. Only the correlation coefficients between
different patches will be counted, and the correlation coefficient of two patches will be
counted only once regardless of their order. It can be seen from the histogram that most
of the CorrPhase values are concentrated around 0 and π. The signs of the correlation
coefficients between patches are highly consistent in each spectral feature.
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